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SOME RESULTS ON (ε)- KENMOTSU MANIFOLDS

Arpan Sardar

Abstract. We have studied curvature symmetries in (ε)-Kenmotsu manifolds. Next,
we have proved the non-existence of a non-zero parallel 2-form in an (ε)-Kenmotsu man-
ifold. Moreover, we have characterised φ-Ricci symmetric (ε)-Kenmotsu manifolds and
finally, we have proved that under certain restriction on the scalar curvature divR=0
and divC=0 are equivalent, where ‘div’ denotes divergence.
Keywords: (ε)-Kenmotsu manifold, curvature symmetries, φ-Ricci symmetric mani-
fold, Weyl curvature tensor.

1. Introduction

The basic difference between Riemannian and semi-Riemannian geometry is the
existence of a null vector. In a Riemannian manifold (M, g), the signature of the
metric tensor is positive definite, whereas the signature of a semi-Riemannian man-
ifold is indefinite. With the help of indefinite metric Bejancu and Duggal [1] in-
troduced (ε)-Sasakian manifolds. Then Xufeng and Xiaoli [16] proved that every
(ε)-Sasakian manifold must be a real hyperface of some indefinite Kähler manifolds.
Since Sasakian manifolds with indefinite metric have applications in Physics [4], we
are interested to study various contact manifolds with indefinite metric. Geometry
of Kenmotsu manifolds originated from Kenmotsu [10]. In [3] De and Sarkar intro-
duced the notion of (ε)-Kenmotsu manifolds with indefinite metric. On the other
hand, in [6] Eisenhart proved that if a Riemannian manifold admits a second order
parallel syemmetric covariant tensor other than a constant multiple of the metric
tensor, then it is reducible. Later on, several authors investigated the Eisenhart
problem on various spaces and obtained some fruitful results. Recently, Haseeb
and De [7] have studied η-Ricci solitons in (ε)-Kenmotsu manifolds. (ε)-Kenmotsu
manifolds have also been studied by several authors such as ([2],[8],[9],[13],[15]) and
many others. So far, our knowledge about curvature symmetries have not been
studied in semi-Riemannian manifolds. In this paper, we are going tol study cur-
vature symmetries in (ε)-Kenmotsu manifolds. For curvature symmetries we refer
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the book of Duggal and Sharma [5].

In [7] Haseeb and De proved the following:

Theorem 1. Let M be an n-dimensional (ε)-Kenmotsu manifold. If the mani-
fold has a symmetric parallel second order covariant tensor α, then α is a constant
multiple of the metric tensor g.

Using the above theorem, we obtained the following statements.
Proposition 1.1. If a vector field X is an affine Killing in an (ε)-Kenmotsu mani-
fold, then the vector field X is homothetic.
Proposition 1.2. An affine conformal vector field in an (ε)-Kenmotsu manifold is
reduced to a conformal vector field.

Sharma[12] characterised a class of contact manifold admitting a vector field keep-
ing the curvature tensor invariant.
In this paper, wel have considered the same problem in (ε)-Kenmotsu manifolds
and proved the following:

Theorem 2.In an (ε)-Kenmotsu manifold a curvature collineation is Killing.

The nature of a parallel 2-form has been considered by several authors in con-
tact manifolds. In the present paper we consider a parallel 2-form in the context of
(ε)-Kenmotsu manifolds and prove the following:

Theorem 3. There is no non-zero parallel 2-form in an (ε)-Kenmotsu manifold.
As for example dη is a 2-form in an (ε)-Kenmotsu manifold which is zero.
Next we prove:

Theorem 4. An (ε)-Kenmotsu manifold is φ-Ricci symmetric if and only if it
is an Einstein manifold.

In a Riemannian or semi-Riemannian manifold of dimension n, divR is obtained
from the Bianchi identity and given by

(divR)(U, V )W = (∇US)(V,W )− (∇V S)(U,W ),

where R denotes the curvature tensor, S is the Ricci tensor, ∇ is the Riemannian
connection and ’div’ denotes the divergence.
Also it is known that
(divC)(U, V )W = n−2

n−3 [{(∇US)(V,W )− (∇V S)(U,W )}+ 1
2(n−1){dr(U)g(V,W )−

dr(V )g(U,W )}],

where C is the Weyl curvature tensor of type (1,3), r is the scalar curvature.
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From the above definitions, it follows that divR = 0 implies divC = 0. How-
ever the converse, is not necessarily true. We address

Theorem 5. In an (ε)-Kenmotsu manifold divR = 0 and divC = 0 are equiv-
alent provided the scalar curvature r is invariant under the characteristic vector
field ξ.

2. (ε)-KENMOTSU MANIFOLDS

Duggal [4] introduced a larger class of contact metric manifolds.

Let M2n+1 be a (2n+1)-dimensional differentiable manifold of class C∞. Then
a quadruple (φ, ξ, η, g) defined on M2n+1 satisfying

φ2(U) = −U + η(U)ξ, η(ξ) = 1,(2.1)

g(ξ, ξ) = ε, η(U) = ε g(U, ξ),(2.2)

g(φU, φV ) = g(U, V )− εη(U)η(V ),(2.3)

where φ is a tensor field of type (1,1) , η a tensor field of type (0,1), the Reeb vector
field ξ and ε is 1 or -1 according as ξ is space like or time like vector field, is called
an (ε)-almost contact metric manifold. If dη(U, V ) = g(U, φV ), for every U, V ∈
χ(M), then we say that M is an (ε)-contact metric manifold. It can be easily seen
that φξ = 0 , ηφ = 0.

Moreover, if the manifold satisfies

(∇Uφ)V = −g(U, φV )− εη(V )φU,(2.4)

where ∇ denotes the Riemannian connection of g , then we shall call the manifold
an (ε)-Kenmotsu manifold.

In an (ε)-Kenmotsu manifold the following relations hold([3],[7]) :

∇Uξ = ε(U − η(U)ξ),(2.5)

(∇Uη)V = g(U, V )− εη(U)η(V ),(2.6)

R(U, V )ξ = η(U)V − η(V )U,(2.7)

(U, ξ) = −2nη(U).(2.8)

Example. Let us consider M5 = {(u1, u2, u3, u4,w) : u1, u2, u3, u4,w belongs
to R and w 6= 0 } and take the basis vector field {e1, e2, e3, e4, e5}, where
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e1 = w ∂
∂u1

, e2 = w ∂
∂u2

, e3 = w ∂
∂u3

, e4 = w ∂
∂u4

, e5 = −ε w ∂
∂w = ξ.

Let us define g as follows :

g(ei, ej) = 0, i 6= j, i, j = 1, 2, 3, 4, 5

and

g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = 1, g(e5, e5) = ε.

Then we obtain

[e1,e2] = [e1,e3] = [e1,e4] = [e2,e3] = [e2,e4] = [e3,e4] = 0,

[e1,e5] = εe1, [e2,e5] = εe2, [e3,e5] = εe3,[e4,e5] = εe4.

By Koszul’s formula we have

∇e1e1 = −e5, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = εe1,

∇e2e1 = 0, ∇e2e2 = −e5, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = εe2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −e5, ∇e3e4 = 0, ∇e3e5 = εe3,

∇e4e1 = 0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = −e5, ∇e4e5 = εe4,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = 0.

We can easily verify that (M5, φ, ξ, η, g) satisfies all the properties of (ε)-
Kenmotsu manifolds.

Definition 2.1. A vector field X is said to be an affine Killing vector field if
it satisfies

LX∇ = 0,

where LX denotes the Lie differentiation along the vector field X.

Definition 2.2. A vector field X that leaves the Riemann curvature tensor in-
variant, that is,

(LXR)(U, V )W = 0
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is called curvature collineation.

Definition 2.3. A conformal vector field X in a Riemannian or semi-Riemannian
manifold (M, g) is defined by

LXg = 2ρg,(2.9)

for a smooth function ρ on M . If ρ = constant, then the vector field X is called
homothetic. If ρ vanishes identically, then X is Killing vector field.

Equation (2.9) yields

(LX∇)(U, V ) = (Uρ)V + (V ρ)U − g(U, V )Dρ,(2.10)

where ∇(U, V ) = ∇UV for any vector field U, V on M and Dρ is the gradient vector
field of ρ.

Thus (2.9) implies (2.10), but not conversly.

The vector field X satisfying (2.10) is called conformal collineation and X is
then called an affine conformal vector field.

Definition 2.4 An (ε)-Kenmotsu manifold is said to be φ-Ricci symmetric if

φ2((∇UQ)W ) = 0,

where Q is the Ricci operator defined by g(QU, V ) = S(U, V ).

φ-Ricci symmetric manifold is weaker than Ricci symmetric (∇S = 0) manifold.

If U,W are orthogonal to the characteristic vector field ξ, then φ-Ricci symmetric
manifold is called locally φ-Ricci symmetric. The notion of locally φ-symmetric for
Sasakian manifolds was introduced by Takahashi[14].

3. PROOFS OF THE RESULTS

Proof of Proposition 1.1. If X is a affine Killing vector field, then

LX∇ = 0,

which implies that

LX(∇g) = 0.

That is,

∇LXg = 0.
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Thus LXg is symmetric second order parallel tensor. Thus, from Theorem 1 we
infer that

LXg = λg,

where λ is constant. This implies X is homothetic.

Proof of Proposition 1.2. In [11] Sharma and Duggal prove that a vector field
X on a manifold (M, g) is an affine conformal vector field if and only if

LXg = 2ρg + K,

where K is a second order covariant constant (∇K = 0) symmetric tensor field.
Hence from Theorem 1, we obtain K = λg, λ is constant.
Therefore,

LXg = 2ρg + λg.

This implies

LXg = 2σg,

where 2σ = 2ρ + λ, a smooth function. This completes the proof.

Proof of Theorem 2.By definition of curvature collineation, we get

LXR)(U, V )W = 0,(3.1)

which implies

(LXg)(R(Z,U)V,W ) + (LXg)(R(Z,U)W,V ) = 0.(3.2)

Putting Z = V = W = ξ in (3.2), we get

(LXg)(R(ξ, U)ξ, ξ) + (LXg)(R(ξ, U)ξ, ξ) = 0,

which implies

(LXg)(R(ξ, U)ξ, ξ) = 0.

Now, using (2.7) in the foregoing equation, we get

(LXg)(U, ξ) = η(U)(LXg)(ξ, ξ).(3.3)

Again putting Z = V = ξ in (3.2) it follows

(LXg)(R(ξ, U)ξ,W ) + (LXg)(R(ξ, U)W, ξ) = 0.
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Using (2.7) in the above equation we infer that

(LXg)(U,W )− η(U)(LXg)(ξ,W ) + η(W )(LXg)(U, ξ)

−ε(LXg)(ξ, ξ)g(U,W ) = 0.(3.4)

From (3.3) and (3.4) we get

(LXg)(U,W ) = ε(LXg)(ξ, ξ)g(U,W ).

This implies

(LXg)(U,W ) = ε[LXg(ξ, ξ)− 2g(ξ,LXξ)]g(U,W ).(3.5)

Since (LXR)(U, V )W = 0 implies (LXS)(V,W ) = 0. Therefore,

(LXS)(ξ, ξ) = 0,

which implies

S(ξ,LXξ) = 0.

That is,

g(Qξ,LXξ) = 0.

Now using (2.8) in the above equation, we obtain

g(ξ,LXξ) = 0.(3.6)

Using (3.6) in (3.5) we conclude that

(LXg)(U,W ) = 0,

that is, X is Killing vector field. Therefore, the Theorem is proved.

Proof of Theorem 3. Let α be a parallel 2-form in an (ε)-Kenmotsu mani-
fold. This means α is skew-symmetric and ∇α = 0.
Therefore

α(U, V ) = −α(V,U).(3.7)

Putting U = V = ξ in (3.7) we get

α(ξ, ξ) = 0.(3.8)

Differentiating (3.8) along U , we get
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α(∇Uξ, ξ) = 0.

Using (2.5) in the above gives

εα(U, ξ)− εη(U)α(ξ, ξ) = 0.

Finally, using (3.8), we obtain

α(U, ξ) = 0.(3.9)

Again, differentiating along V in the foregoing equation we get

α(∇V U, ξ) + α(U,∇V ξ) = 0.(3.10)

Replacing U by ∇V U in (3.9) we get

α(∇V U, ξ) = 0.(3.11)

Using (3.11), (2.5) in (3.10) and after some calculation we obtain

α(U, V ) = 0,

that is, α = 0. This completes the proof.

Proof of Theorem 4. Let M be an (2n+1)-dimensional φ-Ricci symmetric (ε)-
Kenmotsu manifold. Then

φ2((∇UQ)V ) = 0,

for arbitary vector fields U, V , which implies

−(∇UQ)V + η((∇UQ)V )ξ = 0.(3.12)

Putting V = ξ in (3.12) and using (2.8), we get

2n∇Uξ +Q(∇Uξ) + η(−2n∇Uξ −Q(∇Uξ))ξ = 0.(3.13)

Now using (2.5) in (3.13) and after some calculations, we obtain

S(U, V ) = −2ng(U, V ),
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which implies that the manifold is an Einstein manifold.
Conversely, if the manifold is an Einstein manifold, then obviously it becomes φ-
Ricci symmetric manifold. This completes the proof.

Proof of Theorem 5. Let us assume that divC = 0. Hence

(∇US)(V,W )− (∇V S)(U,W )

=
1

2(n− 1)
[dr(U)g(V,W )− dr(V )g(U,W )].(3.14)

We know

S(U, ξ) = −2nη(U).

Then

(∇US)(V, ξ) = ∇US(V, ξ)− S(∇UV, ξ)− S(V,∇Uξ).

Using (2.5) and (2.8) in the above equation, we get

(∇US)(V, ξ)− (∇V S)(U, ξ) = −4ndη(U, V ).

But in an (ε)-Kenmotsu manifold dη = 0,therefore, the above equation implies that

(∇US)(V, ξ)− (∇V S)(U, ξ) = 0.(3.15)

Substituting W = ξ in (3.14) and using (3.15), we have

dr(U)η(V )− dr(V )η(U) = 0.

Replacing V by ξ in the above equation, it follows

dr(U) = dr(ξ)η(U).(3.16)

Suppose the scalar curvature is invariant under the characteristic vector field ξ ,
that is,

Lξr = 0,

which implies

dr(ξ) = 0.

Hence (3.16) gives r = constant.
Therefore from (3.14) we get

(∇US)(V,W )− (∇V S)(U,W ) = 0,

which implies

(divR)(U, V )W = 0.

This completes the proof.
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