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Abstract. The aim of this paper is to prove some existence and uniqueness theorems
of the fixed points for Hardy-Rogers type contraction with respect to a wt-distance in
b-metric spaces endowed with a graph. These results prepare a more general state-
ment, since we apply the condition of orbitally G-continuity of mappings instead of the
condition of continuity, consider b-metric spaces endowed with a graph instead general
b-metric spaces and use of control functions instead of constant numbers.
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1. Introduction and preliminaries

In 1931, Wilson [16] defined the concept of symmetric space, as metric-like
spaces without the condition of triangle inequality. Thereinafter, the concept of
b-metric spaces as a generalization of symmetric and metric spaces were introduced
by Bakhtin [2] and Czerwik [5]. On the other hand, in 1996, Kada et al. [11] defined
the concept of w-distance in metric spaces and presented some fixed point theorems
with respect to this distance. The concept of wt-distance on b-metric spaces as a
generalization of w-distance was introduced by Hussain et al. [9]. Then they proved
some fixed point theorems under a wt-distance in partially ordered b-metric spaces
(also, see [7]).
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In this paper, we consider a wt-distance in b-metric spaces endowed with a di-
rected graph and obtain some fixed point theorems of Hardy-Rogers type contrac-
tion [8] with respect to this distance, where all of the above works can be unified.
In the following part, we will give some preliminary definitions, lemmas and notions
which will be needed in the sequel.

Definition 1.1. [5] Let X be a nonempty set and s ≥ 1 a given real number.
Suppose that the mapping d : X × X → [0,∞) for all x, y, z ∈ X satisfies the
following conditions:

(d1) d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x);

(d3) d(x, z) ≤ s[d(x, y) + d(y, z)].

Then d is called a b-metric and (X, d) is called a b-metric space.

Obviously, for s = 1, a b-metric space is a metric space. Also, for notions such
as convergent and Cauchy sequences, completeness, continuity and etc in b-metric
spaces, see [1, 4, 12, 14].

Definition 1.2. [9] Let (X, d) be a b-metric space and s ≥ 1 be a given real
number. A function ρ : X × X → [0,+∞) is called a wt-distance on X if for all
x, y, z ∈ X, the following properties are satisfied:

(ρ1) ρ(x, z) ≤ s[ρ(x, y) + ρ(y, z)];

(ρ2) ρ is b-lower semi-continuous in its second variable; that is, if yn → y in X,
then ρ(x, y) ≤ s lim infn ρ(x, yn);

(ρ3) for each ε > 0, there exists δ > 0 such that ρ(z, x) ≤ δ and ρ(z, y) ≤ δ imply
d(x, y) ≤ ε.

Obviously, for s = 1, every wt-distance is a w-distance. But, a w-distance is not
necessary a wt-distance. Thus, each wt-distance is a generalization of w-distance.

Lemma 1.1. [9] Let (X, d) be a b-metric space with the parameter s ≥ 1 and ρ be
a wt-distance on X. Also, let {xn} and {yn} be two sequences in X, {an} and {bn}
be two sequences in [0,+∞) converging to zero and x, y, z ∈ X. Then the following
conditions hold:

(wt1) if ρ(xn, y) ≤ an and ρ(xn, z) ≤ bn for all n ∈ N, then y = z. In particular, if
ρ(x, y) = 0 and ρ(x, z) = 0, then y = z;

(wt2) if ρ(xn, xm) ≤ an for all m,n ∈ N with m > n, then {xn} is a Cauchy
sequence in X.
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In 2008, Jachymski [10] provided a metric space with a graph and introduced Banach
contraction principle in graph language (also, see [13]).

Let (X, d) be a b-metric space and G be a directed graph without parallel edges
and with vertex set V (G) = X and edge set E(G) contains all loops. Then the
graph G can be written by the ordered pair (V (G), E(G)) and (X, d) is named b-
metric space endowed with the graph G. Also, The graph G is connected if there
exists a path in G between every two vertices of G. For more details on graphs,
see [3]. From here onwards, let (X, d) be a b-metric space endowed with a graph
G, where V (G) = X and ∆(X) ⊆ E(G) with ∆(X) = {(x, x) ∈ X ×X : x ∈ X}.
Also, let Fix(f) be the set of all fixed points of a self-map f on X and Xf = {x ∈
X : (x, fx) ∈ E(G)}.

From the idea of Jachymski [10] and Petrusel and Rus [13], Fallahi et al. defined
Picard operators in b-metric spaces and orbitally G-continuous mappings on X as
follows:

Definition 1.3. [6, 7] Let (X, d) be a b-metric space. A self-map f on X is called
a Picard operator if f has an unique fixed point x∗ in X and fnx → x∗ for all
x ∈ X.

Definition 1.4. [6, 7] Let (X, d) be a b-metric space endowed with a graph G. A
mapping f : X → X is called orbitally G-continuous on X if for all x, y ∈ X and
all sequences {bn} of positive integers with (f bnx, f bn+1x) ∈ E(G) for all n ≥ 1, the
convergence f bnx → y implies that f(f bnx) → fy.

Note that a continuous mapping on b-metric spaces is orbitally G-continuous for all
graphs G, but the converse is not generally true.

2. Main results

The following theorem is the principle result of this paper.

Theorem 2.1. Let (X, d) be a complete b-metric space endowed with the graph
G, s ≥ 1 be a given real number and ρ be a wt-distance. Also, let f : X → X be
an orbitally G-continuous mapping that preserves the edges of G; that is, (x, y) ∈
E(G) implies (fx, fy) ∈ E(G) for all x, y ∈ X. Assume that there exist mappings
µi : X → [0, 1) for i = 1, 2, · · · , 5 with µi(fx) ≤ µi(x) such that

ρ(fx, fy) ≤ µ1(x)ρ(x, y) + µ2(x)ρ(x, fx) + µ3(x)ρ(y, fy)(2.1)

+µ4(x)ρ(x, fy) + µ5(x)ρ(y, fx),

ρ(fy, fx) ≤ µ1(x)ρ(y, x) + µ2(x)ρ(fx, x) + µ3(x)ρ(fy, y)(2.2)

+µ4(x)ρ(fy, x) + µ5(x)ρ(fx, y)

for all x, y ∈ X with (x, y) ∈ E(G), where

(s(µ1 + µ3 + 2µ4) + µ2 + (s2 + s)µ5)(x) < 1.(2.3)
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Then Xf ̸= Ø if and only if f has a fixed point. Further, if fv = v, then ρ(v, v) = 0.
Moreover, if the subgraph of G with the vertex set Fix(f) is connected, then the
restriction of f to Xf is a Picard operator.

Proof. Since Fix(f) ⊆ Xf , if f has a fixed point, then Xf is nonempty. Conversely,
let Xf ̸= Ø and x0 ∈ Xf . Since f preserves the edges of G, then (xn−1, xn) ∈ E(G)
for all n ∈ N, where xn = fxn−1 = fnx0. Now, set x = xn and y = xn−1 in (2.1)
and apply (ρ1). Then, by a simple calculation, we have

ρ(xn+1, xn) ≤ µ1(x0)ρ(xn, xn−1) + (µ2 + sµ4 + sµ5)(x0)ρ(xn, xn+1)(2.4)

+(µ3 + sµ5)(x0)ρ(xn−1, xn) + sµ4(x0)ρ(xn+1, xn).

Similarly, set x = xn and y = xn−1 in (2.2) and apply (ρ1), we have

ρ(xn, xn+1) ≤ µ1(x0)ρ(xn−1, xn) + (µ2 + sµ4 + sµ5)(x0)ρ(xn+1, xn)(2.5)

+(µ3 + sµ5)(x0)ρ(xn, xn−1) + sµ4(x0)ρ(xn, xn+1).

Now, adding up (2.4) and (2.5), we obtain

ρ(xn, xn+1) + ρ(xn+1, xn) ≤ (µ1 + µ3 + sµ5)(x0)[ρ(xn−1, xn) + ρ(xn, xn−1)]

+(µ2 + 2sµ4 + sµ5)(x0)[ρ(xn, xn+1) + ρ(xn+1, xn)].

Let un = ρ(xn, xn+1) + ρ(xn+1, xn). Then

un ≤ (µ1 + µ3 + sµ5)(x0)un−1 + (µ2 + 2sµ4 + sµ5)(x0)un

for all n ∈ N. Hence, we have un ≤ αun−1 for all n ∈ N, where

0 ≤ α =
(µ1 + µ3 + sµ5)(x0)

1− (µ2 + 2sµ4 + sµ5)(x0)
<

1

s
, (by (2.3)).(2.6)

By repeating the procedure, we have un ≤ αnu0 for all n ∈ N. Thus,

ρ(xn, xn+1) ≤ un ≤ αn[ρ(x0, x1) + ρ(x1, x0)].(2.7)

Now, let m,n ∈ N with m > n. It follows from (ρ1), (2.6) and sα < 1 (by (2.7))
that

ρ(xn, xm) ≤ sαn

1− sα
[ρ(x1, x0) + ρ(x0, x1)].

Clearly, sαn

1−sα [ρ(x0, x1) + ρ(x1, x0)] is a convergent sequence to zero. Hence, {xn}
is a Cauchy sequence in X by Lemma 1.1.(wt2). Since X is complete, there exists
a point v ∈ X such that xn = fnx0 → v as n → ∞. On the other hand, since
x0 ∈ Xf , we have (fnx0, f

n+1x0) ∈ E(G) for n = 0, 1, · · ·. Therefore, by orbital
G-continuity of f , we obtain fn+1x0 → fv. Since the limit of a sequence is unique,
we conclude that fv = v; that is, v is a fixed point of the mapping f . Further, let
fv = v and consider x = y = v in (2.1). Then, we have

ρ(v, v) = ρ(fv, fv) ≤ (µ1 + µ2 + µ3 + µ4 + µ5)(v)ρ(v, v),
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which implies that ρ(v, v) = 0 (since
5∑

i=1

µi(v) < 1).

Next, assume that the subgraph of G with the vertex set Fix(f) is connected
and v∗ ∈ X is another fixed point of f . Then there exists a path (xi)

N
i=0 in G

from v to v∗ such that x1, . . . , xN−1 ∈ Fix(f) by setting x0 = v, xN = v∗ and
(xi−1, xi) ∈ E(G) for i = 1, · · · , N . Now, since ρ(xi, xi) = 0 for each i = 1, 2, · · ·N ,
and by applying (2.1) and (2.2), we have

ρ(xi, xi−1) = ρ(fxi, fxi−1) ≤ (µ1 + µ4)(xi)ρ(xi, xi−1) + µ5(xi)ρ(xi−1, xi)(2.8)

ρ(xi−1, xi) = ρ(fxi−1, fxi) ≤ (µ1 + µ4)(xi)ρ(xi−1, xi) + µ5(xi)ρ(xi, xi−1).(2.9)

Now, adding up (2.8) and (2.9), we obtain

ρ(xi, xi−1) + ρ(xi−1, xi) ≤ (µ1 + µ4 + µ5)(xi)[ρ(xi, xi−1) + ρ(xi−1, xi)],

which implies that ρ(xi, xi−1)+ρ(xi−1, xi) = 0 (since (µ1+µ4+µ5)(xi) < 1). Hence,
ρ(xi, xi−1) = ρ(xi−1, xi) = 0. Now, by Lemma 1.1.(wt1), we have d(xi, xi−1) = 0;
that is, xi = xi−1 for i = 1, 2, · · · , N . Hence, v = x0 = x1 = · · · = xN−1 = v∗.
Therefore, the fixed point of f is unique and the restriction of f to Xf is a Picard
operator. This completes the proof.

Example 2.1. Let X = [0, 1] and consider the mapping d : X ×X → R+ by d(x, y) =
(x− y)2 for all x, y ∈ X. Then (X, d) is a b-metric space with s = 2. Define the mapping
ρ : X × X → [0,∞) by ρ(x, y) = y2 for all x, y ∈ X. Then ρ is a wt-distance. Define

f : X → X by f1 = 1
2

and fx = x2

4
for 1 ̸= x ∈ X. Clearly, f is not continuous

on the whole X. Suppose that X is endowed with a graph G = (V (G), E(G)), where
V (G) = X and E(G) = {(x, x) : x ∈ X}; that is, E(G) contains nothing but all loops.

Clearly, f is orbitally G-continuous on X. Consider mappings µ1(x) =
x2

4
, µ2(x) =

x
2
and

µ3(x) = µ4(x) = µ5(x) = 0 for all x ∈ X. Then

(i) if x ̸= 1, then µ1(fx) = µ1(
x2

4
) = x4

64
≤ x2

4
= µ1(x) and if x = 1, then µ1(f1) =

1
16

≤ 1
4
= µ1(1);

(ii) if x ̸= 1, then µ2(fx) = µ2(
x2

4
) = x2

8
≤ x

2
= µ2(x) and if x = 1, then µ2(f1) =

1
4
≤

1
2
= µ1(1);

(iii) µi(fx) ≤ µi(x) for all x ∈ X and i = 2, 3, 5;

(iv) (s(µ1 + µ3 + 2µ4) + µ2 + (s2 + s)µ5)(x) = 2(x
2

4
) + x

2
= x2+x

2
< 1 for all x ∈ X;

(v) let x ∈ X with (x, x) ∈ E(G). If x ̸= 1, then

ρ(fx, fx) =
x4

16
≤ µ1(x)ρ(x, x) + [µ2(x) + µ3(x) + µ4(x) + µ5(x)]ρ(x, fx)

and if x = 1, then

ρ(f1, f1) =
1

4
≤ µ1(1)ρ(1, 1) + [µ2(1) + µ3(1) + µ4(1) + µ5(1)]ρ(1, f1).

Thus, (2.1) is established. Similarly, for the validity of (2.2), one can apply above
approach with substitute first component with second component.



844 L. Aryanpour, H. Rahimi and G. Soleimani Rad

(vi) since (0, f0) = (0, 0) ∈ E(G), we have Xf ̸= Ø.

Hence, all of the conditions of Theorem 2.1 are true. Consequently, f has an unique fixed
point x = 0 ∈ [0, 1]. Moreover, ρ(0, 0) = 02 = 0.

If we consider µi(x) = µi for i = 1, 2, · · · , 5, then we have the following theorem:

Theorem 2.2. Let (X, d) be a complete b-metric space endowed with the graph G,
s ≥ 1 be a given real number and ρ be a wt-distance. Also, let f : X → X be an
orbitally G-continuous mapping that preserves the edges of G. Assume that there
exist constants µi ∈ [0, 1) for i = 1, 2, · · · , 5 such that

ρ(fx, fy) ≤ µ1ρ(x, y) + µ2ρ(x, fx) + µ3ρ(y, fy) + µ4ρ(x, fy) + µ5ρ(y, fx),

ρ(fy, fx) ≤ µ1ρ(y, x) + µ2ρ(fx, x) + µ3ρ(fy, y) + µ4ρ(fy, x) + µ5ρ(fx, y)

for all x, y ∈ X with (x, y) ∈ E(G), where s(µ1 + µ3 + 2µ4) + µ2 + (s2 + s)µ5 < 1.
Then the assertions of the Theorem 2.1 are established.

Now, several consequences of our main result follow for particular choices of the
graph G. First, consider complete graph G0 whose vertex set coincides with X;
that is, V (G0) = X and E(G0) = X × X. Let G = G0 in Theorem 2.1 and
Theorem 2.2. It is clear that set Xf related to any self-map f on X coincides with
the whole set X. Thus, we have two following corollaries:

Corollary 2.1. Let (X, d) be a complete b-metric space endowed with the graph
G, s ≥ 1 be a given real number and ρ be a wt-distance. Also, let f : X → X be an
orbitally G0-continuous mapping. Assume that there exist mappings µi : X → [0, 1)
with µi(fx) ≤ µi(x) for i = 1, 2, · · · , 5 such that

ρ(fx, fy) ≤ µ1(x)ρ(x, y) + µ2(x)ρ(x, fx) + µ3(x)ρ(y, fy)

+µ4(x)ρ(x, fy) + µ5(x)ρ(y, fx),

ρ(fy, fx) ≤ µ1(x)ρ(y, x) + µ2(x)ρ(fx, x) + µ3(x)ρ(fy, y)

+µ4(x)ρ(fy, x) + µ5(x)ρ(fx, y)

for all x, y ∈ X, where (s(µ1 + µ3 + 2µ4) + µ2 + (s2 + s)µ5)(x) < 1. Then f is a
Picard operator.

Corollary 2.2. Let (X, d) be a complete b-metric space endowed with the graph
G, s ≥ 1 be a given real number and ρ be a wt-distance. Also, let f : X → X be an
orbitally G0-continuous mapping. Assume that there exist constants µi ∈ [0, 1) for
i = 1, 2, · · · , 5 such that

ρ(fx, fy) ≤ µ1ρ(x, y) + µ2ρ(x, fx) + µ3ρ(y, fy) + µ4ρ(x, fy) + µ5ρ(y, fx),

ρ(fy, fx) ≤ µ1ρ(y, x) + µ2ρ(fx, x) + µ3ρ(fy, y) + µ4ρ(fy, x) + µ5ρ(fx, y)

for all x, y ∈ X, where s(µ1 + µ3 + 2µ4) + µ2 + (s2 + s)µ5 < 1. Then f is a Picard
operator.
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Now, let (X,⊑) be a poset (partially ordered set) andG1 be the graph with V (G1) =
X and E(G1) = {(x, y) ∈ X ×X : x ⊑ y}. Since ⊑ is reflexive, E(G1) contain all
loops. By setting G = G1 in Theorem 2.1 and Theorem 2.2, we obtain two following
corollaries of our main fixed point theorems.

Corollary 2.3. Let (X,⊑) be a poset, (X, d) be a complete b-metric space and s ≥
1 be a given real number. Also, ρ be a wt-distance and f : X → X be a nondecreasing
and orbitally G1-continuous mapping. Assume that there exist mappings µi : X →
[0, 1) with µi(fx) ≤ µi(x) for i = 1, 2, · · · , 5 such that

ρ(fx, fy) ≤ µ1(x)ρ(x, y) + µ2(x)ρ(x, fx) + µ3(x)ρ(y, fy)

+µ4(x)ρ(x, fy) + µ5(x)ρ(y, fx),

ρ(fy, fx) ≤ µ1(x)ρ(y, x) + µ2(x)ρ(fx, x) + µ3(x)ρ(fy, y)

+µ4(x)ρ(fy, x) + µ5(x)ρ(fx, y)

for all x, y ∈ X with x ⊑ y, where (s(µ1+µ3+2µ4)+µ2+(s2+s)µ5)(x) < 1. Then
f has a fixed point if and only if there exists x0 ∈ X such that x0 ⊑ fx0. Further, if
fv = v, then ρ(v, v) = 0. Moreover, if the subgraph of G1 with the vertex set Fix(f)
is connected, then the restriction of f to the set of all points in x ∈ X such x ⊑ fx
is a Picard operator.

Corollary 2.4. Let (X,⊑) be a poset, (X, d) be a complete b-metric space and s ≥
1 be a given real number. Also, ρ be a wt-distance and f : X → X be a nondecreasing
and orbitally G1-continuous mapping. Assume that there exist constants µi ∈ [0, 1)
for i = 1, 2, · · · , 5 such that

ρ(fx, fy) ≤ µ1ρ(x, y) + µ2ρ(x, fx) + µ3ρ(y, fy) + µ4ρ(x, fy) + µ5ρ(y, fx),

ρ(fy, fx) ≤ µ1ρ(y, x) + µ2ρ(fx, x) + µ3ρ(fy, y) + µ4ρ(fy, x) + µ5ρ(fx, y)

for all x, y ∈ X with x ⊑ y, where s(µ1 + µ3 + 2µ4) + µ2 + (s2 + s)µ5 < 1. Then
the assertions of the Corollary 2.3 are established.

Now, let X be a poset endowed with the graph G2 given by V (G2) = X and
E(G2) = {(x, y) ∈ X ×X : x ⊑ y ∨ y ⊑ x}; that is, an ordered pair (x, y) ∈ X ×X
is an edge of G2 if and only if x and y are comparable elements of (X,⊑). Consider
G = G2 in Theorem 2.1 and Theorem 2.2. Then we have other fixed point corollaries
as follows.

Corollary 2.5. Let (X,⊑) be a poset, (X, d) be a complete b-metric space and
s ≥ 1 be a given real number. Also, let ρ be a wt-distance and f : X → X
be a nondecreasing and orbitally G2-continuous mapping which maps comparable
elements of X onto comparable elements. Assume that there exist mappings µi :
X → [0, 1) with µi(fx) ≤ µi(x) for i = 1, 2, · · · , 5 such that

ρ(fx, fy) ≤ µ1(x)ρ(x, y) + µ2(x)ρ(x, fx) + µ3(x)ρ(y, fy)

+µ4(x)ρ(x, fy) + µ5(x)ρ(y, fx),

ρ(fy, fx) ≤ µ1(x)ρ(y, x) + µ2(x)ρ(fx, x) + µ3(x)ρ(fy, y)

+µ4(x)ρ(fy, x) + µ5(x)ρ(fx, y)
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for all comparable x, y ∈ X, where (s(µ1 + µ3 + 2µ4) + µ2 + (s2 + s)µ5)(x) < 1.
Then f has a fixed point in X if and only if there exists x0 ∈ X such that x0 and
fx0 are comparable. Moreover if fv = v, then ρ(v, v) = 0. Also, if the subgraph of
G2 with the vertex set Fix(f) is connected, then the restriction of f to the set of all
points in x ∈ X such that x and fx are comparable is a Picard operator.

Corollary 2.6. Let (X,⊑) be a poset, (X, d) be a complete b metric space and
s ≥ 1 be a given real number, ρ be a wt-distance and f : X → X be a nondecreasing
and orbitally G2-continuous mapping which maps comparable elements of X onto
comparable elements. Suppose that there exist constants µi ∈ [0, 1) for i = 1, 2, · · · , 5
such that

ρ(fx, fy) ≤ µ1ρ(x, y) + µ2ρ(x, fx) + µ3ρ(y, fy) + µ4ρ(x, fy) + µ5ρ(y, fx),

ρ(fy, fx) ≤ µ1ρ(y, x) + µ2ρ(fx, x) + µ3ρ(fy, y) + µ4ρ(fy, x) + µ5ρ(fx, y)

for all comparable x, y ∈ X, where s(µ1 + µ3 + 2µ4) + µ2 + (s2 + s)µ5 < 1. Then
the assertions of Corollary 2.5 are established.

For our next consequence, let ε > 0 be a fixed number. Note that two elements
x, y ∈ X are said to be ε-closed if d(x, y) < ε. Consider the ε-graph G3 with
V (G3) = X and E(G3) = {(x, y) ∈ X×X : d(x, y) < ε}. Note that E(G3) contains
all loops. Now, let G = G3 in Theorem 2.1 and Theorem 2.2. Then we have the
following consequences of our main fixed point theorems as follow.

Corollary 2.7. Let (X, d) be a complete b-metric space endowed with the graph
G3, s ≥ 1 be a given real number and ε > 0. Also, let ρ be a wt-distance and
f : X → X be an orbitally G3-continuous mapping which maps ε-close elements of
X onto ε-close elements. Assume that there exist mappings µi : X → [0, 1) with
µi(fx) ≤ µi(x) for i = 1, 2, · · · , 5 such that

ρ(fx, fy) ≤ µ1(x)ρ(x, y) + µ2(x)ρ(x, fx) + µ3(x)ρ(y, fy)

+µ4(x)ρ(x, fy) + µ5(x)ρ(y, fx),

ρ(fy, fx) ≤ µ1(x)ρ(y, x) + µ2(x)ρ(fx, x) + µ3(x)ρ(fy, y)

+µ4(x)ρ(fy, x) + µ5(x)ρ(fx, y)

for all x, y ∈ X such that x and y are ε-close elements, where

(s(µ1 + µ3 + 2µ4) + µ2 + (s2 + s)µ5)(x) < 1.

Then T has a fixed point on X if and only if there exists x0 ∈ X such that x0 and
fx0 are ε-close. Moreover, if fv = v, then ρ(v, v) = 0. Also, if the subgraph of G3

with the vertex set Fix(f) is connected, then the restriction of f to the set of all
points in x ∈ X such x and fx are ε-close is a Picard operator.

Corollary 2.8. Let (X, d) be a complete b-metric space endowed with the graph
G3, s ≥ 1 be a given real number and ε > 0. Also, ρ be a wt-distance and f : X → X
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be an orbitally G3-continuous mapping which maps ε-close elements of X onto ε-
close elements. Suppose that there exist constants µi ∈ [0, 1) for i = 1, 2, · · · , 5 such
that

ρ(fx, fy) ≤ µ1ρ(x, y) + µ2ρ(x, fx) + µ3ρ(y, fy) + µ4ρ(x, fy) + µ5ρ(y, fx),

ρ(fy, fx) ≤ µ1ρ(y, x) + µ2ρ(fx, x) + µ3ρ(fy, y) + µ4ρ(fy, x) + µ5ρ(fx, y)

for all x, y ∈ X such that x and y are ε-close elements, where

s(µ1 + µ3 + 2µ4) + µ2 + (s2 + s)µ5 < 1.

Then the assertions of Corollary 2.7 are established.

Remark 2.1. (i) For Banach contraction principle with respect to a wt-distance on b-
metric spaces endowed with the graph G and with the parameter s ≥ 1, we must
consider the condition ρ(fx, fy) ≤ µρ(x, y) for all x, y ∈ X, where µ ∈ [0, 1

s
).

(ii) Sometimes the constant numbers which satisfy Theorem 2.2 and Corollaries 2.2, 2.4,
2.6 and 2.8 are difficult to find. Thus, it is better to define such mappings µi(x) as
another auxiliary tool of the b-metric such as Theorem 2.1 and Corollaries 2.1, 2.3,
2.5 and 2.7.

3. Conclusion

In this paper, we applied the condition of orbitally G-continuity of mapping
instead the condition of continuity of mapping, b-metric spaces endowed with graph
instead of metric spaces and control functions instead of constants, under which can
be unified some theorems of existing literature such as Kada et al. [11], Fallahi et
al. [6, 7], Hussain et al. [9], Petrusel and Rus [13], and Soleimani Rad et al. [15].
Also, one can apply this method for other results in fixed point theory. We finish
this paper with a question. Can one prove the same results by considering some
another conditions instead of the continuity of the mapping f and by considering
one contractive relation instead two contractive relations?
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