Ser. Math. Inform. Vol. 35, No 5 (2020), 1273–1290  $\label{eq:https:/doi.org/10.22190/FUMI2005273C} https://doi.org/10.22190/FUMI2005273C$ 

### Ufuk Çelik and Nihal Özgür

ON THE FIXED-CIRCLE PROBLEM

© 2020 by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND

**Abstract.** In this paper, we focus on the geometric properties of fixed-points of a self-mapping and obtain new solutions to a recent problem called "fixed-circle problem" in the setting of an S-metric space. For this purpose, we develop various techniques by defining new contractive conditions and using some auxiliary functions. Furthermore, we present new examples to support our theoretical results.

**Keywords**: fixed-points; S-metric space; self-mapping.

#### 1. Introduction

It is known that the fixed-point theory has been generalized by various approaches. One of these approaches is to generalize the used contractive condition (for example see [2], [5]). The other is to generalize the used metric space (see [1, 8, 21, 23] and the references therein). For example, in [21], Sedghi, Shobe and Aliouche presented the notion of an S-metric space as the generalization of a metric space. Then, some fixed-point theorems have been extensively studied on S-metric spaces (see [6, 7, 9, 13, 15, 18, 19, 21, 22, 24, 25, 27] for more details).

On the other hand, fixed-point theorems have been widely studied with different aspects such as the uniqueness of a fixed-point, common fixed point, etc. If a fixed point is not unique then the investigation of the geometric properties of fixed points of a self-mapping is an interesting problem. As a recent approach, the concept of a fixed circle and the fixed-circle problem have been presented on a metric (resp. an S-metric) space as a new direction of the generalization of known fixed-point results (see [17] and [16]). Then, new fixed circle theorems have been given by various techniques on metric (resp. S-metric) spaces (see [11, 12, 20, 26] for the metric case; [10, 14, 24, 25] for the S-metric case).

Our aim in this paper is to obtain new fixed-circle theorems for self-mappings on an S-metric space. In Section 2., we recall some basic facts about S-metric spaces.

Received October 31, 2019; accepted January 05, 2020 2020 Mathematics Subject Classification. Primary 47H10; Secondary 47H09, 54H25 In Section 3., we give new fixed-circle theorems by introducing new types of the notion of an  $F_c^S$ -contraction introduced and used in [10]. In Section 4., we investigate new existence and uniqueness theorems for fixed circles of self-mappings using some auxiliary functions and contractive conditions. We support our theoretical results by illustrative examples.

#### 2. Preliminaries

In this section, we recall some necessary notions and results on S-metric spaces with new examples.

**Definition 2.1.** [21] Let X be a nonempty set and  $S: X^3 \to [0, \infty)$  be a function satisfying the following conditions for all  $x, y, z, a \in X$ :

- 1. S(x, y, z) = 0 if and only if x = y = z,
- 2.  $S(x, y, z) \leq S(x, x, a) + S(y, y, a) + S(z, z, a)$ .

Then S is called an S-metric on X and the pair (X, S) is called an S-metric space.

**Example 2.1.** [21] Let  $X = \mathbb{R}$  (or  $\mathbb{C}$ ) and the function  $\mathcal{S}: X^3 \to [0, \infty)$  be defined by  $\mathcal{S}(x, y, z) = |x - z| + |y - z|$ ,

for all  $x, y, z \in \mathbb{R}$  (or  $\mathbb{C}$ ). Then the function  $S: X^3 \to [0, \infty)$  is an S-metric and it is called the usual S-metric on  $\mathbb{R}$  (or  $\mathbb{C}$ ).

**Lemma 2.1.** [21] Let (X, S) be an S-metric space and  $x, y \in X$ . Then we have

$$S(x, x, y) = S(y, y, x).$$

It was given the relationships between a metric and an S-metric in the following lemma [7].

**Lemma 2.2.** [7] Let (X,d) be a metric space. Then the following properties are satisfied:

- 1.  $S_d(x,y,z) = d(x,z) + d(y,z)$  for all  $x,y,z \in X$  is an S-metric on X.
- 2.  $x_n \to x$  in (X, d) if and only if  $x_n \to x$  in  $(X, \mathcal{S}_d)$ .
- 3.  $\{x_n\}$  is Cauchy in (X,d) if and only if  $\{x_n\}$  is Cauchy in  $(X,\mathcal{S}_d)$ .
- 4. (X,d) is complete if and only if  $(X,\mathcal{S}_d)$  is complete.

The metric  $S_d$  was called as the S-metric generated by d in [13].

Now we give a new example of an S-metric generated by a metric.

**Example 2.2.** Let  $X \neq \emptyset$ ,  $d: X^2 \to [0, \infty)$  be any metric on X and the function  $S: X^3 \to [0, \infty)$  be defined by

$$S(x, y, z) = \min \{1, d(x, z)\} + \min \{1, d(y, z)\}.$$

Then the function  $S: X^3 \to [0, \infty)$  is an S-metric on X and the pair (X, S) is an S-metric space. Clearly, this S-metric S is generated by the metric m defined as  $m(x, y) = \min\{1, d(x, y)\}$ .

There are some examples of an S-metric which is not generated by any metric (see [7], [10], [14] and [13]). We give a new example.

**Example 2.3.** Let  $X = \mathbb{R}$ ,  $d: X^2 \to [0, \infty)$  be any metric on X and the function  $S: X^3 \to [0, \infty)$  be defined by

$$S(x, y, z) = \min\{1, d(x, z)\} + |y - z|.$$

Then the function  $S: X^3 \to [0, \infty)$  is an S-metric on X which is not generated by any metric and the pair (X, S) is an S-metric space. Conversely, assume that there exists a metric  $d_1$  such that

$$S(x, y, z) = d_1(x, z) + d_1(y, z),$$

for all  $x, y, z \in X$ . Then we obtain

$$S(x,x,z) = 2d_1(x,z) \Rightarrow d_1(x,z) = \frac{1}{2}\min\{1,d(x,z)\} + \frac{1}{2}|x-z|$$

and

$$S(y, y, z) = 2d_1(y, z) \Rightarrow d_1(y, z) = \frac{1}{2} \min\{1, d(y, z)\} + \frac{1}{2} |y - z|,$$

for all  $x, y, z \in X$ . So we get

$$\begin{array}{l} \min{\{1,d(x,z)\}} + |y-z| \neq \frac{1}{2}\min{\{1,d(x,z)\}} + \frac{1}{2}\left|x-z\right| \\ + \frac{1}{2}\min{\{1,d(y,z)\}} + \frac{1}{2}\left|y-z\right|, \end{array}$$

which is a contradiction. Hence S is not generated by any metric.

**Definition 2.2.** [16] Let (X, S) be an S-metric space. Then a circle and a disc are defined on an S-metric space as follows, respectively:

$$C_{x_0,r}^S = \{x \in X : \mathcal{S}(x, x, x_0) = r\}$$

and

$$D_{x_0,r}^S = \{x \in X : S(x,x,x_0) \le r\}.$$

**Example 2.4.** Let X be a nonempty set, the function  $d: X^2 \to [0, \infty)$  be any metric on X and the S-metric space  $(X, \mathcal{S})$  be defined as in Example 2.2. Let us consider the circle  $C_{x_0,r}^S$  according to the S-metric  $\mathcal{S}$ :

$$C_{x_0,r}^S = \{x \in X : \mathcal{S}(x, x, x_0) = 2 \min\{1, d(x, x_0)\} = r\}.$$

Then we have the following cases:

Case 1: If r = 2 then  $C_{x_0,r}^S = \{x \in X : d(x,x_0) \ge 1\}.$ 

Case 2: If r > 2 then  $C_{x_0,r}^S = \emptyset$ .

Case 3: If r < 2 then  $C_{x_0, r}^S = C_{x_0, \frac{r}{2}}$ , where  $C_{x_0, \frac{r}{2}} = \left\{ x \in X : d\left(x, x_0\right) = \frac{r}{2} \right\}$ .

**Example 2.5.** Let X be a nonempty set, the function  $d: X^2 \to [0, \infty)$  be any metric on X and the S-metric space be defined as in Example 2.3. Let us consider the circle  $C_{x_0,r}^S$  according to the S-metric:

$$C_{x_{0},r}^{S} = \{x \in X : S(x,x,x_{0}) = \min\{1,d(x,x_{0})\} + |x - x_{0}| = r\}.$$

Then we have the following cases:

Case 1: If 
$$x \in (X \setminus D_{x_0,1}) \cup C_{x_0,1}$$
 then  $C_{x_0,r}^S = \{x \in (X \setminus D_{x_0,1}) \cup C_{x_0,1} : |x - x_0| = r - 1\}$ .  
Case 2: If  $x \in D_{x_0,1} \setminus C_{x_0,1}$  then  $C_{x_0,r}^S = \{x \in D_{x_0,1} \setminus C_{x_0,1} : d(x,x_0) + |x - x_0| = r\}$ .

In the following example, the S-metric is not generated by any metric but any circle on this S-metric space is the same as the circle on the usual metric space  $\mathbb{R}$  (or  $\mathbb{C}$ ).

**Example 2.6.** Let  $X = \mathbb{R}$  (or  $\mathbb{C}$ ) and the function  $S: X^3 \to [0, \infty)$  be defined by

$$S(x, y, z) = \max\{|x - y|, |y - z|, |z - x|\},\$$

for all  $x,y,z\in X$ . Then the function  $\mathcal{S}:X^3\to [0,\infty)$  is an S-metric on X which is not generated by any metric. For any circle  $C_{x_0,r}^S$  on this S-metric space we have  $C_{x_0,r}^S=\{x_0-r,x_0+r\}$  which is correspond to the circle  $C_{x_0,r}$  with the equation  $|y-x_0|=r$  on the usual metric space  $\mathbb{R}$ .

## 3. Fixed-Circle Theorems via New Types of $F_c^S$ -contractions

In this section, we give new fixed-circle theorems using new types of the notion of an  $F_c^S$ -contraction introduced in [10]. At first, we recall the definition of a fixed-circle and the following family of functions which was introduced by Wardowski in [28].

**Definition 3.1.** [16] Let (X, S) be an S-metric space,  $C_{x_0, r}^S$  be a circle on X and  $T: X \to X$  be a self-mapping. If Tx = x for every  $x \in C_{x_0, r}^S$  then the circle  $C_{x_0, r}^S$  is called as the fixed circle of T.

**Definition 3.2.** [28] Let  $\mathbb{F}$  be the family of all functions  $F:(0,\infty)\to\mathbb{R}$  such that (F1) F is strictly increasing,

- (F2) For each sequence  $\{\alpha_n\}$  in  $(0,\infty)$  the following holds  $\lim \alpha_n = 0$  if and only if  $\lim F(\alpha_n) = -\infty$ ,
  - (F3) There exists  $k \in (0,1)$  such that  $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$ .

Some functions that satisfy the conditions (F1), (F2) and (F3) of Definition 3.2 are given in the following example (see [28] for more details).

Example 3.1. [28] The following functions defined by

$$F_1:(0,\infty)\to\mathbb{R}, F_1(x)=\ln(x),$$

$$F_2: (0, \infty) \to \mathbb{R}, F_2(x) = \ln(x) + x,$$

$$F_3:(0,\infty)\to\mathbb{R}, F_3(x)=-\frac{1}{\sqrt{x}}$$

and

$$F_4:(0,\infty)\to \mathbb{R}, F_4(x)=\ln(x^2+x)$$

are the examples of Definition 3.2.

Using this family of functions, in [4], some new fixed-point theorems was obtained on S-metric spaces. In [10], it was introduced the following new contraction type to obtain some fixed-circle results on an S-metric space.

**Definition 3.3.** [10] Let (X, S) be an S-metric space. A self-mapping T on X is said to be an  $F_c^S$ -contraction if there exist  $F \in \mathbb{F}$ , t > 0 and  $x_0 \in X$  such that for all  $x \in X$  the following holds:

$$S(Tx, Tx, x) > 0 \Longrightarrow t + F(S(Tx, Tx, x)) \le F(S(x, x, x_0)).$$

In [24], Suzuki-Berinde type  $F_c^S$ -contractions were introduced for the same purpose. Now we define new types of  $F_c^S$ -contractions to get new fixed-circle results. To do this, we use some classical contraction conditions such as Ćirić-type, modified Hardy-Rogers type and Khan-type contractive conditions.

Let  $(X, \mathcal{S})$  be an S-metric space and T be a self-mapping on X. We will use the number r defined by

$$(3.1) r = \inf \left\{ \mathcal{S}(Tx, Tx, x) : x \in X, x \neq Tx \right\},$$

in all of our results.

#### 3.1. Ćirić type fixed-circle results on S-metric spaces

At first, we introduce the following Ćirić type  $F_c^S$ -contraction.

**Definition 3.4.** Let (X, S) be an S-metric space and T be a self-mapping on X. If there exist  $F \in \mathbb{F}$ , t > 0 and  $x_0 \in X$  such that for all  $x \in X$  the following holds:

$$S(Tx, Tx, x) > 0 \Longrightarrow t + F(S(Tx, Tx, x)) < F(m(x, x, x_0)),$$

where

$$m(x, x, y) = \max \left\{ \begin{array}{c} \mathcal{S}(x, x, y), \mathcal{S}(x, x, Tx), \mathcal{S}(y, y, Ty), \\ \frac{1}{2} [\mathcal{S}(x, x, Ty) + \mathcal{S}(y, y, Tx)] \end{array} \right\},$$

then the self-mapping T is called a Ćirić type  $F_c^S$ -contraction on X.

An immediate consequence of this definition is the following proposition.

**Proposition 3.1.** Let (X, S) be an S-metric space. If a self-mapping T on X is a Ciri´e-type  $F_c^S$ -contraction with  $x_0 \in X$  then we have  $Tx_0 = x_0$ .

*Proof.* Assume that  $Tx_0 \neq x_0$ . From the definition of a Ćirić-type  $F_c^S$ -contraction and Lemma 2.1, we get

$$S(Tx_0, Tx_0, x_0) > 0 \Longrightarrow t + F[S(Tx_0, Tx_0, x_0)] \le F(m(x_0, x_0, x_0))$$

$$= F\left(\max \left\{ S(x_0, x_0, x_0), S(x_0, x_0, Tx_0), S(x_0, x_0, Tx_0), \frac{1}{2}[S(x_0, x_0, Tx_0) + S(x_0, x_0, Tx_0)] \right\} \right)$$

$$= F(S(x_0, x_0, Tx_0)).$$

This is a contradiction by the fact that t > 0. Then we have  $Tx_0 = x_0$ .  $\square$ 

Using Ćirić type  $F_c^S$ -contractions, we give the following fixed-circle theorem.

**Theorem 3.1.** Let (X, S) be an S-metric space, T be a Ćirić type  $F_c^S$ -contractive self-mapping with  $x_0 \in X$  and r be defined as in (3.1). If  $S(Tx, Tx, x_0) = r$  for all  $x \in C_{x_0,r}^S$  then the circle  $C_{x_0,r}^S$  is a fixed circle of T. In particular, T fixes every circle  $C_{x_0,\rho}^S$  where  $\rho < r$  if  $S(Tx, Tx, x_0) = \rho$  for all  $x \in C_{x_0,\rho}^S$ .

Proof. Since  $S(Tx, Tx, x_0) = r$ , the self-mapping T maps  $C_{x_0, r}^S$  into (or onto) itself. Let  $x \in C_{x_0, r}^S$  be an arbitrary point. If  $Tx \neq x$ , by the definition of r we have  $S(Tx, Tx, x) \geq r$ . Hence, using the Ćirić-type  $F_c^S$ -contractive property, Lemma 2.1, Proposition 3.1 and the fact that F is increasing, we get

$$F(r) \leq F(S(Tx, Tx, x)) \leq F(m(x, x, x_0)) - t < F(m(x, x, x_0))$$

$$= F\left(\max \left\{ \begin{array}{c} S(x, x, x_0), S(x, x, Tx), S(x_0, x_0, Tx_0), \\ \frac{1}{2}[S(x, x, Tx_0) + S(x_0, x_0, Tx)] \end{array} \right\} \right)$$

$$= F(\max \{r, S(x, x, Tx), 0, r\}) = F(S(Tx, Tx, x)),$$

which is a contradiction. Therefore, S(Tx, Tx, x) = 0 and so Tx = x. Consequently,  $C_{x_0, r}^S$  is a fixed circle of T.

Using the similar arguments, it is easy to see that T also fixes any circle  $C_{x_0,\rho}^S$  where  $\rho < r$ .  $\square$ 

**Remark 3.1.** 1) Notice that, in Theorem 3.1, Ćirić type  $F_c^S$ -contractive self-mapping T fixes the disc  $D_{x_0,r}^S$  if  $\mathcal{S}(Tx,Tx,x_0)=\rho$  for all  $x\in C_{x_0,\rho}^S$  and each  $\rho\leq r$ .

2) In Theorem 3.1, if r = 0, then we have  $C_{x_0,r}^S = \{x_0\}$  and this is a fixed circle of the self-mapping T by Proposition 3.1.

In the following example, we see that the converse statement of Theorem 3.1 is not always true.

**Example 3.2.** Let  $X = \mathbb{C}$  be the S-metric space with the usual S-metric defined in Example 2.1,  $z_0 \in \mathbb{C}$  be any point and the self-mapping  $T: X \to X$  be defined as

$$Tz = \begin{cases} z & , & |z - z_0| \le \frac{\mu}{2} \\ z_0 & , & |z - z_0| > \frac{\mu}{2} \end{cases},$$

for all  $z \in \mathbb{C}$  with  $\mu > 0$ . We show that T is not a Ćirić-type  $F_c^S$ -contractive self-mapping. Indeed, if  $|z - z_0| > \frac{\mu}{2}$  for  $z \in \mathbb{C}$ , then using Lemma 2.1 and the Ćirić-type  $F_c^S$ -contractive property, we get

$$\mathcal{S}(Tz, Tz, z) = \mathcal{S}(z_0, z_0, z) > 0 \Longrightarrow t + F(\mathcal{S}(z_0, z_0, z)) \le F(m(z, z, z_0)),$$

$$t + F(\mathcal{S}(z_0, z_0, z)) \le F(\mathcal{S}(z, z, z_0))$$

and so

$$t + F(r) \le F(r) \Longrightarrow t \le 0.$$

This is a contradiction since t>0. Hence T is not a Ćirić-type  $F_c^S$ -contractive self-mapping for any  $z_0\in\mathbb{C}$ . But T fixes every circle  $C_{x_0,\rho}^S$  where  $\rho\leq\mu$ .

Now we give some illustrative examples of Theorem 3.1.

**Example 3.3.** Let  $X = \{z \in \mathbb{C} : |z| = 2\}$ . Let us consider the S-metric S defined in Example 2.6 on X and define the self-mapping  $T : X \to X$  by

$$Tz = \begin{cases} -2 & , & \frac{\pi}{3} \le \arg(z) \le \frac{\pi}{2} \\ z & , & otherwise \end{cases}.$$

Then the self-mapping T is a Ćirić-type  $F_c^S$ -contractive self-mapping with  $F = \ln x$ ,  $t = \ln \left(\frac{\sqrt{8+4\sqrt{3}}}{2\sqrt{3}}\right)$  and  $z_0 = -2i$ . Indeed, we obtain

$$r = \inf \{ \mathcal{S}(z, z, Tz) : z \in X, z \neq Tz \}$$
$$= 2\sqrt{2}.$$

In the case S(z, z, Tz) > 0, we find

$$m(z, z, -2i) = \max \left\{ \begin{array}{ll} \mathcal{S}(z, z, -2i), \mathcal{S}(z, z, -2), \mathcal{S}(-2i, -2i, -2i), \\ \frac{1}{2} [\mathcal{S}(z, z, -2i) + \mathcal{S}(-2i, -2i, -2)] \end{array} \right\}$$
$$= \max \left\{ |z + 2i|, |z + 2|, 0, \frac{1}{2} [|z + 2i| + |2i - 2|] \right\}$$
$$= \sqrt{8 + 4\sqrt{3}}$$

and hence

$$t + \ln(|z + 2|) \le \ln\left(\sqrt{8 + 4\sqrt{3}}\right).$$

Clearly, T fixes the circle  $C_{-2i,2\sqrt{2}}^{S}=\left\{ -2,2\right\}$  and the disc  $D_{-2i,2\sqrt{2}}^{S}=\left\{ z\in X:\mathcal{S}\left( z,z,-2i\right) \leq2\sqrt{2}\right\} .$ 

# **3.2.** Modified Hardy–Rogers type fixed-circle results on S-metric spaces

Now we introduce the following modified Hardy-Rogers type  $F_c^S$ -contraction.

**Definition 3.5.** Let (X, S) be an S-metric space and T be a self-mapping on X. If there exist  $F \in \mathbb{F}$ , t > 0 and  $x_0 \in X$  such that for all  $x \in X$  the following holds

$$\begin{split} \mathcal{S}(Tx,Tx,x) &> & 0 \Longrightarrow t + F(\mathcal{S}(Tx,Tx,x)) \leq \\ F & \begin{bmatrix} \alpha \mathcal{S}(x,x,x_0) + \beta \mathcal{S}(Tx_0,Tx_0,x) + \gamma \mathcal{S}(Tx,Tx,x_0) \\ + \eta \frac{\mathcal{S}(Tx_0,Tx_0,x_0)[1+\mathcal{S}(Tx,Tx,x_0)]}{[1+\mathcal{S}(Tx_0,Tx_0,x)]} + \lambda \frac{\mathcal{S}(Tx_0,Tx_0,x_0)+\mathcal{S}(Tx,Tx,x_0)}{1+\mathcal{S}(Tx_0,Tx_0,x_0)} \\ + \mu \frac{\mathcal{S}(Tx,Tx,x)[1+\mathcal{S}(Tx,Tx,x_0)]}{1+\mathcal{S}(Tx_0,Tx_0,x_0)} \end{bmatrix}, \end{split}$$

where  $\alpha+\beta+\gamma+\eta+\lambda+\mu<\frac{1}{2},\ \alpha,\beta,\gamma,\eta,\lambda,\mu\geq0$  and  $a\neq0$ , then the self-mapping T is called a modified Hardy-Rogers type  $F_c^S$ -contraction on X.

**Proposition 3.2.** Let (X, S) be an S-metric space. If a self-mapping T on X is a modified Hardy-Rogers type  $F_c^S$ -contraction with  $x_0 \in X$  then we have  $Tx_0 = x_0$ .

*Proof.* Assume that  $Tx_0 \neq x_0$ . By the hypothesis, we obtain

$$S(Tx_{0}, Tx_{0}, x_{0}) > 0 \Longrightarrow t + F(S(Tx_{0}, Tx_{0}, x_{0})) \leq$$

$$F \begin{bmatrix} \alpha S(x_{0}, x_{0}, x_{0}) + \beta S(Tx_{0}, Tx_{0}, x_{0}) + \gamma S(Tx_{0}, Tx_{0}, x_{0}) \\ + \eta \frac{S(Tx_{0}, Tx_{0}, x_{0})[1 + S(Tx_{0}, Tx_{0}, x_{0})]}{[1 + S(Tx_{0}, Tx_{0}, x_{0})]} + \lambda \frac{S(Tx_{0}, Tx_{0}, x_{0}) + S(Tx_{0}, Tx_{0}, x_{0})}{1 + S(Tx_{0}, Tx_{0}, x_{0})[1 + S(Tx_{0}, Tx_{0}, x_{0})]} \\ + \mu \frac{S(Tx_{0}, Tx_{0}, x_{0})[1 + S(Tx_{0}, Tx_{0}, x_{0})]}{1 + S(Tx_{0}, Tx_{0}, x_{0}) + S(Tx_{0}, Tx_{0}, x_{0})} \\ = F[(\beta + \gamma + \eta + 2\lambda + \mu)S(Tx_{0}, Tx_{0}, x_{0})] \\ < F[S(Tx_{0}, Tx_{0}, x_{0})].$$

This is a contradiction since t > 0. Hence we get  $Tx_0 = x_0$ .  $\square$ 

Now using the notion of a modified Hardy-Rogers type  $F_c^S$ -contraction condition, we prove the following fixed-circle theorem.

**Theorem 3.2.** Let (X, S) be an S-metric space, T be a modified Hardy-Rogers type  $F_c^S$ -contractive self-mapping with  $x_0 \in X$  and r be defined as in (3.1). If  $S(Tx, Tx, x_0) = r$  for all  $x \in C_{x_0, r}^S$  then  $C_{x_0, r}^S$  is a fixed circle of T. In particular, T fixes every circle  $C_{x_0, \rho}^S$  where  $\rho < r$  if  $S(Tx, Tx, x_0) = \rho$  for all  $x \in C_{x_0, \rho}^S$ .

*Proof.* Let  $x \in C_{x_0,r}^S$  and  $Tx \neq x$ . If r = 0, then we have  $C_{x_0,r}^S = \{x_0\}$  and this is a fixed circle of the self-mapping T by Proposition 3.2. Assume that r > 0. Using the modified Hardy-Rogers type  $F_c^S$ -contraction property, Proposition 3.2, Lemma 2.1 and the fact that F is increasing, we get

$$F(r) \leq F(\mathcal{S}(Tx, Tx, x))$$

$$\leq F\left[ \begin{array}{l} \alpha \mathcal{S}(x, x, x_0) + \beta \mathcal{S}(Tx_0, Tx_0, x) + \gamma \mathcal{S}(Tx, Tx, x_0) \\ + \eta \frac{\mathcal{S}(Tx_0, Tx_0, x_0)[1 + \mathcal{S}(Tx, Tx, x)]}{[1 + \mathcal{S}(Tx_0, Tx_0, x)]} + \lambda \frac{\mathcal{S}(Tx_0, Tx_0, x_0) + \mathcal{S}(Tx, Tx, x_0)}{1 + \mathcal{S}(Tx_0, Tx_0, x_0) \cdot \mathcal{S}(x, x, x_0)} \\ + \mu \frac{\mathcal{S}(Tx, Tx_0, x)[1 + \mathcal{S}(Tx, Tx, x_0)]}{1 + \mathcal{S}(Tx_0, Tx_0, x_0) + \mathcal{S}(Tx_0, Tx_0, x_0)} \end{array} \right] - t$$

$$\leq F[\alpha r + \beta r + \gamma r + \lambda r + \mu \mathcal{S}(Tx, Tx, x)]$$

$$\leq F[(\alpha + \beta + \gamma + \lambda + \mu) \mathcal{S}(Tx, Tx, x)]$$

$$\leq F[\mathcal{S}(Tx, Tx, x)],$$

which is a contradiction. Therefore, S(Tx, Tx, x) = 0 and so Tx = x. Consequently,  $C_{x_0,r}^S$  is a fixed circle of T. Using the similar arguments, it is easy to see that T also fixes any circle  $C_{x_0,\rho}^S$  where  $\rho < r$ .  $\square$ 

**Remark 3.2.** 1) Let (X, S) be an S-metric space, T be a modified Hardy-Rogers type  $F_c^S$ -contractive self-mapping with  $x_0 \in X$  and r be defined as in (3.1). If  $\mathcal{S}(Tx, Tx, x_0) = \rho$  for all  $x \in C_{x_0, \rho}^S$  and each  $\rho \leq r$ , then T fixes the disc  $D_{x_0, r}^S$ .

2) Let us consider the self-mapping T given in Example 3.2. Then it can be easily seen that T is not a modified Hardy-Rogers type  $F_c^S$ -contractive self-mapping. But, T fixes every circle  $C_{x_0,\rho}^S$  where  $\rho \leq r$ . Hence the converse statement of Theorem 3.2 is not always true.

**Example 3.4.** Let  $X = \mathbb{R}^+$  and the S-metric S be the usual S-metric. Let us define the self-mapping  $T: X \to X$  as

$$Tx = \begin{cases} 2x + \frac{4}{x} &, & x \in [1, 4) \\ x &, & otherwise \end{cases},$$

for all  $x \in X$ . Then the self-mapping T is a modified Hardy-Rogers type  $F_c^S$ -contractive self-mapping with  $\alpha = \frac{1}{4}$ ,  $\beta = \frac{1}{25}$ ,  $\gamma = \frac{1}{25}$ ,  $\lambda = \frac{1}{25}$ ,  $\mu = \frac{1}{25}$ ,  $F = \ln x$ ,  $t = \ln \frac{9}{8}$  and  $x_0 = 35$ . Indeed, in the cases  $\mathcal{S}(Tx, Tx, x) > 0$  we find

$$8 \le \mathcal{S}(Tx, Tx, x) \le 10$$

and

$$62 \le \mathcal{S}(x, x, x_0) \le 68$$

and hence

$$\begin{array}{lcl} t + F\left(2\left|x + \frac{4}{x}\right|\right) & \leq & F\left[2\alpha\left|x - 35\right|\right] \\ \\ & \leq & F\left[\begin{array}{c} 2\alpha\left|x - 35\right| + 2\beta\left|x - 35\right| + 2\gamma\left|Tx - 35\right| \\ & + \eta.0 + 2\lambda\left|Tx - 35\right| \\ & + \mu\frac{2\left|x + \frac{4}{x}\right|\left[1 + \left|Tx - 35\right|\right]}{1 + 2\left|x - 35\right|} \end{array}\right]. \end{array}$$

Also we have

$$r = \inf \left\{ \mathcal{S}(Tx, Tx, x) : x \neq Tx \right\} = 8.$$

Therefore, the self-mapping T fixes the circle  $C_{35,8}^S = \{31,39\}$  and the disc  $D_{35,8}^S = \{x \in \mathbb{R}^+ : 31 \le x \le 39\}$ .

#### 3.3. Khan-type fixed-circle results on S-metric spaces

Now we introduce the following Khan-type  $F_c^S$ -contraction.

**Definition 3.6.** Let (X, S) be an S-metric space and T be a self-mapping on X. If there exist  $F \in \mathbb{F}$ , t > 0 and  $x_0 \in X$  such that for all  $x \in X$  the following holds:

$$\begin{split} \mathcal{S}(Tx,Tx,x) &>& 0 \Longrightarrow t + F(\mathcal{S}(Tx,Tx,x)) \\ &\leq & F\left[h\frac{\mathcal{S}(Tx,Tx,x)\mathcal{S}(Tx_0,Tx_0,x) + \mathcal{S}(Tx_0,Tx_0,x)\mathcal{S}(Tx,Tx,x_0)}{\mathcal{S}(Tx_0,Tx_0,x) + \mathcal{S}(Tx,Tx,x_0)}\right], \end{aligned}$$

where

$$h \in [0, 1), \mathcal{S}(Tx_0, Tx_0, x) + \mathcal{S}(Tx, Tx, x_0) \neq 0.$$

Then the self-mapping T is called Khan-type  $F_c^S$ -contraction on X.

**Proposition 3.3.** Let (X, S) be an S-metric space. If a self-mapping T on X is a Khan-type  $F_C^S$ -contraction with  $x_0 \in X$ . Then we have  $Tx_0 = x_0$ .

*Proof.* Assume that  $Tx_0 \neq x_0$ . By the hypothesis, we have

$$S(Tx_{0}, Tx_{0}, x_{0}) > 0 \Longrightarrow t + F(S(Tx_{0}, Tx_{0}, x_{0}))$$

$$\leq F \left[ h \frac{S(Tx_{0}, Tx_{0}, x_{0})S(Tx_{0}, Tx_{0}, x_{0}) + S(Tx_{0}, Tx_{0}, x_{0})S(Tx_{0}, Tx_{0}, x_{0})}{S(Tx_{0}, Tx_{0}, x_{0}) + S(Tx_{0}, Tx_{0}, x_{0})} \right]$$

$$= F \left[ h \frac{S^{2}(Tx_{0}, Tx_{0}, x_{0}) + S^{2}(Tx_{0}, Tx_{0}, x_{0})}{2S(Tx_{0}, Tx_{0}, x_{0})} \right]$$

$$= F \left[ h \frac{2S^{2}(Tx_{0}, Tx_{0}, x_{0})}{2S(Tx_{0}, Tx_{0}, x_{0})} \right]$$

$$\leq F \left[ S(Tx_{0}, Tx_{0}, x_{0}) \right],$$

which is contradiction since t > 0. Then we have  $Tx_0 = x_0$ .  $\square$ 

Now using the notion of a Khan-type  ${\cal F}_c^S$ -contraction condition, we prove the following fixed-circle theorem.

**Theorem 3.3.** Let (X, S) be an S-metric space, T be a Khan-type  $F_c^S$ -contraction with  $x_0 \in X$  and r be defined as in (3.1). If  $S(Tx, Tx, x_0) = r$  for all  $x \in C_{x_0, r}^S$  then  $C_{x_0, r}^S$  is a fixed circle of T. In particular, T fixes every circle  $C_{x_0, \rho}^S$  with  $\rho < r$  if  $S(Tx, Tx, x_0) = \rho$  for all  $x \in C_{x_0, \rho}^S$ .

*Proof.* Let  $x \in C_{x_0,r}^S$  and  $Tx \neq x$ . If r = 0, then we have  $C_{x_0,r}^S = \{x_0\}$  and this is a fixed circle of the self-mapping T by Proposition 3.3.

Assume that r > 0. Using the Khan-type  $F_C^S$ -contractive property, Proposition 3.3, Lemma 2.1 and the fact that F is increasing, we get

$$F(r) \leq F(\mathcal{S}(Tx, Tx, x))$$

$$\leq F\left[h\frac{\mathcal{S}(Tx, Tx, x)\mathcal{S}(Tx_0, Tx_0, x) + \mathcal{S}(Tx_0, Tx_0, x)\mathcal{S}(Tx, Tx, x_0)}{\mathcal{S}(Tx_0, Tx_0, x) + \mathcal{S}(Tx, Tx, x_0)}\right] - t$$

$$< F\left[h\frac{\mathcal{S}(Tx, Tx, x)r + r^2}{2r}\right] = F\left[h\frac{\mathcal{S}(Tx, Tx, x) + r}{2}\right]$$

$$\leq F\left[h\frac{\mathcal{S}(Tx, Tx, x) + \mathcal{S}(Tx, Tx, x)}{2}\right] = F\left[h\mathcal{S}(Tx, Tx, x)\right]$$

$$< F[\mathcal{S}(Tx, Tx, x)],$$

which is a contradiction. Therefore we have S(Tx, Tx, x) = 0 and so Tx = x. Consequently,  $C_{x_0, r}^S$  is a fixed circle of T.

By the similar arguments, it is easy to verify that T also fixes any circle  $C_{x_0,\rho}^S$  where  $\rho < r$ .  $\square$ 

**Remark 3.3.** Notice that, in Theorem 3.3, Khan-type  $F_c^S$ -contractive self-mapping T fixes the disc  $D_{x_0,r}^S$  if  $S(Tx,Tx,x_0)=\rho$  for all  $x\in C_{x_0,\rho}^S$  and each  $\rho\leq r$ . Therefore, the center of any fixed circle is also fixed by T.

Now we give the following illustrative example.

**Example 3.5.** Let  $X = \{e^k : k \in \mathbb{N}\}$  and the S-metric be defined as in [14] such that

$$S(x, y, z) = \left| \ln \frac{x}{y} \right| + \left| \ln \frac{xy}{z^2} \right|$$

for all  $x,y,z\in X$  (see Example 2.6 on page 12 in [14]). Let us define the self-mapping  $T:X\to X$  as

$$Tx = \left\{ \begin{array}{ll} ex^2 &, & x \in \left\{e^1, e^2, e^3, e^4, e^5, e^6, e^7\right\} \\ x &, & otherwise \end{array} \right.,$$

for all  $x \in X$ . Then the self-mapping T is a Khan-type  $F_c^S$ -contractive self-mapping with  $F = -\frac{1}{\sqrt{x}}, \ t = \frac{1}{8} - \frac{1}{4\sqrt{5}}$  and  $x_0 = e^{23}$ . Indeed, in the case  $\mathcal{S}(Tx, Tx, x) > 0$ , we find

$$S(Tx, Tx, x) \in \{4, 6, 8, 10, 12, 14, 16\}$$

and

$$20 < h \frac{\mathcal{S}(Tx, Tx, x)\mathcal{S}(Tx_0, Tx_0, x) + \mathcal{S}(Tx_0, Tx_0, x)\mathcal{S}(Tx, Tx, x_0)}{\mathcal{S}(Tx_0, Tx_0, x) + \mathcal{S}(Tx, Tx, x_0)},$$

where  $h = \frac{20}{21}$ . Then we have

$$t + F\left(\mathcal{S}(Tx, Tx, x)\right) \le F\left[h\frac{\mathcal{S}(Tx, Tx, x)\mathcal{S}(Tx_0, Tx_0, x) + \mathcal{S}(Tx_0, Tx_0, x)\mathcal{S}(Tx, Tx, x_0)}{\mathcal{S}(Tx_0, Tx_0, x) + \mathcal{S}(Tx, Tx, x_0)}\right].$$

We obtain

$$r = \inf \left\{ \mathcal{S}(Tx, Tx, x) : x \neq Tx \right\} = 4$$

and therefore, the self-mapping T fixes the circle  $C_{e^{23},4}^S = \left\{e^{21},e^{25}\right\}$  and the disc  $D_{e^{23},4}^S = \left\{e^{21},e^{22},e^{23},e^{24},e^{25}\right\}$ .

#### 4. Fixed-Circle Theorems via Auxiliary Functions

In this section, we investigate the existence and uniqueness theorems for fixed circles of self-mappings using some auxiliary functions. Let r>0 be any real number. We consider the function  $\varphi_r: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$  defined as

(4.1) 
$$\varphi_r(u) = \begin{cases} u - r & , & u > 0 \\ 0 & , & u = 0 \end{cases},$$

for all  $u \in \mathbb{R}^+ \cup \{0\}$  [12]. Using the function  $\varphi_r$  we give the following theorem.

**Theorem 4.1.** Let (X, S) be an S-metric space and  $C_{x_0,r}^S$  be any circle on X. Consider the function  $\varphi_r$  defined in (4.1). If there exists a self-mapping  $T: X \to X$  satisfying the conditions

- 1.  $S(Tx, Tx, x_0) = r$  for each  $x \in C_{x_0, r}^S$ ,
- 2. S(Tx, Tx, Ty) > r for each  $x, y \in C_{x_0, r}^S$  and  $x \neq y$ ,
- 3.  $S(Tx, Tx, Ty) \le S(x, x, y) \varphi_r(S(x, x, Tx))$  for each  $x, y \in C_{x_0, r}^S$ ,

then the circle  $C_{x_0,r}^S$  is a fixed circle of T.

*Proof.* Let  $x \in C^S_{x_0,r}$  be an arbitrary point. By the condition (1), we have  $Tx \in C^S_{x_0,r}$  for all  $x \in C^S_{x_0,r}$ . Now we prove that x is a fixed point of T. On the contrary, let us assume that  $Tx \neq x$ . Taking y = Tx and using the condition (2), we find

$$\mathcal{S}(Tx, Tx, T^2x) > r.$$

Using the condition (3), we have

(4.3) 
$$S(Tx, Tx, T^{2}x) \leq S(x, x, Tx) - \varphi_{r}(S(x, x, Tx))$$
$$= S(x, x, Tx) - S(x, x, Tx) + r = r.$$

Combining the inequalities (4.2) and (4.3), we get a contradiction. Hence it should be Tx=x. Consequently, the circle  $C_{x_0,r}^S$  is a fixed circle of T.  $\square$ 

**Remark 4.1.** Notice that the condition (1) in Theorem 4.1 guarantees that Tx is on the circle  $C_{x_0,r}^S$  for  $x \in C_{x_0,r}^S$ , the condition (2) shows that the distance of the images of any two elements on the circle  $C_{x_0,r}^S$  can not be less than (or equal to) r.

Now we give an example of a self-mapping which has a fixed-circle on an S-metric space.

**Example 4.1.** Let  $X = \mathbb{R}$  and the metric function  $d: X^2 \to [0, \infty)$  be defined by

$$d(x,y) = \left\{ \begin{array}{ccc} 0 & , & x = y \\ |x| + |y| & , & x \neq y \end{array} \right.,$$

for all  $x, y \in X$ . Let us consider the S-metric defined in Example 2.2. The circle  $C_{\frac{1}{2},1}^S = \{x \in X : \mathcal{S}(x,x,\frac{1}{2}) = 1\} = \{0\}$ . If we consider the self-mapping  $T_1 : \mathbb{R} \to \mathbb{R}$  defined by

$$T_1 x = \begin{cases} 4 & , & x = \frac{1}{2} \\ 0 & , & x \neq \frac{1}{2} \end{cases}$$

for all  $x \in \mathbb{R}$  then the self-mapping  $T_4$  satisfies the conditions of Theorem 4.1 and  $T_4$  fixes the circle  $C_{\frac{1}{2},1}^S$ .

In the following example, we see that the converse statement of Theorem 4.1 is not always true.

**Example 4.2.** Let  $X=\mathbb{C}$  and consider the S-metric defined in Example 2.6. Let us consider the circle  $C_{0,\frac{1}{2}}^S$  and define the self-mapping  $T_2:\mathbb{C}\to\mathbb{C}$ 

$$T_2 z = \left\{ \begin{array}{cc} \frac{1}{9\overline{z}} & , & z \neq 0 \\ 0 & , & z = 0 \end{array} \right. ,$$

for all  $z \in \mathbb{C}$ , where  $\overline{z}$  denotes the complex conjugate of the complex number z. Clearly, we have  $T_2(C_{0,\frac{1}{3}}^S) = (C_{0,\frac{1}{3}}^S)$ . It can be easily checked that the self mapping  $T_2$  does not satisfy the condition (2) of Theorem 4.1. But, an easy computation shows that  $T_2$  fixes the circle  $C_{0,\frac{1}{2}}^S$ .

In the following example we see that the circle need not to be fixed even if  $T(C_{x_0,r}^S) = C_{x_0,r}^S$ .

**Example 4.3.** Let  $(\mathbb{C}, \mathcal{S})$  be the usual S-metric space. Let us consider the circle  $C_{0, \frac{1}{8}}^S$  and define the self-mapping  $T_3 : \mathbb{C} \to \mathbb{C}$  as

$$T_3 z = \left\{ \begin{array}{ccc} \frac{1}{16z} & , & z \neq 0 \\ 0 & , & z = 0 \end{array} \right. ,$$

for all  $z \in \mathbb{C}$ . Then we have  $T_3(C_{0,\frac{1}{8}}^S) = C_{0,\frac{1}{8}}^S$ . But the self-mapping  $T_3$  does not satisfy the conditions (2) and (3) of Theorem 4.1. Clearly, the circle  $C_{0,\frac{1}{8}}^S$  is not a fixed circle of  $T_3$  since  $T_3(\frac{i}{4}) = -\frac{i}{4}$  and  $T_3(-\frac{i}{4}) = \frac{i}{4}$ . More precisely,  $T_3$  fixes only the points  $\frac{1}{4}$  and  $-\frac{1}{4}$  on the circle  $C_{0,\frac{1}{8}}^S$ .

In the following example we see that a self mapping can be fix more than one circle.

**Example 4.4.** Let  $X = \mathbb{R}$  and (X, S) be the S-metric space defined in Example 2.6. Let us consider the circles  $C_{0,4}^S$  and  $C_{6,2}^S$  and the self-mapping  $T_4 : \mathbb{R} \to \mathbb{R}$  as

$$T_4 x = \begin{cases} \frac{2x+4}{x+5} & , & x \in (-\infty, 4) \\ \frac{17x+56}{24} & , & x \in (4, \infty) \\ 4 & , & x = 4 \end{cases} ,$$

for all  $x \in \mathbb{R}$ . It can be easily checked that the self-mapping  $T_4$  satisfies the conditions of Theorem 4.1 and that both of the circles  $C_{0,4}^S$  and  $C_{6,2}^S$  are the fixed circles of  $T_4$ .

Now we give another existence theorem for fixed circles.

**Theorem 4.2.** Let (X, S) be an S-metric space and  $C_{x_0,r}^S$  be any circle on X. Let us define the mapping

$$\varphi: X \to [0, \infty), \varphi(x) = \mathcal{S}(x, x, x_0),$$

for all  $x \in X$ . If there exists a self-mapping  $T: X \to X$  satisfying

1. 
$$S(x, x, Tx) \le \max \{\varphi(x), \varphi(Tx)\} - r$$
,

2. 
$$S(Tx, Tx, x_0) - hS(x, x, Tx) \leq r$$

for all  $x \in C_{x_0,r}^S$  and  $h \in [0,1)$ , then  $C_{x_0,r}^S$  is a fixed circle of T.

*Proof.* Let  $x \in C_{x_0,r}^S$ . On the contrary, assume that  $Tx \neq x$ . Then we have the following cases:

Case 1. If  $\max \{\varphi(x), \varphi(Tx)\} = \varphi(x)$  then using the condition (1) we have

$$S(x, x, Tx) < \max \{\varphi(x), \varphi(Tx)\} - r = \varphi(x) - r = r - r = 0$$

and so S(x, x, Tx) = 0, a contradiction. Hence we get Tx = x.

Case 2. If  $\max \{\varphi(x), \varphi(Tx)\} = \varphi(Tx)$  then we obtain

$$S(x, x, Tx) \le \max \{\varphi(x), \varphi(Tx)\} - r = \varphi(Tx) - r,$$

and using the condition (2) we find

$$S(x, x, Tx) \le \varphi(Tx) - r \le hS(x, x, Tx) + r - r = hS(x, x, Tx),$$

a contradiction since  $h \in [0,1)$ . Hence we get Tx = x.

Consequently,  $C_{x_0,r}^S$  is a fixed circle of T.  $\square$ 

**Remark 4.2.** (1) Notice that the condition (1) in Theorem 4.2 guarantees that Tx is not in the interior of the circle  $C_{x_0,r}^S$  for  $x \in C_{x_0,r}^S$ . Similarly the condition (2) guarantees that Tx is not exterior of the circle  $C_{x_0,r}^S$  for  $x \in C_{x_0,r}^S$ . Hence  $Tx \in C_{x_0,r}^S$  for each  $x \in C_{x_0,r}^S$ .

(2) Notice that the conditions of Theorem 4.2 are satisfied by the self-mapping  $T_2$ .

Now we give the following example.

**Example 4.5.** Let  $X = \mathbb{R}$  be the S-metric space with the usual S-metric defined in Example 2.1. Let us consider the circle  $C_{0,8}^S$  and define the self-mapping  $T_5 : \mathbb{R} \to \mathbb{R}$  as

$$T_5 x = \begin{cases} 2 & , & x \in \left\{ -\frac{8}{\sqrt{3}}, 2 \right\} \\ \frac{8x + 16\sqrt{3}}{\sqrt{3}x + 8} & , & x \in \mathbb{R} \setminus \left\{ -\frac{8}{\sqrt{3}}, 2 \right\} \end{cases},$$

for all  $x \in \mathbb{R}$ . Then the self-mapping  $T_5$  satisfies the conditions (1) and (2) in Theorem 4.2. Hence  $C_{0,8}^S$  is a fixed circle of  $T_5$ . Notice that  $C_{3,2}^S$  is another fixed circle of  $T_5$  and so the number of the fixed circles need not to be unique for a giving self-mapping.

Now, in the following example, we give an example of a self-mapping which satisfies the condition (1) and does not satisfy the condition (2) of Theorem 4.2.

**Example 4.6.** Let  $X = \mathbb{R}$  and the S-metric be defined as in Example 2.6. Let us consider the circle  $C_{0.6}^S$  and define the self-mapping  $T_6 : \mathbb{R} \to \mathbb{R}$  as

$$T_6 x = \begin{cases} \frac{4x + 48\sqrt{3}}{\sqrt{3}x + 3} &, & x \in (-7, 7) \\ 20 &, & otherwise \end{cases},$$

for all  $x \in \mathbb{R}$ . Then the self-mapping  $T_6$  satisfies the conditions (1) but does not satisfy the conditions (2) in Theorem 4.2. Consequently  $C_{0,6}^S$  is not a fixed circle of  $T_6$ .

In the following, we give an example of a self-mapping which satisfies the condition (2) and does not satisfy the condition (1) in Theorem 4.2.

**Example 4.7.** Let  $X = \mathbb{C}$  be the S-metric space with the usual S-metric defined in Example 2.1. Let us consider the circle  $C_{0,12}^S$  and define the self-mapping  $T_7 : \mathbb{C} \to \mathbb{C}$  as

$$T_{7}z = \begin{cases} \frac{Re(z)}{2} & if \quad Re(z) \geq 0\\ -\frac{Re(z)}{2} & if \quad Re(z) < 0 \end{cases},$$

for all  $z \in \mathbb{C}$ . Then the self-mapping  $T_7$  satisfies the condition (2) and does not satisfy the condition (1) in Theorem 4.2.

Now we use the following corollaries to obtain a uniqueness theorem for fixed circles of self-mappings.

**Corollary 4.1.** [22] Let (X, S) be a complete S-metric space and T be a self-mapping of X, and

$$(4.4) S(Tx, Tx, Ty) \le aS(x, x, y) + bS(Tx, Tx, x) + cS(Ty, Ty, y),$$

for some  $a,b,c \geq 0, a+b+c < 1$ , and all  $x,y \in X$ . Then T has a unique fixed point in X. Moreover, if  $c < \frac{1}{2}$  then T is continuous at the fixed point.

**Corollary 4.2.** [22] Let (X, S) be a complete S-metric space and T be a self-mapping of X, and

$$(4.5) S(Tx, Tx, Ty) \le h \max \left\{ S(Tx, Tx, y), S(Ty, Ty, x) \right\},$$

for some  $h \in [0, \frac{1}{3})$  and all  $x, y \in X$ . Then T has a unique fixed point in X. Moreover, T is continuous at the fixed point.

We give the following theorem.

**Theorem 4.3.** Let (X,S) be an S-metric space and  $T: X \to X$  be a self-mapping with the fixed circle  $C_{x_0,r}^S$ . If one of the contractive conditions (4.4) or (4.5) is satisfied for all  $x \in C_{x_0,r}^S$ ,  $y \in X \setminus C_{x_0,r}^S$  by T then  $C_{x_0,r}^S$  is the unique fixed circle of T.

*Proof.* Assume that there exists two fixed circles  $C_{x_0,r}^S$  and  $C_{x_0,\rho}^S$  of the self-mapping T. Let  $x \in C_{x_0,r}^S$  and  $y \in C_{x_0,\rho}^S$  be arbitrary points with  $x \neq y$ . If the contractive condition (4.4) is satisfied by T, then we obtain

$$S(x,x,y) = S(Tx,Tx,Ty) \le aS(x,x,y) + bS(Tx,Tx,x) + cS(Ty,Ty,y)$$
$$= aS(x,x,y),$$

which is a contradiction since a+b+c<1. Hence it should be x=y. Consequently  $C_{x_0,r}^S$  is the unique fixed circle of T. Similarly, if the contractive condition (4.5) is satisfied by T then we get

$$S(x, x, y) = S(Tx, Tx, Ty) \le h \max\{S(Tx, Tx, y), S(Ty, Ty, x)\} = hS(x, x, y),$$

which is a contradiction since  $h \in [0, \frac{1}{3})$ . Hence it should be x = y. Consequently  $C_{x_0,r}^S$  is the unique fixed circle of T.  $\square$ 

Now we consider the identity map  $I_X: X \to X$  defined as  $I_X(x) = x$  for all  $x \in X$ . We note that the identity map satisfies the conditions of Theorem 4.2 but can not satisfy the condition (2) of Theorem 4.1 everywhen. Therefore, we investigate a condition which excludes the identity map in Theorem 4.2 (resp. Theorem 4.1). For this purpose, we obtain the following theorem.

**Theorem 4.4.** Let (X, S) be an S-metric space,  $T: X \to X$  be a self mapping having a fixed circle  $C_{x_0,r}^S$  and the mapping  $\varphi_r$  be defined as in (4.1). The self-mapping  $T: X \to X$  satisfies the condition

$$\mathcal{S}(x, x, Tx) < \varphi_r \left( \mathcal{S}(x, x, Tx) \right) + r,$$

for all  $x \in X$  if and only if  $T = I_X$ .

*Proof.* Let  $x \in X$  be any point and assume that  $Tx \neq x$ . Then using the inequality (4.6), we get

$$S(x, x, Tx) < \varphi_r (S(x, x, Tx)) + r = S(x, x, Tx) - r + r,$$

which is a contradiction. Hence we have Tx = x and  $T = I_X$ .

Conversely, it is clear that the identity map  $I_X$  satisfies the condition (4.6).  $\square$ 

#### REFERENCES

- 1. H. ALOLAIYAN, B. ALI and M. ABBAS: Characterization of a b-metric space completeness via the existence of a fixed point of Ciric-Suzuki type quasi-contractive multivalued operators and applications. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 27(1) (2019), 5–33.
- F. Bojor: Fixed points of Kannan mappings in metric spaces endowed with a graph. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 20(1) (2012), 31-40.
- 3. Lj. B. Ciric: A generalization of Banach's contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267–273.
- 4. S. CHAIPORNJAREANSRI: Fixed point theorems for Fw-contractions in complete s-metric spaces. Thai J. Math. 14 (2016), Special issue, 98–109.
- 5. A. Fulga and E. Karapinar: Revisiting of some outstanding metric fixed point theorems via E-contraction. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. **26(3)** (2018), 73–98.
- A. Gupta: Cyclic contraction on S-metric space. Int. J. Anal. Appl. 3(2) (2013), 119–130.
- 7. N. T. HIEU, N. T. THANH LY and N. V. DUNG: A generalization of Ciric quasicontractions for maps on S-metric spaces. Thai J. Math. 13(2) (2015), 369–380.
- 8. E. Karapinar, A. F. Roldán-López-de-Hierro and S. Bessem: *Matkowski theorems in the context of quasi-metric spaces and consequences on G-metric spaces*. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. **24(1)** (2016), 309–333.
- 9. N. MLAIKI:  $\alpha$ - $\psi$ -contractive mapping on S-metric space. Math. Sci. Lett. **4(1)** (2015), 9–12.
- N. MLAIKI, U. ÇELIK, N. TAŞ, N. Y. ÖZGÜR and A. MUKHEIMER: Wardowski type contractions and the fixed-circle problem on S-metric spaces. J. Math. (2018), Art. ID 9127486, 9 pp.
- 11. N. Mlaiki, N. Taş and N. Y. Özgür: On the fixed-circle problem and Khan type contractions. Axioms **7(4)** (2018), 80.
- N. Y. ÖZGÜR and N. TAŞ: Some fixed-circle theorems and discontinuity at fixed circle. In: AIP Conference Proceedings 1926(1), AIP Publishing LLC, 2018, pp. 020048.
- 13. N. Y. ÖZGÜR and N. TAŞ: Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25). Math. Sci. (Springer) 11(1) (2017), 7–16.

- 14. N. Y. ÖZGÜR N. TAŞ and U. ÇELIK: New fixed-circle results on S-metric spaces. Bull. Math. Anal. Appl. 9(2) (2017), 10–23.
- N. Y. ÖZGÜR and N. TAŞ: Some generalizations of fixed point theorems on Smetric spaces. Essays in Mathematics and Its Aplications in Honor of Vladimir Arnold, New York, Springer, 2016.
- N. Y. ÖZGÜR and N. TAŞ: Fixed-circle problem on S-metric spaces with a geometric viewpoint. Facta Univ. Ser. Math. Inform. 34(3) (2019), 459–472.
- N. Y. Özgür and N. Taş: Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. 42(4) (2019), 1433–1449.
- 18. N. Y. ÖZGÜR and N. TAŞ: Some fixed point theorems on S-metric spaces. Mat. Vesnik **69(1)** (2017), 39–52.
- N. Y. ÖZGÜR and N. TAŞ: The Picard theorem on S-metric spaces. Acta Math. Sci. Ser. B (Engl. Ed.) 38(4) (2018), 1245–1258.
- 20. R. P. Pant, N. Y. Özgür and N. Taş: On Discontinuity Problem at Fixed Point. Bull. Malays. Math. Sci. Soc. 43(1) (2020), 499–517.
- 21. S. Sedghi, N. Shobe and A. Aliouche: A generalization of fixed point theorems in S-metric spaces. Mat. Vesnik **64(3)** (2012), 258–266.
- 22. S. Sedghi and N. V. Dung: Fixed point theorems on S-metric spaces. Mat. Vesnik 66(1) (2014), 113–124.
- 23. N. SOUAYAH: A fixed point in partial S<sub>b</sub>-metric spaces. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. **24(3)** (2016), 351–362.
- 24. N. TAŞ: Suzuki-Berinde type fixed-point and fixed-circle results on S-metric spaces. J. Linear Topol. Algebra 7(3) (2018), 233-244.
- 25. N. Taş: Various types of fixed-point theorems on S-metric spaces. J. BAUN Inst. Sci. Technol. **20(2)** (2018), 211–223.
- 26. N. TAŞ, N. Y. ÖZGÜR and N. MLAIKI: New types of  $F_C$ -contractions and the fixed-circle problem. Mathematics,  $\mathbf{6(10)}$  (2018), 188.
- 27. N. Taş and N. Y. Özgür: Common fixed points of continuous mappings on S-metric spaces. Math. Notes. **104(3-4)** (2018), 587–600.
- 28. D. WARDOWSKI: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, (2012):94, 6 pp.

Ufuk Çelik Faculty of Arts and Sciences Department of Mathematics 10145 Balıkesir, Turkey ufuk.celik@baun.edu.tr

Nihal Özgür Faculty of Arts and Sciences Department of Mathematics 10145 Balıkesir, Turkey nihal@balikesir.edu.tr