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Abstract. The study of curvature properties of homogeneous Finsler spaces with (α, β)-
metrics is one of the central problems in Riemann-Finsler geometry. In the present
paper, the existence of invariant vector fields on a homogeneous Finsler space with
Randers changed square metric has been proved. Further, an explicit formula for S-
curvature of Randers changed square metric has been established. Finally, using the
formula of S-curvature, the mean Berwald curvature of afore said (α, β)-metric has
been calculated.
Keywords: Homogeneous Finsler space, square metric, Randers change, invariant
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1. Introduction

According to S. S. Chern [6], Finsler geometry is just Riemannian geometry
without quadratic restriction. Finsler geometry is an interesting and active area of
research for both pure and applied reasons [2, 1, 13, 16]. In 1972, M. Matsumoto
[17] introduced the concept of (α, β)−metrics which are the generalizations of Ran-
ders metric introduced by G. Randers [20]. Z. Shen [25] introduced the notion
of S-curvature, a non-Riemannian quantity, for a comparison theorem in Finsler
geometry. It is non-Riemannian in the sense that any Riemannian manifold has
vanishing S-curvature. One special class of Finsler spaces is homogeneous and sym-
metric Finsler spaces. It is an active area of research these days. Many authors
[8, 12, 15, 21, 23, 30] have worked in this area. The main aim of this paper is
to establish an explicit formula for S-curvature of a homogeneous Finsler space
with Randers change of square metric. The importance of S-curvature in Riemann-
Finsler geometry can be seen in several papers (e.g., [26, 27]).
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The simplest non-Riemannian metrics are the Randers metrics given by F =
α + β with ‖β‖α < 1, where α is a Riemannian metric and β is a 1-form. Be-
sides Randers metrics, other interesting kind of non-Riemannian metrics are square
metrics. Berwald’s metric, constructed by Berwald [4] in 1929 as

F =

(√
(1− |x|2) |y|2 + 〈x, y〉2 + 〈x, y〉

)2
(1− |x|2)

2
√

(1− |x|2) |y|2 + 〈x, y〉2

is a classical example of square metric. Berwald’s metric can be rewritten as follows:

(1.1) F =
(α+ β)

2

α
,

where

α =

√
(1− |x|2) |y|2 + 〈x, y〉2

(1− |x|2)
2 ,

and

β =
〈x, y〉

(1− |x|2)
2 .

An (α, β)-metric expressed in the form (1.1) is called square metric [28]. Just as
Randers metrics, square metrics play an important role in Finsler geometry. The
importance of square metric can be seen in papers [28, 29, 31]). Square metrics can
also be expressed in the form [31]

F =

(√
(1− b2)α2 + β2 + β

)2
(1− b2)

2
√

(1− b2)α2 + β2
,

where b := ‖βx‖α is the length of β.
In this case, F = αφ(b2, βα ), where φ = φ(b2, s) is a smooth function, is called gen-
eral (α, β)-metric. If φ = φ(s) is independent of b2, then F is called an (α, β)-metric.

An interesting fact is that if α = |y|, and β = 〈x, y〉, then F = |y|φ
(
|x|2, 〈x,y〉|y|

)
becomes spherically symmetric metric.

If F (α, β) is a Finsler metric, then F (α, β) −→ F̄ (α, β) is called a Randers change
if

(1.2) F̄ (α, β) = F (α, β) + β.

Above change of a Finsler metric has been introduced by M. Matsumoto [18], and
it was named as “Randers change” by M. Hashiguchi and Y. Ichijyō [14]. In the
current paper, we deal with Randers changed square metrics

F =
(α+ β)2

α
+ β = αφ(s),where φ(s) = 1 + s2 + 3s.
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The paper is organized as follows:
In section 2, we discuss some basic definitions and results to be used in consequent
sections. The existence of invariant vector fields on homogeneous Finsler spaces
with Randers changed square metric has been proved in section 3 (see Theorem
3.1). Further, in section 4, we have established an explicit formula for S-curvature
of afore said metric (see Theorem 4.2). Finally, in section 5, the mean Berwald
curvature of this metrics has been calculated (see Theorem 5.1).

2. Preliminaries

First, we discuss some basic definitions and results required to study aforesaid
spaces. We refer [3, 7, 9] for notations and further details.

Definition 2.1. An n-dimensional real vector space V is said to be a Minkowski
space if there exists a real valued function F : V −→ [0,∞), called Minkowski
norm, satisfying the following conditions:

� F is smooth on V \{0},

� F is positively homogeneous, i.e., F (λv) = λF (v), ∀ λ > 0,

� For any basis {u1, u2, ..., un} of V and y = yiui ∈ V , the Hessian matrix(
g
ij

)
=
(

1
2F

2
yiyj

)
is positive-definite at every point of V \{0}.

Definition 2.2. Let M be a connected smooth manifold. If there exists a function
F : TM −→ [0,∞) such that F is smooth on the slit tangent bundle TM\{0} and
the restriction of F to any TxM, x ∈M , is a Minkowski norm, then M is called a
Finsler space and F is called a Finsler metric.

An (α, β)-metric on a connected smooth manifold M is a Finsler metric F con-
structed from a Riemannian metric α =

√
aij(x)yiyj and a one-form β = bi(x)yi

on M and is of the form F = αφ
(
β
α

)
, where φ is a smooth function on M . Ba-

sically, (α, β)-metrics are the generalization of Randers metrics. Many authors
[12, 15, 21, 22, 24, 30] have worked on (α, β)-metrics. Let us recall Shen’s lemma
[7] which provides necessary and sufficient condition for an (α, β)-metric to be a
Finsler metric.

Lemma 2.1. Let F = αφ(s), s = β/α, where φ is a smooth function on an open
interval (−b0, b0), α is a Riemannian metric and β is a 1-form with ‖β‖α < b0.
Then F is a Finsler metric if and only if the following conditions are satisfied:

φ(s) > 0, φ(s)− sφ′(s) +
(
b2 − s2

)
φ′′(s) > 0, ∀ |s| ≤ b < b0.

Before defining homogeneous Finsler spaces, we shall discuss some basic concepts
below.
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Definition 2.3. Let G be a smooth manifold having the structure of an abstract
group. G is called a Lie group, if the maps i : G −→ G and µ : G×G −→ G defined
as i(g) = g−1, and µ(g, h) = gh respectively, are smooth.

Let G be a Lie group and M , a smooth manifold. Then a smooth map f : G×M −→
M satisfying

f(g2, f(g1, x)) = f(g2g1, x), for all g1, g2 ∈ G, and x ∈M

is called a smooth action of G on M.

Definition 2.4. Let M be a smooth manifold and G, a Lie group. If G acts
smoothly on M , then G is called a Lie transformation group of M .

The following theorem gives us a differentiable structure on the coset space of a Lie
group.

Theorem 2.1. Let G be a Lie group and H, its closed subgroup. Then there
exists a unique differentiable structure on the left coset space G/H with the induced
topology that turns G/H into a smooth manifold such that G is a Lie transformation
group of G/H.

Definition 2.5. Let (M,F ) be a connected Finsler space and I(M,F ) the group
of isometries of (M,F ). If the action of I(M,F ) is transitive on M , then (M,F ) is
said to be a homogeneous Finsler space.

Let G be a Lie group acting transitively on a smooth manifold M . Then for
a ∈M , the isotropy subgroup Ga of G is a closed subgroup and by theorem 2.1, G
is a Lie transformation group of G/Ga. Further, G/Ga is diffeomorphic to M .

Theorem 2.2. [9] Let (M,F ) be a Finsler space. Then G = I(M,F ), the group
of isometries of M is a Lie transformation group of M . Let a ∈ M and Ia(M,F )
be the isotropy subgroup of I(M,F ) at a. Then Ia(M,F ) is compact.

Let (M,F ) be a homogeneous Finsler space, i.e., G = I(M,F ) acts transitively
on M . For a ∈ M , let H = Ia(M,F ) be a closed isotropy subgroup of G which is
compact. Then H is a Lie group itself being a closed subgroup of G. Write M as
the quotient space G/H.

Definition 2.6. [19] Let g and h be the Lie algebras of the Lie groups G and H
respectively. Then the direct sum decomposition of g as g = h + k, where k is a
subspace of g such that Ad(h)(k) ⊂ k ∀ h ∈ H, is called a reductive decomposition of
g, and if such decomposition exists, then (G/H,F ) is called reductive homogeneous
space.
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Therefore, we can write, any homogeneous Finsler space as a coset space of a con-
nected Lie group with an invariant Finsler metric. Here, the Finsler metric F is
viewed as G invariant Finsler metric on M .

Definition 2.7. A one-parameter subgroup of a Lie group G is a homomorphism
ψ : R −→ G, such that ψ(0) = e, where e is the identity of G.

Recall [9] the following result which gives us the existence of one-parameter sub-
group of a Lie group.

Theorem 2.3. Let G be a Lie group having Lie algebra g. Then for any Y ∈ g,
there exists a unique one-parameter subgroup ψ such that ψ̇(0) = Ye, where e is the
identity element of G.

Definition 2.8. Let G be a Lie group with identity element e and g its Lie algebra.
The exponential map exp : g −→ G is defined by

exp(tY ) = ψ(t), ∀ t ∈ R,

where ψ : R −→ G is unique one-parameter subgroup of G with ψ̇(0) = Ye.

In case of reductive homogeneous manifold, we can identify the tangent space
TH(G/H) of G/H at the origin eH = H with k through the map

Y 7−→ d

dt
exp(tX)H|t=0, Y ∈ k,

since M is identified with G/H and Lie algebra of any Lie group G is viewed as
TeG.

3. Invariant Vector Field

For a homogeneous Finsler space with Randers changed square metric F =
(α+β)2

α + β, in Theorem 3.1, we prove the existence of invariant vector field corre-
sponding to 1-form β. For this, first we prove following lemmas:

Lemma 3.1. Let (M,α) be a Riemannian space and β = biy
i, a 1-form with

‖β‖ =
√
bibi < 1. Then the Randers changed square Finsler metric F = (α+β)2

α +β,
consists of a Riemannian metric α along with a smooth vector field X on M with
α (X|x) < 1, ∀ x ∈M , i.e.,

F (x, y) =
(α (x, y) + 〈X|x, y〉)2

α (x, y)
+ 〈X|x, y〉 , x ∈M, y ∈ TxM,

where 〈 , 〉 is the inner product induced by the Riemannian metric α.
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Proof. We know that the restriction of a Riemannian metric to a tangent space is
an inner product. Therefore, the bilinear form 〈u, v〉 = aiju

ivj , u, v ∈ TxM is an
inner product on TxM for x ∈M, and this inner product induces an inner product
on T ∗xM, the cotangent space of M at x which gives us

〈
dxi, dxj

〉
= aij . A linear

isomorphism exists between T ∗xM and TxM, which can be defined by using this
inner product. It follows that the 1-form β corresponds to a smooth vector field X
on M , which can be written as

X|x = bi
∂

∂xi
, where bi = aijbj .

Then, for y ∈ TxM, we have

〈X|x, y〉 =

〈
bi

∂

∂xi
, yj

∂

∂xj

〉
= biyjaij = bjy

j = β(y).

Also, we have
α2(x, y) = aijy

iyj ,

which implies
α2 (X|x) = aijb

ibj = ‖β‖2 < 1,

i. e.,
α (X|x) < 1.

This completes the proof.

Lemma 3.2. Let (M,F ) be a Finsler space with Randers changed square Finsler

metric F = (α+β)2

α + β. Let I(M,F ) be the group of isometries of (M,F ) and
I(M,α) be that of Riemannian space (M,α). Then I(M,F ) is a closed subgroup of
I(M,α).

Proof. Let x ∈M and φ : (M,F ) −→ (M,F ) be an isometry. Therefore, we have

F (x, y) = F (φ(x), dφx(y)), ∀y ∈ TxM.

By Lemma 3.1, we get

(α (x, y) + 〈X|x, y〉)2

α (x, y)
+ 〈X|x, y〉 =

=
(α (φ(x), dφx(y)) +

〈
X|φ(x), dφx(y)

〉
)2

α (φ(x), dφx(y))
+
〈
X|φ(x), dφx(y)

〉
,

which gives us

α (φ(x), dφx(y))α2 (x, y) + α (φ(x), dφx(y)) 〈X|x, y〉2

+3α (φ(x), dφx(y))α (x, y) 〈X|x, y〉
= α (x, y)α2 (φ(x), dφx(y)) + α (x, y)

〈
X|φ(x), dφx(y)

〉2
+3α (x, y)α (φ(x), dφx(y))

〈
X|φ(x), dφx(y)

〉
(3.1)
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Replacing y by −y in equation (3.1), we get

α (φ(x), dφx(y))α2 (x, y) + α (φ(x), dφx(y)) 〈X|x, y〉2

−3α (φ(x), dφx(y))α (x, y) 〈X|x, y〉
= α (x, y)α2 (φ(x), dφx(y)) + α (x, y)

〈
X|φ(x), dφx(y)

〉2
−3α (x, y)α (φ(x), dφx(y))

〈
X|φ(x), dφx(y)

〉
(3.2)

Subtracting equation (3.2) from equation (3.1), we get

α (φ(x), dφx(y))α (x, y) 〈X|x, y〉 = α (x, y)α (φ(x), dφx(y))
〈
X|φ(x), dφx(y)

〉
,

which implies

(3.3) 〈X|x, y〉 =
〈
X|φ(x), dφx(y)

〉
.

Adding equations (3.1) and (3.2) and using equation (3.3), we get

α (φ(x), dφx(y))α2 (x, y) + α (φ(x), dφx(y)) 〈X|x, y〉2

= α (x, y)α2 (φ(x), dφx(y)) + α (x, y) 〈X|x, y〉2 ,

which leads to

(3.4) α (x, y) = α (φ(x), dφx(y)) .

Therefore φ is an isometry with respect to the Riemannian metric α and dφx (X|x) =
X|φ(x). Thus I(M,F ) is a closed subgroup of I(M,α).

From Lemma (3.2), we conclude that if (M,F ) is a homogeneous Finsler space

with Randers change of square metric F = (α+β)2

α + β, then the Riemannian space
(M,α) is homogeneous. Further, M can be written as a coset space G/H, where
G = I(M,F ) is a Lie transformation group of M and H, the compact isotropy
subgroup Ia(M,F ) of I(M,F ) at some point a ∈ M [10]. Let g and h be the Lie
algebras of the Lie groups G and H respectively. If g can be written as a direct
sum of subspaces h and k of g such that Ad(h)k ⊂ k ∀ h ∈ H, then from definition
2.6, (G/H,F ) is a reductive homogeneous space.

Therefore, we can write, any homogeneous Finsler space as a coset space of a
connected Lie group with an invariant Finsler metric. Here, the Finsler metric F is
viewed as G invariant Finsler metric on M .

Theorem 3.1. Let F = (α+β)2

α + β be a G-invariant Randers changed square
metric on G/H. Then α is a G-invariant Riemannian metric and the vector field
X corresponding to the 1-form β is also G-invariant.
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Proof. Since F is a G-invariant metric on G/H, we have

F (y) = F (Ad (h) y) , ∀ h ∈ H, y ∈ k.

By Lemma 3.1, we get

(α (y) + 〈X, y〉)2

α (y)
+ 〈X, y〉 =

(α (Ad (h) y) + 〈X,Ad (h) y〉)2

α (Ad (h) y)
+ 〈X,Ad (h) y〉 .

After simplification, we get

α (Ad (h) y)α2 (y) + α (Ad (h) y) 〈X, y〉2 + 3α (Ad (h) y)α (y) 〈X, y〉
= α (y)α2 (Ad (h) y) + α (y) 〈X,Ad (h) y〉2 + 3α (y)α (Ad (h) y) 〈X,Ad (h) y〉 .(3.5)

Replacing y by −y in equation (3.5), we get

α (Ad (h) y)α2 (y) + α (Ad (h) y) 〈X, y〉2 − 3α (Ad (h) y)α (y) 〈X, y〉
= α (y)α2 (Ad (h) y) + α (y) 〈X,Ad (h) y〉2 − 3α (y)α (Ad (h) y) 〈X,Ad (h) y〉 .(3.6)

Subtracting equation (3.6) from equation (3.5), we get

α (Ad (h) y)α (y) 〈X, y〉 = α (y)α (Ad (h) y) 〈X,Ad (h) y〉 ,

which gives us

(3.7) 〈X, y〉 = 〈X,Ad (h) y〉 .

Adding equations (3.5) and (3.6) and using equation (3.7), we get

α (Ad (h) y)α2 (y) + α (Ad (h) y) 〈X, y〉2 = α (y)α2 (Ad (h) y) + α (y) 〈X, y〉2

which leads to

(3.8) α (y) = α (Ad (h) y) .

Therefore, α is a G-invariant Riemannian metric and Ad (h)X = X, which proves
that X is also G-invariant.

The following theorem gives us a complete description of invariant vector fields.

Theorem 3.2. [11] There exists a bijection between the set of invariant vector
fields on G/H and the subspace

V = {Y ∈ k : Ad (h)Y = Y, ∀ h ∈ H} .
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4. S-curvature of homogeneous Finsler space with

Now, we discuss S-curvature, a quantity used to measure the rate of change of
the volume form of a Finsler space along geodesics. Let V be an n-dimensional real
vector space having a basis {αi} and F be a Minkowski norm on V . Let V ol B to
be the volume of a subset B of Rn, and Bn be the open unit ball. The function
τ = τ(y) defined as

τ(y) = ln

(√
det(gij(y))

σF

)
, y ∈ V − {0},

where

σF =
V ol (Bn)

V ol {(yi) ∈ Rn : F (yiαi) < 1}
,

is called the distortion of (V, F ).
For a Finsler space (M,F ), τ = τ(x, y) is the distortion of Minkowski norm Fx on
TxM, x ∈ M. Let γ be a geodesic with γ(0) = x, γ̇(0) = y, where y ∈ TxM, then
S-curvature denoted as S(x, y) is the rate of change of distortion along the geodesic
γ, i.e.,

S(x, y) =
d

dt

{
τ

(
γ(t), γ̇(t)

)}∣∣∣∣
t=0

.

Here, it is to be noted that S(x, y) is positively homogeneous of degree one, i.e., for
λ > 0, we have S(x, λy) = λS(x, y).

S-curvature of a Finsler space is related to a volume form. There are two
important volume forms in Finsler geometry: the Busemann-Hausdorff volume form
dVBH = σ

BH
(x)dx and the Holmes-Thompson volume form dVHT = σ

HT
(x)dx

defined respectively as

σ
BH

(x) =
V ol (Bn)

V olA
,

and

σ
HT

(x) =
1

V ol (Bn)

∫
A

det (gij) dy,

where A =
{(
yi
)
∈ Rn : F

(
x, yi ∂

∂xi

)
< 1
}
.

If the Finsler metric F is replaced by a Riemannian metric, then both the volume
forms reduce to a single Riemannian volume form dVHT = dVBH =

√
det (gij(x))dx.

Next, for the function

T (s) = φ (φ− sφ′)n−2
{

(φ− sφ′) +
(
b2 − s2

)
φ′′
}
,
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the volume form dV = dVBH or dVHT is given by dV = f(b)dVα, where

f(b) =


∫ π
0

sinn−2 t dt∫ π
0

sinn−2 t
φ(b cos t)n

dt
, if dV = dVBH∫ π

0 (sinn−2 t)T (b cos t) dt∫ π
0

sinn−2 t dt
, if dV = dVHT

,

and dVα =
√
det (aij)dx is the Riemannian volume form of α.

The formula for S-curvature of an (α, β)-metric, in local co-ordinate system,
introduced by Cheng and Shen [5], is as follows:

(4.1) S =

(
2ψ − f ′(b)

bf(b)

)
(r0 + so)−

Φ

2α∆2

(
r
00
− 2αQs

0

)
,

where

Q =
φ′

φ− sφ′
,

∆ = 1 + sQ+
(
b2 − s2

)
Q′ ,

ψ =
Q′

2∆
,

Φ = (sQ′ −Q) (n∆ + 1 + sQ)−
(
b2 − s2

)
(1 + sQ)Q′′,

rij =
1

2

(
bi|j + bj|i

)
, rj = birij , r0 = riy

i, r00 = rijy
iyj ,

sij =
1

2

(
bi|j − bj|i

)
, sj = bisij , s0 = siy

i.

It is well known [5] that if the Riemannian length b is constant, then r0 + s0 = 0.
Therefore, in this case, the equation (4.1) takes the form

(4.2) S = − Φ

2α∆2

(
r00 − 2αQs0

)
.

After Shen’s work on S-curvature, Cheng and Shen [5] characterized Finsler
metrics with isotropic S-curvature in 2009. In the same year, Deng [8] gave an ex-
plicit formula for S-curvature of homogeneous Randers spaces and he proved that
a homogeneous Randers space having almost isotropic S-curvature has vanishing
S-curvature. Later in 2010, Deng and Wang [12] gave a formula for S-curvature of
homogeneous (α, β)-metrics. They also derived a formula for mean Berwald cur-
vature Eij of Randers metric. Recently, Shanker and Kaur [22] have proved that
there is a mistake in the formula of S-curvature given in [12], and they have given
the correct version of the formula for S-curvature of homogeneous (α, β)-metrics.
Further, some progress has been done in the study of S-curvature of homogeneous
Finsler spaces (see [15, 30] for detail).
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Definition 4.1. Let (M,F ) be an n-dimensional Finsler space. If there exists a
smooth function c(x) on M and a closed 1-form ω such that

S(x, y) = (n+ 1)

(
c(x)F (y) + ω(y)

)
, x ∈M, y ∈ Tx(M),

then (M,F ) is said to have almost isotropic S-curvature. In addition, if ω is zero,
then (M,F ) is said to have isotropic S-curvature.
Also, if ω is zero and c(x) is constant, then we say, (M,F ) has constant S-curvature.

With above notations, let us recall the following theorem:

Theorem 4.1. [22] Let F = αφ(s) be a G-invariant (α, β)-metric on the reductive
homogeneous Finsler space G/H with a decomposition of the Lie algebra g = h + k.
Then the S-curvature is given by

(4.3) S(H, y) =
Φ

2α∆2

(〈
[v, y]k , y

〉
+ αQ

〈
[v, y]k , v

〉)
,

where v ∈ k corresponds to the 1-form β and k is identified with the tangent space
TH (G/H) of G/H at the origin H.

Now, we establish a formula for S-curvature of a homogeneous Finsler space with
Randers changed square metric.

Theorem 4.2. Let G/H be reductive homogeneous Finsler space with a decompo-

sition of the Lie algebra g = h + k, and F = (α+β)2

α + β be a G-invariant Randers
changed square metric on G/H. Then the S-curvature is given by

S(H, y) =


−12s5n+ (−27n+ 9)s4 + (8nb2 + 4n− 4b2 + 16)s3

+ (18nb2 + 18n− 18b2 + 18)s2 +−12b2s− 3− 6b2 − 6nb2 − 3n

2 (−3s2 + 1 + 2b2) (1− 2s2 − 3s4 + 3s− 9s3 + 2b2 + 2b2s2 + 6b2s)

×
(

2s+ 3

1− s2
〈[v, y]k , v〉+

1

α
〈[v, y]k , y〉

)
,

(4.4)

where v ∈ k corresponds to the 1-form β and k is identified with the tangent space
TH (G/H) of G/H at the origin H.

Proof. For Randers changed square metric

F = αφ(s),where φ(s) = 1 + s2 + 3s,
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the entities written in the equation (4.1) take the values as follows:

Q =
φ′

φ− sφ′
=

2s+ 3

1− s2
,

Q′ =
2s2 + 6s+ 2

(1− s2)2
,

Q′′ =
4s3 + 18s2 + 12s+ 6

(1− s2)3
,

∆ = 1 + sQ+
(
b2 − s2

)
Q′

= 1 + s

(
2s+ 3

1− s2

)
+
(
b2 − s2

) 2s2 + 6s+ 2

(1− s2)2

=
−3s4 − 9s3 + (2b2 − 2)s2 + (6b2 + 3)s+ 2b2 + 1

(1− s2)2
,

Φ = (sQ′ −Q) (1 + n∆ + sQ) +
(
s2 − b2

)
(1 + sQ)Q′′

=

(
2s3 + 6s2 + 2s

(1− s2)2
− 2s+ 3

1− s2

)
×{

1 +
−3ns4 − 9ns3 + (2nb2 − 2n)s2 + (6nb2 + 3n)s+ 2nb2 + n

(1− s2)2
+

2s2 + 3s

1− s2

}
+
(
s2 − b2

){
1 +

2s2 + 3s

1− s2

}(
4s3 + 18s2 + 12s+ 6

(1− s2)3

)
=

1

(1− s2)4

{
−(12n+ 4)s7 − (63n+ 21)s6 + (8nb2 − 89n− 27)s5

+(42nb2 + 3n+ 15)s4 + (62nb2 + 58n+ 40)s3 + (12nb2 + 15n+ 9)s2

−(18nb2 + 9n+ 9)s− (6nb2 + 3n+ 3)

}
+

1

(1− s2)4

{
4s7 + 30s6 + (70− 4b2)s5

+(60− 30b2)s4 + (30− 70b2)s3 + (6− 60b2)s2 − 30b2s− 6b2
}
.

=
1

(1− s2)4

{
−12ns7 + (9− 63n)s6 + (8nb2 − 4b2 − 89n+ 43)s5

+(42nb2 − 30b2 + 3n+ 75)s4 + (62nb2 − 70b2 + 58n+ 70)s3

+(12nb2 − 60b2 + 15n+ 15)s2 − (18nb2 + 30b2 + 9n+ 9)s

−(6nb2 + 6b2 + 3n+ 3)

}
After substituting these values in equation (4.3), we get the formula 4.4 for S-
curvature of homogeneous Finsler space with Randers changed square metric.

Corollary 4.1. Let G/H be reductive homogeneous Finsler space with a decom-

position of the Lie algebra g = h+ k, and F = (α+β)2

α +β be a G-invariant Randers
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changed square metric on G/H. Then (G/H,F ) has isotropic S-curvature if and
only if it has vanishing S-curvature.

Proof. Converse part is obvious. For necessary part, suppose G/H has isotropic
S-curvature, then

S(x, y) = (n+ 1)c(x)F (y), x ∈ G/H, y ∈ Tx(G/H).

Taking x = H and y = v in the equation (4.4), we get c(H) = 0.
Consequently S(H, y) = 0 ∀ y ∈ TH(G/H).
Since F is a homogeneous metric, we have S = 0 everywhere.

5. Mean Berwald Curvature

There is another quantity [7] associated with S-curvature called Mean Berwald
curvature.
Let Eij = 1

2
∂2

∂yi∂yj S(x, y) = 1
2

∂2

∂yi∂yj

(
∂Gm

∂ym

)
(x, y), where Gm are spray coefficients.

Then E := Eijdx
i ⊗ dxj is a tensor on TM\{0}, which we call E tensor. E tensor

can also be viewed as a family of symmetric forms Ey : TxM × TxM −→ R defined
as

Ey(u, v) = Eij(x, y)uivj ,

where u = ui ∂
∂xi |x, v = vi ∂

∂xi |x ∈ TxM. Then the collection {Ey : y ∈ TM\{0}}
is called E-curvature or mean Berwald curvature.
In this section, we calculate the mean Berwald curvature of a homogeneous Finsler
space with the aforesaid metrics. To calculate it, we need the following:
At the origin, aij = δij ,

therefore yi = aijy
j = δijy

j = yi,

α
yi

=
y
i

α
,

β
yi

= bi,

s
yi

=
∂

∂yi

(
β

α

)
=
biα− syi

α2
,

s
yiyj

=
∂

∂yj

(
biα− syi

α2

)

=
α2
{
bi
y
j

α −
(
bjα−syj

α2

)
y
i
− sδij

}
− (biα− syi) 2α

y
j

α

α4

=
− (biyj + bjyi)α+ 3syiyj − α2sδij

α4
,

Assuming

−12s5n+ (−27n+ 9)s4 + (8nb2 + 4n− 4b2 + 16)s3

+ (18nb2 + 18n− 18b2 + 18)s2 +−12b2s− 3− 6b2 − 6nb2 − 3n

2 (−3s2 + 1 + 2b2) (1− 2s2 − 3s4 + 3s− 9s3 + 2b2 + 2b2s2 + 6b2s)
= B
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in the equation (4.4), we find

∂B

∂yj
=

1

2

(
−3s2 + 1 + 2b2

)−1 (−3s4 − 9s3 +
(
2b2 − 2

)
s2 +

(
3 + 6b2

)
s+ 1 + 2b2

)−2 ×{
−36ns8 + (−162n+ 54) s7 +

(
−207n− 36b2 + 225

)
s6

+
(
−252b2 + 90n− 36nb2 + 522

)
s5

+
(
−488b2 + 631− 80nb2 + 199n− 8b4 + 16nb4

)
s4

+
(
−30n+ 186 + 96nb4 − 408b2 − 120nb2 − 48b4

)
s3

+
(
−228b2 + 156nb4 − 108b4 − 33− 60nb2 − 69n

)
s2

+
(
96nb4 + 6n+ 6− 48b4 − 12b2 + 60nb2

)
s

+9 + 24b2 + 36nb4 + 12b4 + 36nb2 + 9n

}
syj ,

and

∂2B

∂yi∂yj
=

1

2

∂

∂yi

[(
−3s2 + 1 + 2b2

)−1 (−3s4 − 9s3 +
(
2b2 − 2

)
s2 +

(
3 + 6b2

)
s+ 1 + 2b2

)−2 ×{
−36ns8 (−162n+ 54) s7 +

(
−207n− 36b2 + 225

)
s6

+
(
−252b2 + 90n− 36nb2 + 522

)
s5

+
(
−488b2 + 631− 80nb2 + 199n− 8b4 + 16nb4

)
s4

+
(
−30n+ 186 + 96nb4 − 408b2 − 120nb2 − 48b4

)
s3

+
(
−228b2 + 156nb4 − 108b4 − 33− 60nb2 − 69n

)
s2

+
(
96nb4 + 6n+ 6− 48b4 − 12b2 + 60nb2

)
s

+9 + 24b2 + 36nb4 + 12b4 + 36nb2 + 9n

}]
syj

+
1

2

(
−3s2 + 1 + 2b2

)−1 (−3s4 − 9s3 +
(
2b2 − 2

)
s2 +

(
3 + 6b2

)
s+ 1 + 2b2

)−2 ×{
−36ns8 + (−162n+ 54) s7 +

(
−207n− 36b2 + 225

)
s6

+
(
−252b2 + 90n− 36nb2 + 522

)
s5

+
(
−488b2 + 631− 80nb2 + 199n− 8b4 + 16nb4

)
s4

+
(
−30n+ 186 + 96nb4 − 408b2 − 120nb2 − 48b4

)
s3

+
(
−228b2 + 156nb4 − 108b4 − 33− 60nb2 − 69n

)
s2

+
(
96nb4 + 6n+ 6− 48b4 − 12b2 + 60nb2

)
s

+9 + 24b2 + 36nb4 + 12b4 + 36nb2 + 9n

}
syiyj
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=
(
−3s2 + 1 + 2b2

)−1 (−3s4 − 9s3 +
(
2b2 − 2

)
s2 +

(
3 + 6b2

)
s+ 1 + 2b2

)−3 ×{
− 108s11n+ (243− 729n) s10 +

(
1593− 216b2 − 144nb2 − 1935n

)
s9

+
(
5940− 2052b2 − 1404nb2 − 1512n

)
s8

+
(
−144b4 − 6570b2 + 144nb4 + 1440n− 4338nb2 + 13356

)
s7

+
(
15894− 10188b2 + 1260nb4 + 1638n− 1332b4 − 6300nb2

)
s6

+
(
8706− 4884b4 − 4254nb2 − 1122n− 8574b2 + 3756nb4

)
s5

+
(
3132− 7560b4 − 1080n+ 5400nb4 − 3834b2 + 54nb2

)
s4

+
(
2634nb2 + 3960nb4 + 1700− 4680b4 + 40b6 + 40nb6 + 332n+ 402b2

)
s3

+
(
1476nb4 + 1368nb2 + 720b2 + 315n− 1116b4 + 639

)
s2

+
(
−90nb2 − 15n− 162b2 − 180nb4 + 21− 468b4 − 120nb6 − 120b6

)
s

−24− 24n− 120nb6 − 120b6 − 126b2 − 216nb4 − 126nb2 − 216b4
}
syisyj

+
1

2

(
−3s2 + 1 + 2b2

)−1 (−3s4 − 9s3 +
(
2b2 − 2

)
s2 +

(
3 + 6b2

)
s+ 1 + 2b2

)−2 ×{
−36ns8 + (−162n+ 54) s7 +

(
−207n− 36b2 + 225

)
s6

+
(
−252b2 + 90n− 36nb2 + 522

)
s5

+
(
−488b2 + 631− 80nb2 + 199n− 8b4 + 16nb4

)
s4

+
(
−30n+ 186 + 96nb4 − 408b2 − 120nb2 − 48b4

)
s3

+
(
−228b2 + 156nb4 − 108b4 − 33− 60nb2 − 69n

)
s2

+
(
96nb4 + 6n+ 6− 48b4 − 12b2 + 60nb2

)
s

+9 + 24b2 + 36nb4 + 12b4 + 36nb2 + 9n

}
syiyj .

Theorem 5.1. Let G/H be a reductive homogeneous Finsler space with a decom-

position of the Lie algebra g = h+ k, and F = (α+β)2

α +β be a G-invariant Randers
changed square metric on G/H. Then the mean Berwald curvature of the homoge-
neous Finsler space with Randers changed square metric is given by

Eij(H, y) =
1

2

[(
1

α

∂2B

∂yi∂yj
− yi
α3

∂B

∂yj
− yj
α3

∂B

∂yi
− B

α3
δji +

3B

α5
yiyj

)
〈[v, y]k , y〉

+

(
1

α

∂B

∂yj
− B

α3
yj

)(
〈[v, vi]k , y〉+ 〈[v, y]k , vi〉

)
+

(
1

α

∂B

∂yi
− B

α3
yi

)(〈
[v, vj ]k , y

〉
+ 〈[v, y]k , vj〉

)
(5.1)
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+
B

α

(〈
[v, vj ]k , vi

〉
+ 〈[v, vi]k , vj〉

)
+

{
2s+ 3

1− s2
∂2B

∂yi∂yj
+

2s2 + 6s+ 2

(1− s2)2
syi

∂B

∂yj
+

2s2 + 6s+ 2

(1− s2)2
syj

∂B

∂yi

+
(4s3 + 18s2 + 12s+ 6)B

(1− s2)3
syisyj +

(2s2 + 6s+ 2)B

(1− s2)2
syiyj

}
〈[v, y]k , v〉

+

{
2s+ 3

1− s2
∂B

∂yj
+

(2s2 + 6s+ 2)B

(1− s2)2
syj

}
〈[v, vi]k , v〉

+

{
2s+ 3

1− s2
∂B

∂yi
+

(2s2 + 6s+ 2)B

(1− s2)2
syi

}〈
[v, vj ]k , v

〉 ]
,

where v ∈ k corresponds to the 1-form β and k is identified with the tangent space
TH (G/H) of G/H at the origin H.

Proof. From the equation (4.4), we can write S- curvature at the origin as follows

S(H, y) = φ2 + ψ2,

where

φ2 =
B

α
〈[v, y]k , y〉 and ψ2 =

2s+ 3

1− s2
B 〈[v, y]k , v〉 .

Therefore, mean Berwald curvature is

(5.2) Eij =
1

2

∂2S

∂yi∂yj
=

1

2

(
∂2φ2
∂yi∂yj

+
∂2ψ2

∂yi∂yj

)
,

where ∂2φ2

∂yi∂yj and ∂2ψ2

∂yi∂yj are calculated as follows:

∂φ2
∂yj

=
∂

∂yj

(
B

α
〈[v, y]k , y〉

)
=

(
1

α

∂B

∂yj
− B

α2

yj
α

)
〈[v, y]k , y〉+

B

α

(〈
[v, vj ]k , y

〉
+ 〈[v, y]k , vj〉

)
,

∂2φ2
∂yi∂yj

=
∂

∂yi

{(
1

α

∂B

∂yj
− Byj

α3

)
〈[v, y]k , y〉+

B

α

(〈
[v, vj ]k , y

〉
+ 〈[v, y]k , vj〉

)}
=

(
1

α

∂2B

∂yi∂yj
− yi
α3

∂B

∂yj
− yj
α3

∂B

∂yi
− B

α3
δji +

3B

α5
yiyj

)
〈[v, y]k , y〉

+

(
1

α

∂B

∂yj
− B

α3
yj

)(
〈[v, vi]k , y〉+ 〈[v, y]k , vi〉

)
+

(
1

α

∂B

∂yi
− B

α3
yi

)(〈
[v, vj ]k , y

〉
+ 〈[v, y]k , vj〉

)
+
B

α

(〈
[v, vj ]k , vi

〉
+ 〈[v, vi]k , vj〉

)
,
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and

∂ψ2

∂yj
=

∂

∂yj

(
(2s+ 3)B

1− s2
〈[v, y]k , v〉

)
=

{
2s+ 3

1− s2
∂B

∂yj
+

(2s2 + 6s+ 2)B

(1− s2)2
syj

}
〈[v, y]k , v〉+

(2s+ 3)B

1− s2
〈
[v, vj ]k , v

〉
,

∂2ψ2

∂yi∂yj
=

∂

∂yi

[{
2s+ 3

1− s2
∂B

∂yj
+

(2s2 + 6s+ 2)B

(1− s2)2
syj

}
〈[v, y]k , v〉

+
(2s+ 3)B

1− s2
〈
[v, vj ]k , v

〉]
=

{
2s+ 3

1− s2
∂2B

∂yi∂yj
+

2s2 + 6s+ 2

(1− s2)2
syi

∂B

∂yj
+

2s2 + 6s+ 2

(1− s2)2
syj

∂B

∂yi

+
(4s3 + 18s2 + 12s+ 6)B

(1− s2)3
syisyj +

(2s2 + 6s+ 2)B

(1− s2)2
syiyj

}
〈[v, y]k , v〉

+

{
2s+ 3

1− s2
∂B

∂yj
+

(2s2 + 6s+ 2)B

(1− s2)2
syj

}
〈[v, vi]k , v〉

+

{
2s+ 3

1− s2
∂B

∂yi
+

(2s2 + 6s+ 2)B

(1− s2)2
syi

}〈
[v, vj ]k , v

〉
.

Substituting all above values in the equation (5.2), we get the formula (5.1).
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