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Abstract. In the present paper, the statistical inference problem is considered for
the geometric process (GP) by assuming the distribution of the first arrival time with
generalized Rayleigh distribution with the parameters α and λ. We have used the max-
imum likelihood method for obtaining the ratio parameter of the GP and distributional
parameters of the generalized Rayleigh distribution. By a series of Monte-Carlo simu-
lations evaluated through the different samples of sizes - small, moderate and large, we
have also compared the estimation performances of the maximum likelihood estimators
with the other estimators available in the literature such as modified moment, modified
L-moment, and modified least squares. Furthermore, wehave presented two real-life
datasets analyses to show the modeling behavior of GP with generalized Rayleigh dis-
tribution.
Keywords: Monotone processes; non-parametric estimation; parametric estimation;
stochastic process; data with trend.

1. Introduction

In 1988, Lam [18] introduced the geometric process (GP) as a simple monotonic
stochastic process. In order to model a successive inter-arrival times dataset with
a monotone trend, the GP is a quite important alternative to the alpha series pro-
cess and the nonhomogeneous Poisson process with a monotone intensity function.
Since it has a simple form which is easily applied to the many real-life problems
from different areas such as science, health, engineering etc., see [17], its popularity
increases day by day according to its alternatives. Some key features of the GP and
its advantages, which the GP provides in the modeling of the arrival times data
with a trend, studied by Lam [16], Lam [18], Lam et al.[19] and Braun et al. [9],
[10]. The GP is given by the following definition, see [17].

Received August 29, 2019; accepted April 12, 2020
2020 Mathematics Subject Classification. Primary 60G55; Secondary 60K05, 62F12

1107
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Fig. 1.1: Behavior of the GP

Definition 1.1. Let Xi be the arrival time between the (i − 1)th and ith events
of a counting process {N(t), t ≥ 0} for i = 1, 2, .... The process {Xi, i = 1, ..., n} is
said to be a GP with parameter a if there exists a real number a > 0 such that
Yi = ai−1Xi, i = 1, 2, ..., are independently and identically distributed (iid) random
variables which have any continuous distribution supported on positive real interval.
Where a is called the ratio parameter of the GP.

In a general concept, there are three important parameter types in a GP. The
first of these parameter types is the ratio parameter a. The second type of them is
mean and variance of the first arrival time X1. In the GP, determining the mean
and variance of the first arrival time is quite important because of the fact that the
means and variances of the random variables Xi, i = 1, 2, ... are easily represented
by the mean and variance of the first arrival time. Assume that E(X1) = µ and
V ar(X1) = σ2 for a GP with the ratio parameter a. By these notations, the mean
and variance of the random variable Xi, (i = 1, 2, · · · , n), are given by following
forms:

E (Xi) =
µ

ai−1
,i = 1, 2, ...(1.1)

V ar (Xi) =
σ2

a2(i−1)
, i = 1, 2, ...(1.2)

Hence, by using the relation given by equation 1.1, we can provide Figure 1.1 to
illustrate the monotonic behavior of the GP, where the E (Xi) is plotted against
the arrival number i, (i = 1, 2, · · · , ) for a fixed µ.

By the Figure 1.1, the process has a monotone increasing behavior when a < 1
and has a monotone decreasing behavior when a > 1. If a = 1 then the process is
a Renewal process (RP) [17].
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The last type of the important parameters is the distributional parameters of
the first occurrence time X1. In the literature, one can find many published studies
related to the parameter estimation problem for both the ratio parameter a and
distributional parameters of GP. Lam [16] obtained some non-parametric estima-
tors for parameter a. Several studies that take into account some specific lifetime
distributions for first occurrence time X1 and focus on estimating the distributional
parameters of GP are as follows: Gamma [12], Weibull [3], log-normal [18], inverse
Gaussian [13], Lindley [7], power Lindley [4], Rayleigh [8], two-parameter Rayleigh
[5] and two-parameter Lindley [6] distribution for the GP.

The main motivation of this study is to estimate the parameters of GP when
the distribution of first occurrence time is Generalized Rayleigh (GR) also known as
two-parameter Burr Type X distribution. We are motivated to the GR distribution
for the distribution of the first occurrence time because it is an important alternative
to the other famous distributions used in reliability analysis such as the Gamma,
Weibull, exponential. In accordance with the purpose of this study, we employ the
maximum likelihood (ML), modified moments (MM), modified L-moments (MLM)
and modified least-squares (MLS) methods to obtain estimators of the unknown
parameters of GP.

The rest of the paper is organized as follows: In section 2, we shall overview
the GR distribution. In section 3, we shall obtain the ML estimators of the un-
known parameters of GP with the GR distribution. Furthermore, we will investi-
gate some modified estimators for distributional parameters of GP considering the
non-parametric estimate of the ratio parameter a. In section 4, some Monte-Carlo
simulation studies which compare the efficiencies of the ML estimators obtained in
section 3 with the MM, the MLM, and the MLS estimators are performed. Section
5 covers two real-life examples which illustrate the modeling capability of a GP with
GR distribution. Section 6 concludes the study.

2. An overview to GR distribution

The GR distribution, also known as two-parameter Burr Type X distribution,
was originally studied by Surles and Padgett [22]. Later on, the distribution was
renamed as the GR by Raqab and Kundu [21]. The GR is a commonly used prob-
ability model in the modeling of positive and non-symmetric data observed from
various areas such as communication, health, engineering, reliability etc. Since the
distribution is applicable to the modeling of data measured from a wide variety of
areas, the interest in the theory and methods related to GR distribution is progres-
sive.

The probability density function (pdf) of the GR distribution with the param-
eters α and λ is

f(x;α, λ) = 2αλ2xe−(λx)2
(

1− e−(λx)2
)α−1

, x > 0,(2.1)
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Fig. 2.1: Pdf of the GR distribution for the different values of the parameters

and the corresponding cumulative distribution (cdf) is

F (x, α, λ) =
(

1− e−(λx)2
)α

, x > 0,(2.2)

where α and λ are the positive and real valued scale and shape parameters of the
distribution, respectively [14]. When α = 1, the GR distribution is a Rayleigh with
parameter λ. If λ = 1, then the distribution is reduce to the one-parameter Burr
Type X distribution with parameter α. The GR distribution is a unimodal and
its pdf is skew to the right when α > 1

2 and is a decreasing function otherwise
[21]. Figure 2.1 below lucidly show the behaviors of the pdf of the GR distribution
discussed in here.

The expectation and variance of the GR distribution are not available in the
explicit forms, however, they can be easily obtained for selected values of the pa-
rameters by using a numeric method.

3. Inference for GP

In this section, in addition to obtaining the ML estimators of the GP with
GR distribution, we will also investigate some modified estimators when the ratio
parameter of the process is estimated by using a non-parametric estimator.

3.1. ML Estimates

Let us X1, X2, ..., Xn be a random sample taken from a GP with ratio a and
X1 ∼ GR(α, λ) with the pdf (2.1). By considering the equation (2.1) and Definition
1.1, the log-likelihood function for the random variables Xi, (i = 1, 2, ..., n) can be
written as



Statistical Inference for Geometric Process with Generalized Rayleigh Distribution 1111

lnL(a, α, λ) = n (n− 1) ln a+ n ln 2 + 2n lnλ+ n lnα− λ2
∑n

i=1

(

ai−1xi
)2

+
∑n

i=1 lnxi + (α− 1)
∑n

i=1 ln
(

1− e−(λa
i−1xi)

2)

.(3.1)

If the first derivatives of Equation (3.1) according to a, α and λ are taken, we have

∂ lnL(a, α, λ)

∂a
= (n−1)n

a
+ 2(α− 1)

∑n

i=1
(i−1)λ2a2i−3x2

i e
λ2(−a2i−2)x2

i

1−e
λ2(−a2i−2)x2

i

= 0(3.2)

∂ lnL(a, α, λ)

∂λ
= 2

λ
+ (α− 1)

∑n

i=1
2λa2i−2x2

i e
λ2(−a2i−2)x2

i

1−e
λ2(−a2i−2)x2

i
= 0(3.3)

∂ lnL(a, α, λ)

∂α
= n

α
+
∑n

i=1 log
(

1− eλ
2(−a2i−2)x2

i

)

(3.4)

analytical expressions for the ML estimators of the parameters a, λ and α can
not be obtained from equations (3.2)-(3.4). However, equations (3.2)-(3.4) can
be simultaneously solved using a numerical method such as well-known Newton’s
method.

Let θ =





a
λ
α



 be the parameter vector and likelihood equations given by (3.2)-

(3.3) and (3.4) are represented by a gradient vector ∇ (θ) as

∇ (θ) =







∂ lnL(a,α,λ)
∂a

∂ lnL(a,α,λ)
∂λ

∂ lnL(a,α,λ)
∂α






.(3.5)

Thus, in order to estimate of the parameter vector θ, the iterative method given by
3.6 can be used by starting from an initial estimation such as θ̂0.

θm+1 = θm −H−1 (θm)∇ (θm)(3.6)

where H−1 (θ) is the inverse of the Hessian matrix H (θ).The elements of the matrix
H (θ) are the second derivatives of the log-likelihood function (3.1) with respect to
a, λ and α. Let hij be the (i, j) th (i, j = 1, 2, 3) element of the matrix H (θ) . The
hij ’s are obtained as below

h11 = − (n−1)n
a2 + (α− 1)

∑n

i=1

(

(2i−3)(2i−2)λ2a2i−4x2
i e

λ2(−a2i−2)x2
i

1−e
λ2(−a2i−2)x2

i

−
(2i−2)2λ4a4i−6x4

i e
λ2(−a2i−2)x2

i

1−e
λ2(−a2i−2)x2

i

−
(2i−2)2λ4a4i−6x4

i e
−2λ2a2i−2x2

i
(

1−e
λ2(−a2i−2)x2

i

)2

)

(3.7)
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h12 = (α − 1)
∑n

i=1

(

2(2i−2)λa2i−3x2
i e

λ2(−a2i−2)x2
i

1−e
λ2(−a2i−2)x2

i

−
2(2i−2)λ3a4j−5x4

i e
λ2(−a2i−2)x2

i

1−e
λ2(−a2i−2)x2

i
−

2(2i−2)λ3a4j−5x4
i e

−2λ2a2i−2x2
i

(

1−e
λ2(−a2i−2)x2

i

)2

)

(3.8)

h13 =
∑n

i=1
(2i−2)λ2a2i−3x2

i e
λ2(−a2i−2)x2

i

1−e
λ2(−a2i−2)x2

i

(3.9)

h22 = − 2
λ2 + (α − 1)

∑n
i=1

(

2a2i−2x2
i e

λ2(−a2i−2)x2
i

1−e
λ2(−a2i−2)x2

i

−

4λ2a4i−4x4
i e

λ2(−a2i−2)x2
i

1−e
λ2(−a2i−2)x2

i
−

4λ2a4i−4x4
i e

−2λ2a2i−2x2
i

(

1−e
λ2(−a2i−2)x2

i

)2

)

(3.10)

h23 =
∑n

i=1
2λa2i−2x2

i e
λ2(−a2i−2)x2

i

1−e
λ2(−a2i−2)x2

i

(3.11)

h33 = − n
α2 .(3.12)

Note that inverse of the matrix H is calculated as

H−1 =
1

Det (H)





h22h33 − h23h32 −h12h33 − h13h32 h12h23 − h13h22
−h21h33 − h31h23 h11h33 − h13h31 −h11h23 − h21h13
h21h32 − h22h31 −h11h32 − h12h31 h11h22 − h12h21



 ,

where Det (H) = h11h22h33 − h11h23h32 − h12h21h33 + h12h31h23 + h21h13h32 −
h13h22h31 is determinant of the matrix H . In the Newton method, iterations con-
tinue until ‖θm+1 − θm‖ < ε where ε is a predetermined small constant and ‖.‖ is
the Euclidean norm of a vector. Thus, ML estimators of the parameters of GP with
GR distribution, say âML, α̂ML and λ̂ML, are obtained from respective elements of
θm+1.

Now we investigate the asymptotic features of the estimators âML, α̂ML and
λ̂ML. The joint distribution of âML, α̂ML and λ̂ML is asymptotic-Normal (AN)
with mean vector (a, λ, α) and covariance I−1, where matrix I refers to Fisher
information defined as

I = −
1

n











E
(

∂ lnL(a,λ,α)
∂a2

)

E
(

∂ lnL(a,λ,α)
∂a∂λ

)

E
(

∂ lnL(a,λ,α)
∂a∂α

)

E
(

∂ lnL(a,λ,α)
∂a∂λ

)

E
(

∂ lnL(a,λ,α)
∂λ2

)

E
(

∂ lnL(a,λ,α)
∂λ∂α

)

E
(

∂ lnL(a,λ,α)
∂a∂α

)

E
(

∂ lnL(a,λ,α)
∂λ∂α

)

E
(

∂ lnL(a,λ,α)
∂α2

)











.(3.13)

The elements of the matrix I are written from elements of the Hessian matrix.
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3.2. Modified Methods

Lam [16] introduced a non-parametric estimator to estimate only the ratio pa-
rameter of the process without making a specific distribution assumption for the
GP. The non-parametric estimator of the ratio parameter a is given by, see [16],

âNP = exp

(

6

(n− 1)n (n+ 1)

n
∑

i=1

(n− 2i+ 1) lnXi

)

.(3.14)

The distributional parameters of the GP are easily estimated using the available
estimators in the literature when the ratio parameter a is estimated as âNP . This
approximation is known as modified estimation technique in the literature. Now we
examine the estimates of the distributional parameters of GP with the GR distribu-
tion by assuming that the parameter a is estimated as âNP . Let X1, X2, ..., Xn be
a random sample from a GP with ratio a and X1 ∼ GR(α, λ), and the parameter a
is known as âNP , from Definition 1.1, we have

Ŷi = âi−1
NPXi(3.15)

and Ŷi ∼ GR(α, λ). Thus, the MM, MLM, and MLS estimators of the α and
λ parameters can be obtained as follows by taking into account the moments, L-
moments, and least-squares estimators given in [14] and along with the predicted
Ŷi.

MM Estimators : The MM estimate of the parameters α, say α̂MM can be
obtained from numerical solution of the equation

ψ′ (1)− ψ′ (α+ 1)

(ψ (α+ 1)− ψ (1))
2 −

V

U2
= 0(3.16)

where U = 1
n

∑n
i=1 Ŷ

2
i , V = 1

n

∑n
i=1 Ŷ

4
i − U2 and ψ (.) is the digamma function,

(cf. [1]). Also, by considering α̂MM , MM estimates of the parameter λ, say λ̂MM

is obtained as follows

λ̂MM =

√

ψ (α̂MM + 1)− ψ (1)

U
(3.17)

MLM Estimators : The MLM estimates of the parameters α and λ, say α̂MLM

and λ̂MLM , respectively, are obtained by numerical solution of non-linear equation

ψ (2α+ 1)− ψ (α1)

ψ (α+ 1)− ψ (1)
−
l2
l1

= 0,

where l1 = 1
n

∑n
i=1 Ŷ

2
(i) and l2 = 2

n(n−1)

∑n
i=1 (i− 1) Ŷ 4

(i) − l1 and notation Ŷ(i)
indicates the ith observation of ordered sample, where i = 1, 2, ...n.

MLS Estimators : The MLS estimates of the parameters α and λ, α̂MLS and
λ̂MLs, respectively, are obtained by minimizing the quadratic function Q (α, λ)
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Q (α, λ) =

n
∑

i=1

(

(

1− e−(λŶ(i))
2
)α

−
i

n+ 1

)2

(3.18)

with respect to α and λ.

For details on deriving these estimators, we refer to [14].

4. Monte-Carlo Simulation Study

In this section, we run some Monte-Carlo simulations to show the estimation per-
formance of ML and modified estimators obtained in the previous section. The main
goal of these Monte-Carlo studies, besides displaying the estimation performance of
the ML estimators, compare its efficiency with the other estimators. Throughout
the Monte-Carlo studies, we set the parameter values as λ = 1, α = 0.5, 1 and 2,
and a = 0.90, 0.95, 1.05, 1.10. By the 1000 times replicated simulations conducted
on the different samples of sizes n = 30, 50, 100, we compute the means, biases and
n× mean squared errors (n×MSE) for the ML, MM, MLM and MLS estimates for
each collection of parameters. The simulated results are presented in Tables 1-3.

According to the simulation results in Tables 4.1-4.3, we can clearly say that
the performances of all estimators are quite satisfactory in all cases. Besides, as
the sample size n increases, bias and n×MSE values of all estimators decrease.
Thus, we can say that all estimators are asymptotically unbiassed and consistent.
In addition, ML estimators outperform the other estimators in small, moderate and
large sample sizes.
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Table 4.1: The simulated Means, Biases and nxMSEs for the ML, MLS, MM and
MLM estimators of the parameters a, α and λ, when α = 0.5 and λ = 1.

â α̂ λ̂
a n Method Mean Bias n×MSE Mean Bias n×MSE Mean Bias n×MSE

0.90 30 ML 0.9021 0.0021 0.0419 0.5526 0.0526 5.5639 1.0555 0.0555 20.2610
MLS 0.9014 0.0014 0.1107 0.5099 0.0099 4.8498 1.0573 0.0573 52.0585
MM 0.9014 0.0014 0.1107 0.5675 0.0675 16.1491 1.0724 0.0724 42.9262
MLM 0.9014 0.0014 0.1107 0.4845 0.0155 6.6621 1.0213 0.0213 36.3018

50 ML 0.8999 0.0001 0.0123 0.5280 0.0280 2.4407 1.0667 0.0667 16.1984
MLS 0.9000 0.0000 0.0255 0.5073 0.0073 2.9507 1.0523 0.0523 26.8384
MM 0.9000 0.0000 0.0255 0.5301 0.0301 8.9010 1.0528 0.0528 27.8249
MLM 0.9000 0.0000 0.0255 0.4878 0.0122 3.8533 1.0313 0.0313 24.6382

100 ML 0.8998 0.0002 0.0012 0.5172 0.0172 1.1802 1.0423 0.0423 6.5389
MLS 0.8996 0.0004 0.0034 0.5057 0.0057 1.4203 1.0512 0.0512 15.3660
MM 0.8996 0.0004 0.0034 0.5238 0.0238 3.9173 1.0601 0.0601 15.8429
MLM 0.8996 0.0004 0.0034 0.4981 0.0019 1.5968 1.0451 0.0451 13.9685

0.95 30 ML 0.9507 0.0007 0.0571 0.5590 0.0590 5.5451 1.1014 0.1014 29.9822
MLS 0.9519 0.0019 0.1450 0.5160 0.0160 6.0655 1.0577 0.0577 52.0999
MM 0.9519 0.0019 0.1450 0.5943 0.0943 16.8724 1.1040 0.1040 51.0806
MLM 0.9519 0.0019 0.1450 0.4981 0.0019 6.6786 1.0463 0.0463 44.1838

50 ML 0.9504 0.0004 0.0107 0.5335 0.0335 3.1944 1.0481 0.0481 14.6898
MLS 0.9501 0.0001 0.0270 0.5089 0.0089 3.3424 1.0425 0.0425 27.6539
MM 0.9501 0.0001 0.0270 0.5536 0.0536 9.9358 1.0675 0.0675 30.7541
MLM 0.9501 0.0001 0.0270 0.4943 0.0057 4.3293 1.0319 0.0319 26.2168

100 ML 0.9500 0.0000 0.0014 0.5207 0.0207 1.1473 1.0396 0.0396 6.5734
MLS 0.9501 0.0001 0.0037 0.5094 0.0094 1.3092 1.0314 0.0314 13.4648
MM 0.9501 0.0001 0.0037 0.5307 0.0307 3.9233 1.0442 0.0442 13.9762
MLM 0.9501 0.0001 0.0037 0.5037 0.0037 1.4159 1.0291 0.0291 12.2366

1.05 30 ML 1.0508 0.0008 0.0596 0.5529 0.0529 5.1782 1.0974 0.0974 24.8192
MLS 1.0494 0.0006 0.1488 0.5149 0.0149 6.0798 1.0998 0.0998 57.9221
MM 1.0494 0.0006 0.1488 0.5785 0.0785 16.3929 1.1198 0.1198 49.7872
MLM 1.0494 0.0006 0.1488 0.4939 0.0061 6.8040 1.0689 0.0689 40.4968

50 ML 1.0500 0.0000 0.0140 0.5296 0.0296 2.6421 1.0665 0.0665 13.1142
MLS 1.0509 0.0009 0.0360 0.5079 0.0079 2.8651 1.0349 0.0349 28.8999
MM 1.0509 0.0009 0.0360 0.5451 0.0451 8.0653 1.0553 0.0553 28.4833
MLM 1.0509 0.0009 0.0360 0.4952 0.0048 3.2639 1.0263 0.0263 24.7169

100 ML 1.0501 0.0001 0.0015 0.5150 0.0150 1.1322 1.0254 0.0254 6.3604
MLS 1.0502 0.0002 0.0041 0.5037 0.0037 1.3424 1.0147 0.0147 11.7915
MM 1.0502 0.0002 0.0041 0.5226 0.0226 3.5821 1.0238 0.0238 12.4582
MLM 1.0502 0.0002 0.0041 0.4954 0.0046 1.4584 1.0079 0.0079 11.0757

1.10 30 ML 1.1017 0.0017 0.0721 0.5657 0.0657 5.3227 1.0710 0.0710 21.8885
MLS 1.1013 0.0013 0.1583 0.5205 0.0205 4.2594 1.0488 0.0488 41.9511
MM 1.1013 0.0013 0.1583 0.5946 0.0946 16.2766 1.0973 0.0973 51.3694
MLM 1.1013 0.0013 0.1583 0.5024 0.0024 5.8000 1.0408 0.0408 40.9797

50 ML 1.1007 0.0007 0.0155 0.5321 0.0321 2.7774 1.0389 0.0389 12.7543
MLS 1.1005 0.0005 0.0321 0.5114 0.0114 3.4238 1.0277 0.0277 23.1304
MM 1.1005 0.0005 0.0321 0.5653 0.0653 10.4034 1.0609 0.0609 24.3047
MLM 1.1005 0.0005 0.0321 0.5028 0.0028 4.2720 1.0227 0.0227 20.2996

100 ML 1.1000 0.0000 0.0018 0.5140 0.0140 1.0566 1.0329 0.0329 5.8668
MLS 1.1003 0.0003 0.0049 0.4964 0.0036 1.2135 1.0060 0.0060 12.3035
MM 1.1003 0.0003 0.0049 0.5206 0.0206 3.7712 1.0252 0.0252 14.6663
MLM 1.1003 0.0003 0.0049 0.4928 0.0072 1.4634 1.0076 0.0076 12.4369
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Table 4.2: The simulated Means, Biases and nxMSEs for the ML, MLS, MM and
MLM estimators of the parameters a, α and λ, when α = 1 and λ = 1.

â α̂ λ̂
a n Method Mean Bias n×MSE Mean Bias n×MSE Mean Bias n×MSE

0.90 30 ML 0.8995 0.0005 0.0226 1.1673 0.1673 34.3936 1.0710 0.0710 12.8072
MLS 0.9002 0.0002 0.0364 1.0807 0.0807 37.1783 1.0255 0.0255 18.3058
MM 0.9002 0.0002 0.0364 1.2559 0.2559 84.4448 1.0717 0.0717 18.4970
MLM 0.9002 0.0002 0.0364 1.0727 0.0727 32.7471 1.0313 0.0313 15.3820

50 ML 0.9002 0.0002 0.0050 1.0705 0.0705 12.2203 1.0226 0.0226 5.9189
MLS 0.9006 0.0006 0.0081 1.0206 0.0206 15.2559 0.9911 0.0089 8.0817
MM 0.9006 0.0006 0.0081 1.1228 0.1228 30.5716 1.0241 0.0241 9.9016
MLM 0.9006 0.0006 0.0081 1.0159 0.0159 13.6941 0.9961 0.0039 7.9823

100 ML 0.8999 0.0001 0.0006 1.0335 0.0335 5.5753 1.0233 0.0233 2.8179
MLS 0.9000 0.0000 0.0009 1.0135 0.0135 7.6169 1.0095 0.0095 4.2659
MM 0.9000 0.0000 0.0009 1.0668 0.0668 15.4622 1.0268 0.0268 4.8785
MLM 0.9000 0.0000 0.0009 1.0127 0.0127 7.2168 1.0134 0.0134 3.9930

0.95 30 ML 0.9486 0.0014 0.0302 1.1563 0.1563 32.0993 1.0953 0.0953 14.9887
MLS 0.9482 0.0018 0.0468 1.0824 0.0824 46.1606 1.0610 0.0610 21.3359
MM 0.9482 0.0018 0.0468 1.2546 0.2546 75.3895 1.1168 0.1168 21.4723
MLM 0.9482 0.0018 0.0468 1.0828 0.0828 40.3227 1.0746 0.0746 18.0953

50 ML 0.9500 0.0000 0.0061 1.0781 0.0781 16.7709 1.0411 0.0411 7.9158
MLS 0.9499 0.0001 0.0101 1.0414 0.0414 25.0638 1.0266 0.0266 12.0983
MM 0.9499 0.0001 0.0101 1.1250 0.1250 41.2553 1.0479 0.0479 11.8192
MLM 0.9499 0.0001 0.0101 1.0263 0.0263 19.4910 1.0258 0.0258 10.3355

100 ML 0.9500 0.0000 0.0007 1.0217 0.0217 4.4096 1.0115 0.0115 3.0601
MLS 0.9501 0.0001 0.0012 1.0065 0.0065 6.4943 1.0016 0.0016 5.1477
MM 0.9501 0.0001 0.0012 1.0593 0.0593 12.7412 1.0177 0.0177 4.8222
MLM 0.9501 0.0001 0.0012 1.0033 0.0033 6.0221 1.0035 0.0035 4.3940

1.05 30 ML 1.0494 0.0006 0.0265 1.1192 0.1192 21.9043 1.0618 0.0618 9.0571
MLS 1.0495 0.0005 0.0429 1.0300 0.0300 19.9858 1.0261 0.0261 12.3809
MM 1.0495 0.0005 0.0429 1.1917 0.1917 60.6033 1.0675 0.0675 14.1094
MLM 1.0495 0.0005 0.0429 1.0257 0.0257 23.3553 1.0277 0.0277 11.3251

50 ML 1.0500 0.0000 0.0075 1.0763 0.0763 10.4700 1.0345 0.0345 6.8339
MLS 1.0497 0.0003 0.0105 1.0247 0.0247 13.3111 1.0186 0.0186 9.5556
MM 1.0497 0.0003 0.0105 1.1251 0.1251 29.2849 1.0503 0.0503 10.9266
MLM 1.0497 0.0003 0.0105 1.0229 0.0229 12.6927 1.0246 0.0246 9.1466

100 ML 1.0502 0.0002 0.0007 1.0364 0.0364 4.7974 1.0122 0.0122 3.0109
MLS 1.0502 0.0002 0.0013 1.0038 0.0038 5.7562 0.9983 0.0017 4.4178
MM 1.0502 0.0002 0.0013 1.0683 0.0683 14.2285 1.0192 0.0192 5.3255
MLM 1.0502 0.0002 0.0013 1.0061 0.0061 6.1276 1.0032 0.0032 4.4140

1.10 30 ML 1.1003 0.0003 0.0353 1.1368 0.1368 27.3646 1.0665 0.0665 12.3611
MLS 1.0998 0.0002 0.0460 1.0416 0.0416 30.0485 1.0269 0.0269 15.1012
MM 1.0998 0.0002 0.0460 1.2349 0.2349 70.7584 1.0873 0.0873 17.8739
MLM 1.0998 0.0002 0.0460 1.0502 0.0502 29.7390 1.0422 0.0422 14.3413

50 ML 1.0999 0.0001 0.0075 1.1114 0.1114 15.9703 1.0530 0.0530 6.8821
MLS 1.1001 0.0001 0.0113 1.0520 0.0520 17.7979 1.0204 0.0204 9.3748
MM 1.1001 0.0001 0.0113 1.1819 0.1819 39.7175 1.0613 0.0613 10.0945
MLM 1.1001 0.0001 0.0113 1.0592 0.0592 17.1944 1.0308 0.0308 8.3747

100 ML 1.1001 0.0001 0.0010 1.0332 0.0332 4.9204 1.0139 0.0139 3.3641
MLS 1.1000 0.0000 0.0017 1.0073 0.0073 6.3576 1.0052 0.0052 5.1185
MM 1.1000 0.0000 0.0017 1.0602 0.0602 15.3053 1.0208 0.0208 5.3203
MLM 1.1000 0.0000 0.0017 1.0062 0.0062 6.4213 1.0080 0.0080 4.5479
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Table 4.3: The simulated Means, Biases and nxMSEs for the ML, MLS, MM and
MLM estimators of the parameters a, α and λ, when α = 2 and λ = 1.

â α̂ λ̂
a n Method Mean Bias n×MSE Mean Bias n×MSE Mean Bias n×MSE

0.90 30 ML 0.8999 0.0001 0.0134 2.3764 0.3764 185.0170 1.0691 0.0691 8.3586
MLS 0.9001 0.0001 0.0172 2.2418 0.2418 399.8574 1.0313 0.0313 8.9383
MM 0.9001 0.0001 0.0172 2.3288 0.3288 116.3478 1.0636 0.0636 9.1816
MLM 0.9001 0.0001 0.0172 2.2279 0.2279 308.3195 1.0429 0.0429 8.3048

50 ML 0.8996 0.0004 0.0031 2.1643 0.1643 70.3287 1.0346 0.0346 4.9931
MLS 0.8997 0.0003 0.0037 2.0955 0.0955 105.0502 1.0178 0.0178 5.8255
MM 0.8997 0.0003 0.0037 2.1857 0.1857 92.2488 1.0319 0.0319 5.8339
MLM 0.8997 0.0003 0.0037 2.0743 0.0743 84.8229 1.0191 0.0191 5.3602

100 ML 0.9000 0.0000 0.0003 2.0767 0.0767 22.3545 1.0111 0.0111 1.6830
MLS 0.9000 0.0000 0.0004 2.0189 0.0189 29.2812 1.0009 0.0009 2.1476
MM 0.9000 0.0000 0.0004 2.1333 0.1333 48.6809 1.0162 0.0162 2.3114
MLM 0.9000 0.0000 0.0004 2.0183 0.0183 26.2329 1.0037 0.0037 1.8638

0.95 30 ML 0.9503 0.0003 0.0124 2.3595 0.3595 168.6435 1.0486 0.0486 7.1311
MLS 0.9502 0.0002 0.0153 2.1344 0.1344 159.8323 1.0111 0.0111 8.0305
MM 0.9502 0.0002 0.0153 2.3240 0.3240 120.3577 1.0480 0.0480 7.8498
MLM 0.9502 0.0002 0.0153 2.1655 0.1655 146.1292 1.0262 0.0262 7.5533

50 ML 0.9498 0.0002 0.0030 2.1902 0.1902 74.3277 1.0317 0.0317 4.1722
MLS 0.9498 0.0002 0.0035 2.0753 0.0753 84.4408 1.0100 0.0100 4.7112
MM 0.9498 0.0002 0.0035 2.2398 0.2398 83.9141 1.0374 0.0374 4.8533
MLM 0.9498 0.0002 0.0035 2.0776 0.0776 70.6279 1.0171 0.0171 4.3557

100 ML 0.9501 0.0001 0.0004 2.1205 0.1205 38.9492 1.0084 0.0084 1.9344
MLS 0.9501 0.0001 0.0005 2.0379 0.0379 40.9310 0.9959 0.0041 2.3678
MM 0.9501 0.0001 0.0005 2.1333 0.1333 62.1434 1.0075 0.0075 2.6137
MLM 0.9501 0.0001 0.0005 2.0401 0.0401 38.3668 0.9983 0.0017 2.2154

1.05 30 ML 1.0503 0.0003 0.0185 2.2911 0.2911 164.7333 1.0347 0.0347 7.3818
MLS 1.0505 0.0005 0.0218 2.0555 0.0555 211.5846 0.9842 0.0158 8.1717
MM 1.0505 0.0005 0.0218 2.2707 0.2707 129.7693 1.0283 0.0283 8.5876
MLM 1.0505 0.0005 0.0218 2.0674 0.0674 141.8400 1.0018 0.0018 7.7984

50 ML 1.0499 0.0001 0.0032 2.1497 0.1497 67.0813 1.0352 0.0352 3.4191
MLS 1.0500 0.0000 0.0039 2.0691 0.0691 97.2026 1.0112 0.0112 4.3589
MM 1.0500 0.0000 0.0039 2.2045 0.2045 82.0182 1.0357 0.0357 4.0980
MLM 1.0500 0.0000 0.0039 2.0698 0.0698 87.2862 1.0183 0.0183 3.7935

100 ML 1.0500 0.0000 0.0005 2.0791 0.0791 26.5465 1.0111 0.0111 2.1213
MLS 1.0500 0.0000 0.0007 2.0259 0.0259 39.8430 1.0009 0.0009 2.6829
MM 1.0500 0.0000 0.0007 2.1326 0.1326 55.8938 1.0161 0.0161 2.8456
MLM 1.0500 0.0000 0.0007 2.0264 0.0264 33.9811 1.0047 0.0047 2.4850

1.10 30 ML 1.0998 0.0002 0.0174 2.3212 0.3212 194.9628 1.0429 0.0429 6.9826
MLS 1.0997 0.0003 0.0214 2.1402 0.1402 165.2003 1.0096 0.0096 7.5882
MM 1.0997 0.0003 0.0214 2.3034 0.3034 121.5048 1.0441 0.0441 8.2323
MLM 1.0997 0.0003 0.0214 2.1614 0.1614 156.1144 1.0235 0.0235 7.5732

50 ML 1.1003 0.0003 0.0034 2.1643 0.1643 79.7157 1.0159 0.0159 2.9575
MLS 1.1001 0.0001 0.0046 2.1007 0.1007 110.5767 1.0066 0.0066 4.3802
MM 1.1001 0.0001 0.0046 2.1697 0.1697 97.4672 1.0176 0.0176 4.0407
MLM 1.1001 0.0001 0.0046 2.0696 0.0696 90.7552 1.0067 0.0067 3.7026

100 ML 1.0997 0.0003 0.0006 2.1008 0.1008 30.4018 1.0329 0.0329 2.0447
MLS 1.0997 0.0003 0.0007 2.0582 0.0582 40.5492 1.0243 0.0243 2.5109
MM 1.0997 0.0003 0.0007 2.1426 0.1426 50.4873 1.0366 0.0366 2.8699
MLM 1.0997 0.0003 0.0007 2.0540 0.0540 36.9373 1.0263 0.0263 2.4028
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5. Application

In this section, we analyze two real-life datasets called No.3 data and Software
data to illustrate the estimation procedures the ML, the MM, the MLM and the
MLS. To compare the RP and GPs with the ML, the MM, the MLM and the MLS
estimators, we use the mean-squared error (MSE*) criterion defined as, see [?],

• MSE*= (1/n)
n
∑

k=1

(

Xk − X̂k

)2

,

where X̂k is calculated by

X̂k =























µ̂(ML)â
1−k
ML GP with the ML estimators,

µ̂(MLS)â
1−k
NP GP with the MLS estimators,

µ̂(MM)â
1−k
NP GP with the MM estimators,

µ̂(MLM)â
1−k
NP GP with the MLM estimators,

µ̂(ML) RP with the ML estimators,

(5.1)

and µ̂(.) is estimate of the expected value of the first occurrence time under the
fitted GR distribution with the ML, MM, MLM and MLS estimators and can be
numerically calculated from

µ̂(.) =

∞
∫

0

xf
(

x, α̂(.), λ̂(.)

)

dx

No.3 data:

In the No.3 data set, there are 71 observations, which are regarding the unsched-
uled maintenance actions for U.S.S. Halfbeak No.3 main propulsion diesel engine
[2]. This data set was found to be consistent with a GP in which the ratio parameter
is greater than 1, see [16].

In the first stage of data analysis, we investigate whether the data set follows a
GR distribution. Linear regression model

lnXi = τ − (i− 1) ln a+ εi(5.2)

can be employed to this aim, see [13] for further information on derivation of this
regression model. Where τ = E (lnYi) , Yi = ai−1Xi and exp(εi) ∼ GR (θ, β). The
error term εi given in equation (5.2) can be easily estimated by

ε̂i = lnXi − τ̂ − (i− 1) ln âNP(5.3)

where τ̂ = n(n−1)
2 ln âNP +

∑n
i=1 lnXi. Thus, we can say that the data set is

consistent with a GR distribution if the exponential errors follow a GR distribu-
tion. The parameters estimations of the exponential errors are θ̂ML = 0.2410 and
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Fig. 5.1: QQ plot for the exponential errors (a), empirical and fitted cdf for the
exponential errors (b)

Table 5.1: Estimation of parameters for the No 3 data set

Process Method â α̂ λ̂ MSE/105

GP ML 1.04272 0.12795 0.0002 1.93257
MLS 0.2596 0.0004 2.0208
MM 1.0416 0.0700 0.0002 2.2717
MLM 0.1277 0.0002 2.0210

RP ML 1.0000 0.1910 0.0007 3.3945

β̂ML = 0.1330 and also the value of Kolmogorov-Smirnov (K-S) test is 0.1286 and
corresponding p-value is 0.1751. Hence, result of the K-S test, we can say that the
No. 3 dataset consistent with a GR distribution. To confirm this result, we present
Figure 5.1(a) and Figure 5.1 (b). Figure 5.1(a) displays the Q-Q plot of quantiles
of the data versus GR (θ, β). Figure 5.1 (b) display both the empirical and fitted
cdf. As it can be clearly seen from Figure 5.1 (a), the quantiles of the data fall
approximately on the straight line. In Figure 5.1 (b), the fitted cdf closely follows
to empirical cdf.

If the GP with the GR is applied to this data, the parameter estimates obtained
by using the employed estimators in the paper and the corresponding MSE values
are presented in Table 5.1

From Table 5.1, it is seen that the GP outperform the RP for this data set.
Besides, the GP with ML estimators have the lowest MSE value relative to other
models. We present the Figure 5.2 to show the relative performances of the four
GPs with the ML, the MM, the MLM and the MLS estimators and the RP. Figure
5.2 display the plots of Sk, Sk = X1+X2+ ...+Xk, k = 1, 2, ..., n and its estimates
Ŝk, Ŝk =

∑k

j=1 X̂k, against the k, k = 1, 2, ..., n, where X̂k can obtained by using
(5.1).

According to Figure 5.2, it can be concluded that GPs follow true values more
accurately than RP.
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Fig. 5.2: The plots of the observed and estimated maintenance times for the No.
3 data set

Table 5.2: Estimates and evaluated MSE* values of the different GP models for the
No. 3 data

Model

G. Rayleigh Gamma Log-Normal Weibull Inv. Gaussian
MSE*/105 1.93257 2.15623 2.46508 2.11300 1.93442

Parameter Est. â 1.04272 â 1.03547 â 1.04165 â 1.03659 â 1.04274

α̂ 0.12795 k̂G 0.66991 µ̂LN 6.06255 θ̂W 777.7413 µ̂IG 1118.4

λ̂ 0.0002 θ̂G 1290.572 σ̂LN 1.68506 λ̂W 0.7730 σ̂IG 1781.1
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Fig. 5.3: QQ plot for the exponential errors (a), emprical and fitted cdf for the
exponential errors (b)

Table 5.3: Estimation of parameters for the software data

Process Method â α̂ λ̂ MSE/103

GP ML 0.9094 0.3108 0.1319 1.8027
MLS 0.3032 0.1023 2.1646
MM 0.9370 0.1352 0.0493 2.0867
MLM 0.1293 0.0483 2.0965

RP ML 1.0000 0.1845 0.0087 2.6559

Software data:

Software data set includes 34 observations. These data represent the time be-
tween successive failures of a piece of software developed as part of a large data
system [11]. Braun et al. [9] showed that this data set consistent by a GP with
the ratio parameter a < 1. Thus we can apply a GP with the GR distribution to
this data. First, we investigate whether the underlying distribution of the data is
consistent with a GR distribution, as in the No. 3 data. When the regression given
by (5.2) is applied to this data, estimates of the parameters for the exponential

errors are θ̂ML = 0.2381 and β̂ML = 0.1677. For this data, K-S test is 0.1615 and
corresponding p-value is 0.3040. Thus, we can say that the software data set con-
sistent with a GR distribution. In addition, we present the Q-Q plot and the fitted
and empirical cdf of the exponential errors by the Figure 5.3 to support the result
of K-S test.

When a GP with the GR distribution is applied to software data set, estimates
of the parameters a, α and λ and the corresponding MSE values are given in Table
5.3

Acording to Table 5.3, GP outperform the RP since it has lower MSE. Fur-
thermore, GP with the ML estimates has the best performance among all GPs.
Furthermore, relative performances of the GPs with the all estimators and RP can
be seen from Figure 5.4. Figure 5.4 include the plots of the Sk and Ŝk’s against the
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Fig. 5.4: The plots of the observed and estimated failure times for the Software
data

Table 5.4: Estimates and evaluated MSE* values of the different GP models for the
Software data

Model
G. Rayleigh Gamma Log-Normal Weibull Inv. Gaussian

MSE*/103 1.8027 1.8763 1.9887 1.8890 2.1314

Parameter Est. â 0.9094 â 0.9172 â 0.9370 â 0.9186 â 0.9504

α̂ 0.3108 k̂G 0.8533 µ̂LN 1.0017 θ̂W 3.6726 µ̂IG 7.5144

λ̂ 0.1319 θ̂G 4.4649 σ̂LN 1.2742 λ̂W 0.8856 σ̂IG 14.4192

k, k = 1, 2, ..., n, where Sk and Ŝk are defined as in the previous example.

As in the previous example, we can easily seen from Figure 5.4 that four GPs
follow true values more accurately than RP.

6. Conclusion

The GP with the GR distribution considered by this article has many poten-
tial uses for modeling of successive arrival times observed from many fields. The
process is very suitable for modeling applications of arrival times with the mono-
tonic ascending or descending behavior as highlighted in the paper. The monotonic
behavior of the GP is controlled by a positive-valued ratio parameter a, which is
an essential feature of this process. In the paper, for the different values of the
parameter a, the behavior of the process has been clearly illustrated in Figure 1.1.
In addition to the ratio parameter a, the parameters of the distribution of the first
arrival time are other key parameters that regulate the behavior of the process. In
order to achieve an optimal modeling performance from the GP, the solution of the
estimation problem of these parameters is crucial. The estimation problem for a,
α and λ parameters of GP with the GR distribution is solved by employing the
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ML methodology in the paper. The results of numerical studies which compare the
efficiency of the ML estimators and modified estimators considered in this paper are
presented in the tables. Tabulated results display that the ML estimators produce
more efficient estimations in all cases with respect to bias and MSE criterion.

In order to demonstrate the phases of data modeling by a GP with the GR
distribution and comparing its modeling performance against the RP, in the paper,
two examples are carried out on real-world datasets called the No.3 and Software. In
both examples, the GP with the GR distribution outperforms the RP with smaller
MSE values. Furthermore, by the analysis of the results in the paper, it can be
concluded that fitting by a GP with the GR distribution to both data sets is better
than fitting by a GP with the possible alternatives of the GR distribution such as
Gamma, Log-Normal, inverse Gaussian and Weibull.

7. Acknowledgments

The author thanks the anonymous referees for their comments and suggestions
for improving the first version of this paper.

REFERENCES

1. M. Abramowitz and I. A. Irene: Handbook of mathematical functions: with formu-

las, graphs, and mathematical tables. Courier Corporation, 1964

2. H. Ascher and H. Feingold: Repairable Systems Reliability. Marcel Dekker, New
York, 1984
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Faculty of Arts and Sciences

Department of Statistics

The University of Kırıkkale

71450 Kırıkkale, Turkey

cbicer@kku.edu.tr

Hayrinisa Demirci Biçer
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