
FACTA UNIVERSITATIS (NIŠ)
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Abstract. The aim of this work is to study a class of boundary value problem includ-
ing a fractional order differential equation involving the Caputo-Hadamard fractional
derivative. Sufficient conditions will be presented to guarantee the existence and unique-
ness of solution of this fractional boundary value problem. The boundary conditions
introduced in this work are of quite general nature and reduce to many special cases
by fixing the parameters involved in the conditions.
Key words: fractional differential equation, fractional derivatives and integrals, bound-
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1. Introduction

Fractional differential equations is a subject of the domain of mathematics, which
are basically used to describe the comportment of several complex and nonlocal
systems with memory. Due to the effective memory function of fractional derivative,
they have been widely used to describe many physical phenomena such as flow in
porous media and in fluid dynamic traffic model. Moreover, fractional differential
equations been widely used in engineering, physics, chemistry, biology, and other
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Dahlab, Blida1, Algérie | E-mail: mbenbachir2001@gmail.com
2010 Mathematics Subject Classification. Primary 26A33 ; Secondary 34B25, 34B15
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fields; see the monographs of Kilbas et al. [24], F. Jarad et al. [22], Miller and
Ross [26], Samko et al. [28] and the papers of Delbosco and Rodino [17], Hazarika
et al. [16], Diethelm et al. [18], El-Sayed [19], Kilbas and Marzan [23], Mainardi
[25], H.M. Srivastava [29] and Podlubny et al. [27]. Moreover, several papers have
been devoted to the study of the existence, stability, existence and uniqueness of
solutions for fractional differential equations, among others we refer to the papers
[2, 3, 4, 5, 7, 9, 10, 15, 16, 30, 31].

In 2008, Benchohra et al. [10] studied the existence and uniqueness of solutions
of the following nonlinear fractional differential equations: Dαy(t) = f(t, y(t)),

t ∈ J,
ay(0) + by(T ) = c,

where J := [0, T ], Dα is the caputo fractional derivative of order α, (0 < α < 1),
f : [0, T ]×R→ R is a given continuous function, and a, b, c are real constants with
a+ b 6= 0.

In 2017, Asghar Ahmadkhanlu [6] studied the existence and uniqueness of solu-
tions of the following boundary value problem of fractional differential equation is
considered:  Dαy(t) = f(t, y(t)),

t ∈ J,
y(0) = ηIβy(τ), 0 < τ < 1.

Where J := [0, 1], Dα is the caputo fractional derivative of order α, (0 < α < 1),
f : [0, 1] × R → R is a given continuous function, η ∈ R, Iβ , 0 < β < 1, is the
Riemman-Liouville fractional integral of order β.

In 2018, Benhamida et al. [12, 13], studied the existence and uniqueness of
solutions of the following nonlinear fractional differential equations: Dαy(t) = f(t, y(t)),

t ∈ J,
ay(1) + by(T ) = c,

where J := [1, T ], Dα is the caputo-Hadamard fractional derivative of order α,
(0 < α < 1), f : [1, T ] × R → R is a given continuous function and a, b, c are real
constants with a+ b 6= 0.

In 2018, Benhamida et al. [11], studied the existence of solutions to the boundary
value problem for fractional order differential equations

Dαy(t) = f(t, y(t)),
t ∈ J,

y(0) + y(T ) = b
∫ T

0
y(s)ds, bT 6= 2,
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where J := [0, T ], T > 0, Dα is the Caputo fractional derivative of order α,
(0 < α < 1), f : [0, T ] × R → R is a given continuous function, and b are real
constants .

In 2018, Abdo et al. [1] discussed the existence and uniqueness of positive
solutions of the following nonlinear fractional differential equation with integral
boundary conditions: 

Dαy(t) = f(t, y(t)),
t ∈ J,

y(0) = b
∫ 1

0
y(s)ds+ d.

Where J := [0, 1], 0 < α ≤ 1, λ ≥ 0, d > 0 , Dα is the standard Caputo
fractional operator and f : [0, 1]× [0,∞)→ [0,∞) is a given continuous function .

In 2019, A. Ardjouni et al. [8] discussed the existence and uniqueness of positive
solutions of the following nonlinear fractional differential equation with integral
boundary conditions: 

Dα
1 y(t) = f(t, y(t)),

t ∈ J,
y(1) = b

∫ e
1
y(s)ds+ d,


where J := [1, e], Dα

1 is the Caputo-Hadamard fractional derivative of order
0 < α ≤ 1, λ ≥ 0, d > 0 and f : J × [0,∞)→ [0,∞) is a given continuous function.

Motivated by the studies above, among others, in this paper, we concentrate on
the following boundary value problem, of nonlinear fractional differential equation
with fractional integral as well as integer and fractional derivative:

C
HD

r
1+x(t) = f(t, x(t)), t ∈ J := [1, T ], 0 < r ≤ 1,(1.1)

with fractional boundary conditions:

αx(1) + βx(T ) = λIqx(η) + δ, q ∈ (0, 1](1.2)

where C
HD

r
1+ denote the Caputo-Hadamard fractional derivative and Iq denotes the

standard Hadamard fractional integral. Throughout this paper, we always assume
that 0 < r, q ≤ 1, f : [1, T ]×R→ R is continuous. α, β, λ, δ are real constants, and
η ∈ (1, T ).

The rest of the paper is organized as follows. We recall some basic concepts
of fractional calculus and introduce the integral operator associated to the given
problem in Sect.2. Existence results, which rely on Schauder’s fixed point theorem
nonlinear alternative for single valued maps, and Scheafer’s fixed point theorem are
given. Also, In Sect.3, we obtain uniqueness results by means of Boyd and Wong’s
and Banach’s fixed point theorems. Example illustrating the obtained results are
presented in Sect.4, and the paper concludes with some interesting observations in
Sect.5.
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2. Preliminaries and lemmas

At first, we recall some concepts on fractional calculus and present some addi-
tional properties that will be used later. For more details, we refer to [20, 22, 24, 32].
We present some basic definitions and results from fractional calculus theory.
Let E = C([1, T ],R) be the Banach space of all continuous functions from [1, T ]
into R with the norm

‖u‖ = max
t∈[1,T ]

|u(t)|

Let bet the space

ACnδ ([a, b],R) = {h : [a, b]→ R : δn−1h(x) ∈ AC([a, b],R)}.

where δ = t ddt is the Hadamard derivative and AC([a, b],R) is the space of absolutely
continuous functions on [a, b].

Definition 2.1. (Hadamard fractional integral [24]) The Hadamard fractional in-
tegral of order α > 0 for a function h : [1,+∞)→ R is defined as

Iαa+h(t) =
1

Γ(α)

∫ t

a

(log
t

s
)α−1h(s)

ds

s
(2.1)

where Γ is the Gamma function.

Definition 2.2. (Hadamard fractional derivative [24]) For a function h given on
the interval [1,+∞), and n − 1 < α < n, the Hadamard derivative of order α is
defined by

Dα
a+h(t) = 1

Γ(n−α) (t ddt )
n
∫ t
a
(log t

s )n−α−1h(s)dss
= δnIn−αa+ h(t).

(2.2)

where n = [α]+1, and [α] denotes the integer part of the real number α and δ = t ddt .
provided the right integral converges.

There is a recent generalization introduced by Jarad and al in [22], where the
authors define the generalization of the Hadamard fractional derivatives and present
properties of such derivatives. This new generalization is now known as the Caputo-
Hadamard fractional derivatives and is given by the following definition:

Definition 2.3. (Caputo-Hadamard fractional derivative [22]) Let α = 0, and n =
[α] + 1. If h(x) ∈ ACnδ [a, b], where 0 < a < b <∞ and

ACnδ [a, b] = {h : [a, b]→ C : δn−1h(x) ∈ AC[a, b]}.

The left-sided Caputo-type modification of left-Hadamard fractional derivatives of
order α is given by

C
HD

α
a+h(t) = Dα

a+

(
h(t)−

n−1∑
k=0

δkh(a)

k!
(log

t

s
)k

)
(2.3)
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Theorem 2.4. (See [22]) Let α ≥ 0, and n = [α] + 1. If y(t) ∈ ACnδ [a, b], where
0 < a < b <∞. Then C

HD
α
a+f(t) exist everywhere on [a, b] and

(i) if α /∈ N− {0}, CHDα
a+f(t) can be represented by

C
HD

α
a+h(t) = 1

Γ(n−α)

∫ t
a
(log t

s )n−α−1δnh(s)dss
= In−αa+ δnh(t).

(2.4)

(ii) if α ∈ N− {0}, then
C
HD

α
a+h(t) = δnh(t)(2.5)

In particular
C
HD

0
a+h(t) = h(t)(2.6)

Caputo-Hadamard fractional derivatives can also be defined on the positive half axis
R+ by replacing a by 0 in formula (2.4) provided that h(t) ∈ ACnδ (R+). Thus one
has

C
HD

α
a+h(t) =

1

Γ(n− α)

∫ t

a

(log
t

s
)n−α−1δnh(s)

ds

s
(2.7)

Proposition 2.5. (See [24]) Let α > 0, β > 0, n = [α] + 1, and a > 0, then

Iαa+(log t
a )β−1(x) = Γ(β)

Γ(β+α) (log x
a )β+α−1

C
HD

α
a+(log t

a )β−1(x) = Γ(β)
Γ(β−α) (log x

a )β−α−1, β > n,
C
HD

α
a+(log t

a )k = 0, k = 0, 1, ..., n− 1.

(2.8)

Theorem 2.6. (See [20]) Let u(t) ∈ ACnδ [a, b], 0 < a < b < ∞ and α ≥ 0, β ≥ 0,
Then

C
HD

α
a+

(
Iαa+u

)
(t) =

(
Iβ−αa+ u

)
(t),

C
HD

α
a+

(
C
HD

β
a+u

)
(t) =

(
C
HD

α+β
a+ u

)
(t).

(2.9)

Lemma 2.7. (See [22]) Let α ≥ 0, and n = [α] + 1. If u(t) ∈ ACnδ [a, b], then the
Caputo-Hadamard fractional differential equation

C
HD

α
a+u(t) = 0,(2.10)

has a solution:

u(t) =

n−1∑
k=0

ck

(
log

t

a

)k
,(2.11)

and the following formula holds:

Iαa+
(
C
HD

α
a+u

)
(t) = u(t) +

n−1∑
k=0

ck

(
log

t

a

)k
,(2.12)

where ck ∈ R, k = 1, 2, ..., n− 1.
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3. Main Results

First, we prove a preparatory lemma for boundary value problem of linear frac-
tional differential equations with Caputo-Hadamard derivative.

Definition 3.1. A function x(t) ∈ AC1
δ (J,R) is said to be a solution of (1.1), (1.2)

if x satisfies the equation C
HD

rx(t) = f(t, x(t)) on J , and the conditions (1.2).

For the existence of solutions for the problem (1.1), (1.2), we need the following
auxiliary lemma.

Lemma 3.2. Let h : [1,+∞) → R be a continuous function. A function x is a
solution of the fractional integral equation

x(t) = Irh(t) +
1

Λ

{
λIr+qh(η)− βIrh(T ) + δ

}
(3.1)

if and only if x is a solution of the fractional BVP

C
HD

rx(t) = h(t), t ∈ J, r ∈ (0, 1](3.2)

αx(1) + βx(T ) = λIqx(η) + δ, q ∈ (0, 1](3.3)

Proof. Assume x satisfies (3.2). Then Lemma 2.7 (2.12) implies that

x(t) = Irh(t) + c1.(3.4)

By applying the boundary conditions (3.3) in (3.4), we obtain

αc1 + βIrh(T ) + βc1 = λIr+qh(η)) + c1
λ(log η)q

Γ(q + 1)
+ δ.

Thus,

c1

(
α+ β − λ(log η)q

Γ(q + 1)

)
= λIr+qh(η))− βIrh(T ) + δ.

Consequently,

c1 =
1

Λ

{
λIr+qh(η))− βIrh(T ) + δ

}
,

where,

Λ =

(
α+ β − λ(log η)q

Γ(q + 1)

)
.

Finally, we obtain the solution (3.1)

x(t) = Irh(t) +
1

Λ

{
λIr+qh(η)− βIrh(T ) + δ

}
.

In the following subsections we prove existence, as well as existence and unique-
ness results, for the boundary value problem (1.1), (1.2) by using a variety of fixed
point theorems.
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3.1. Existence and uniqueness result via Banach’s fixed point theorem

Theorem 3.3. Assume the following hypothesis:
(H1) There exists a constant L > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y|.

If
LM < 1,(3.5)

with

M :=

{
(log T )r

Γ(r + 1)
+
|λ|(log η)r+q

|Λ|Γ(r + q + 1)
+
|β|(log T )r

|Λ|Γ(r + 1)

}
,

then the problem (1.1) has a unique solution on J .

Proof. Transform the problem 1.1), (1.2) into a fixed point problem for the operator
F defined by

Fx(t) = Irh(t) +
1

Λ

{
λIr+qh(η)− βIrh(T ) + δ

}
.(3.6)

Applying the Banach contraction mapping principle, we shall show that F is a
contraction.

Now let x, y ∈ C(J,R). Then, for t ∈ J , we have

(3.7)

Thus
‖(Fx)(t)− (Fy)(t)‖∞ ≤ LM‖x− y‖∞.

We deduce that F is a contraction mapping. As a consequence of Banach contraction
principle. the problem (1.1)-(1.2) has a unique solution on J . This completes the
proof.

3.2. Existence result via Schaefer’s fixed point theorem

Theorem 3.4. Assume the hypotheses:
(H2): The function f : [1, T ]× R→ R is continuous.
(H3) There exists a constant K > 0, such that

|f(t, 0)| ≤ K, for a.e. t ∈ J.

Then, the problem (1.1)-(1.2) has a least one solution in J .

Proof. We shall use Schaefer’s fixed point theorem to prove that F defined by (3.6)
has a fixed point. The proof will be given in several steps.
Step 1: F is continuous Let xn be a sequence such that xn → x in C(J,R). Then
for each t ∈ J ,
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‖(Fxn)(t)− (Fx)(t)‖ ≤ 1
Γ(r)

∫ t
1
(log t

s )r−1‖f(s, xn(s))− f(s, x(s))‖dss
+ |λ|
|Λ|Γ(r+q)

∫ η
1

(log η
s )r+q−1‖f(s, xn(s))− f(s, x(s))‖dss

+ |β|
|Λ|Γ(r)

∫ T
1

(log T
s )r−1‖f(s, xn(s))− f(s, x(s))‖dss

≤
{

(log T )r

Γ(r+1) + |λ|(log η)r+q

|Λ|Γ(r+q+1) + |β|(log T )r

|Λ|Γ(r+1)

}
×

‖f(s, xn(s))− f(s, x(s)).‖

Since f is continuous, we have ‖(Fxn)(t)− (Fx)(t)‖∞ → 0 as n→∞.

Step 2: F maps bounded sets into bounded sets in C(J,R)
Indeed, it is enough to show that for any r > 0, we take

u ∈ Br = {x ∈ C(J,R), ‖x‖∞ ≤ r}.

From (H1) and (H3), Then we have

|f(s, x(s))| ≤ |f(s, x(s))− f(t, 0)|+ |f(t, 0)| ≤ Lr +K.

For x ∈ Br and for each t ∈ [1, T ], we have

|(Fx)(t)|≤ 1
Γ(r)

∫ t
1
(log t

s )r−1|f(s, x(s))|dss + |λ|
|Λ|Γ(r+q)

∫ η
1

(log η
s )r+q−1|f(s, x(s))|dss

+ |β|
|Λ|Γ(r)

∫ T
1

(log T
s )r−1|f(s, x(s))|dss + |δ|

|Λ|
≤ Lr+K

Γ(r)

∫ t
1
(log t

s )r−1 ds
s + |λ|(Lr+K)

|Λ|Γ(r+q)

∫ η
1

(log η
s )r+q−1 ds

s

+ |β|(Lr+K)
|Λ|Γ(r)

∫ T
1

(log T
s )r−1 ds

s + |δ|
|Λ|

≤ (Lr +K)
{

(log T )r

Γ(r+1) + |λ|(log η)r+q

|Λ|Γ(r+q+1) + |β|(log T )r

|Λ|Γ(r+1)

}
+ |δ|
|Λ|

≤ (Lr +K)M + |δ|
|Λ| .

Thus,

‖(Fx)(t)‖ ≤ (Lr +K)M +
|δ|
|Λ|

.

Step 3: F maps bounded sets into equicontinuous sets of C(J,R).
Let t1, t2 ∈ J, t1 < t2, Br be a bounded set of C(J,R) as in Step 2, and let x ∈ Br.
Then

‖Fx(t2)− Fx(t1)‖≤ 1
Γ(r)

∫ t1
1

[
(log t2

s )r−1 − (log t1
s )r−1

]
‖f(s, x(s))‖dss

+ 1
Γ(r)

∫ t2
t1

(log t2
s )r−1‖f(s, x(s))‖dss

≤ Lr+K
Γ(r)

∫ t1
1

[
(log t2

s )r−1 − (log t1
s )r−1

]
ds
s + K

Γ(r)

∫ t2
t1

(log t2
s )r−1 ds

s

≤ Lr+K
Γ(r+1) [(log t2)r − (log t1)r] ,

which implies ‖Fx(t2)− Fx(t1)‖∞ → 0 as t1 → t2, as consequence of Step1 to Step
3, together with the Arzela-Ascoli theorem, we can conclude that F is continuous
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and completely continuous.

Step 4: A priori bounds.
Now it remains to show that the set

Λ = {x ∈ C(J,R) : x = ρF(x) for some 0 < ρ < 1}

is bounded.

For such a x ∈ Λ. Thus, for each t ∈ J , we have

x(t) ≤ ρ
{

1
Γ(r)

∫ t
1
(log t

s )r−1f(s, x(s))dss + |λ|
|Λ|Γ(r+q)

∫ η
1

(log η
s )r+q−1f(s, x(s))dss

+ |β|
|Λ|Γ(r)

∫ T
1

(log T
s )r−1f(s, x(s))dss + |δ|

|Λ|

}
For ρ ∈ [0, 1], let x be such that for each t ∈ J

‖Fx(t)‖ ≤ 1
Γ(r)

∫ t
1
(log t

s )r−1|f(s, x(s))|dss + |λ|
|Λ|Γ(r+q)

∫ η
1

(log η
s )r+q−1|f(s, x(s))|dss

+ |β|
|Λ|Γ(r)

∫ T
1

(log T
s )r−1|f(s, x(s))|dss + |δ|

|Λ|
≤ (Lr +K)M + |δ|

|Λ| .

Thus
‖Fx(t)‖ ≤ ∞

This implies that the set Λ is bounded. As a consequence of Schaefer’s fixed
point theorem, we deduce that F has a fixed point which is a solution on J of the
problem (1.1)-(1.2).

3.3. Existence via the Leray-Schauder nonlinear alternative

Theorem 3.5. Assume the following hypotheses:
(H4) There exist ω ∈ L1(J,R+) and ψ : [0,∞) → (0,∞) continuous and nonde-
creasing such that

|f(t, x)| ≤ ω(t)ψ(‖x‖), for a.e. t ∈ J and each x ∈ R.

(H5) There exists a constant ε > 0 such that

ε

‖ω‖ψ(ε)M + |δ|
|Λ|

> 1.

Then the boundary value problem (1.1)-(1.2) has at least one solution on J .

Proof. We shall use the Leray-Schauder theorem to prove that F defined by (3.6) has
a fixed point. As shown in Theorem 3.4, we see that the operator F is continuous,
uniformly bounded, and maps bounded sets into equicontinuous sets. So by the



744 A. Boutiara, M. Benbachir and K. Guerbati

Arzela-Ascoli theorem F is completely continuous.
Let x be such that for each t ∈ J , we take the equation x = λ Imx for λ ∈ (0, 1)
and let x be a solution. After that, the following is obtained.

|x(t)| ≤ 1
Γ(r)

∫ t
1
(log t

s )r−1ω(t)ψ(‖x‖)dss + |λ|
|Λ|Γ(r+q)

∫ η
1

(log η
s )r+q−1ω(t)ψ(‖x‖)dss

+ |β|
|Λ|Γ(r)

∫ T
1

(log T
s )r−1ω(t)ψ(‖x‖)dss + |δ|

|Λ|
≤ ‖ω‖ψ(‖x‖)M + |δ|

|Λ| .

and consequently

‖x‖∞
‖ω‖ψ(‖x‖)M + |δ|

|Λ|

≤ 1.

Then by condition (H5), there exists ε such that ‖x‖∞ 6= ε. Let us set

κ = {x ∈ C(J,R) : ‖x‖ < ε}.

Obviously, the operator Im : κ→ C(J,R) is completely continuous. From the choice
of κ , there is no x ∈ ∂κ such that x = λ Im(x) for some λ ∈ (0, 1) . As a result,
by the Leray-Schauder’s nonlinear alternative theorem, F has a fixed point x ∈ κ
which is a solution of the (1.1)-(1.2).
The proof is completed.

Now we present another variant of existence-uniqueness result.

3.4. Existence and uniqueness result via Boyd-Wong nonlinear
contraction

Definition 3.6. Assume that E is a Banach space and T : E → E is a mapping.
If there exists a continuous nondecreasing function ψ : R+ → R+ such that ψ(0) = 0
and ψ(ε) < ε for all ε > 0 with the property: ‖Tx − Ty‖ ≤ ψ(‖x − y‖),∀x, y ∈ E.
then, we say that T is a nonlinear contraction.

Theorem 3.7. (Boyd-Wong Contraction Principle)[14]
Suppose that B is a Banach space and T : B → B is a nonlinear contraction. Then
T has a unique fixed point in B.

Theorem 3.8. Assume that f : [1, T ] × R → R are continuous functions and
H > 0 satisfying the condition

|f(t, x)− f(t, y)| ≤ |x− y|
H + |x− y|

, for t ∈ J, x, y ∈ R.(3.8)

Then the fractional BVP (1.1)-(1.2) has a unique solution on J .
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Proof. We define an operator F : χ→ χ as in (3.6) and a continuous nondecreasing
function ψ : R+ → R+ by

ψ(ε) =
Hε

H + ε
,∀ε > 0,

where M ≤ H . We notice that the function ψ satisfies ψ(0) = 0 and ψ(ε) < ε for
all ε > 0. For any x, y ∈ χ , and for each t ∈ J , we obtain

|(Fx)(t)− (Fy)(t)| ≤ 1
Γ(r)

∫ t
1
(log t

s )r−1‖f(s, x(s))− f(s, y(s))‖dss
+ |λ|
|Λ|Γ(r+q)

∫ η
1

(log η
s )r+q−1‖f(s, x(s))− f(s, y(s))‖dss

+ |β|
|Λ|Γ(r)

∫ T
1

(log T
s )r−1‖f(s, x(s))− f(s, y(s))‖dss

≤ |x−y|
H+|x−y|

{
(log T )r

Γ(r+1) + |λ|(log η)r+q

|Λ|Γ(r+q+1) + |β|(log T )r

|Λ|Γ(r+1)

}
:= M |x−y|

H+|x−y|
≤ ψ(‖x− y‖).

Then, we get ‖Fx− Fy‖ ≤ ψ(‖x− y‖). Hence, F is a nonlinear contraction. Thus,
by Theorem 3.9 (Boyd-Wong Contraction Principle) the operator F has a unique
fixed point which is the unique solution of the fractional BVP (1.1)-(1.2). The proof
is completed.

4. Example

We consider the problem for Caputo-Hadamard fractional differential equations
of the form:


C
HD

2
3x(t) = f(t, x(t)), (t, x) ∈ ([1, e],R+),

x(1) + x(e) = 1
2

(
I

1
2x(2)

)
+ 3

4 .

(4.1)

Here

r = 2
3 , q = 1

2 , α = 1, β = 1,
δ = 3

4 , λ = 1
2 , η = 2, T = e.

With

f(t, y(t)) =
1

t2 + 4
cosx, t ∈ [1, e]

Clearly, the function f is continuous.
For each x ∈ R+ and t ∈ [1, e], we have

|f(t, x(t))− f(t, y(t))| ≤ 1

4
|x− y|

Hence, the hypothesis (H1) is satisfied with L = 1
4 .

Further,

M :=
(log T )r

Γ(r + 1)
+
|λ|(log η)r+q

|Λ|Γ(r + q + 1)
+
|β|(log T )r

|Λ|Γ(r + 1)
' 2.0286
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and

LM ' 0.5071 < 1.

Therefore, by the conclusion of Theorem 3.3, It follows that the problem (4.1) has
a unique solution defined on [1, e].

5. Conclusion

In this paper, we have obtained some existence results for nonlinear Caputo-
Hadamard type fractional differential equations with Hadamard integral boundary
conditions by means of some standard fixed point theorems and nonlinear alterna-
tive of Leray-Schauder type. Though the technique applied to establish the existence
results for the problem at hand is a standard one, yet its exposition in the present
framework is new. An illustration to the present work is also given by presenting
some examples. Our results are new and generalize some available results on the
topic. For instance,

X We remark that when α = β = 1, λ = 0, problem (1.1)-(1.2) reduces to the case
considered in [12, 13].

X If we take α = q = 1, β = 0 , in (1.2), then our results correspond to the case
integral boundary conditions considered in [8].

X By fixing β = λ = 0, in (1.2), our results correspond to the ones for initial value
problem take the form:x(1) = δ .

X In case we choose α = β = 1, λ = δ = 0, in (1.2), our results correspond to
anti-periodic type boundary conditions take the form: x(1) = −x(T ).

X When, α = β = 1, δ = 0, the (1.2), our results correspond to Fractional integral
and anti-periodic type boundary conditions.

X If we take α = 1, β = δ = 0 , in (1.2), then our results correspond to the case
Fractional integral boundary conditions.

In the nutshell, the boundary value problem studied in this paper is of fairly general
nature and covers a variety of special cases.
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