WEIGHTED STATISTICAL CONVERGENCE OF REAL VALUED SEQUENCES

Abdu Awel Adem and Maya Altinok

(C) by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND Abstract. Functions defined in the form " $g: \mathbb{N} \rightarrow[0, \infty)$ such that $\lim _{n \rightarrow \infty} g(n)=\infty$ and $\lim _{n \rightarrow \infty} \frac{n}{g(n)}=0$ " are called weight functions. Using the weight function, the concept of weighted density, which is a generalization of natural density, was defined by Balcerzak, Das, Filipczak and Swaczyna in the paper "Generalized kinsd of density and the associated ideals", Acta Mathematica Hungarica 147(1) (2015), 97-115.

In this study, the definitions of g-statistical convergence and g-statistical Cauchy sequence for any weight function g are given and it is proved that these two concepts are equivalent. Also, some inclusions of the sets of all weight g_{1}-statistical convergent and weight g_{2}-statistical convergent sequences for g_{1}, g_{2} which have the initial conditions are given.
Keywords: weight functions; natural density; statistical convergent sequences.

1. Introduction

In [5], Fast introduced the concept of statistical convergence. In [15], Schoenberg gave some basic properties of statistically convergence and also studied the concept as a summability method. After this works many Mathematician have used these concept in their studies $[8,9,10,11]$. In $[2,3]$, the authors proposed a modified version of density by replacing n by n^{α} where $0<\alpha \leq 1$. In [1], the authors defined a more general kind of density by replacing n^{α} by a function $g: \mathbb{N} \rightarrow[0, \infty)$ with $\lim _{n \rightarrow \infty} g(n)=\infty$. In this paper, we will study the weighted g-statistically convergence concept.

Let K be a subset of natural numbers. Natural density of K is defined by

$$
\delta(K)=\lim _{n \rightarrow \infty} \frac{1}{n}|K(n)|
$$

where $K(n)=\{k \leq n: k \in K\}$ and the vertical bars denotes the number of elements of $K(n)$.

[^0]Let $g: \mathbb{N} \rightarrow[0, \infty)$ be a function with $\lim _{n \rightarrow \infty} g(n)=\infty$. Let us remember that the definition of density of weight $g(n)$.

Definition 1.1. The density of weight g defined by the formula

$$
d_{g}(A)=\lim _{n \rightarrow \infty} \frac{|A(n)|}{g(n)}
$$

for $A \subset \mathbb{N}[1,4]$.

After the study [1], the concept of g-density was applied to various problems related to sequences and interesting results were obtained in $[4,7,12,13,14]$.

Basically in this study, it will be shown that the results given in [6] can be re-examined by using g-density.

In this paper, we are concerned with the subsets of natural numbers having weight $g(n)$ density zero. To facilitate this, we have introduced the following notation: If x is a sequence such that x_{k} satisfies property P for all k except a set of weight $g(n)$ density zero, then we say that x_{k} satisfies P for (weight g almost all k) and it is denoted by $(g-a . a . k)$ for simplicity.

Definition 1.2. Let $x=\left(x_{k}\right)$ be a real valued sequence. x is weight g-statistical convergent to the number L if for each $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g(n)}=0
$$

i.e., $\left|x_{k}-L\right|<\varepsilon \quad(g-a . a . k)$. In this case we write $g-s t-\lim x_{k}=L$.
$C_{g}^{s t}$ denotes the set of all weight g-statistical convergent sequences.
If we take the function $g(n)=n$ we obtain the usual statistical convergence.
It is clear that every convergent sequence is also weight g-statistical convergent. But the converse is not true in general.

Example 1.1. Let us define the function $g(n)=2 n$ and the sequence as

$$
x_{k}= \begin{cases}3, & k=m^{2}, \quad m \in \mathbb{N} \\ 0, & k \neq 0\end{cases}
$$

Then $\left|k \leq n: x_{k} \neq 0\right| \leq \sqrt{n}$. So, $g-s t-\lim x_{k}=0$.
Theorem 1.1. If the sequence $\left(x_{n}\right)$ is weight- g-statistical convergent to L then there is a set $K=\left\{k_{1}<k_{2}<\ldots\right\}$ such that $d_{g}(K)=d_{g}(\mathbb{N})$ and $\lim _{n \rightarrow \infty} x_{k_{n}}=L$.

Proof. Let us assume that $g-s t-\lim x_{k}=L$. Take $K_{i}:=\left\{n \in \mathbb{N}:\left|x_{n}-L\right|<\frac{1}{i}\right\}$, $(i=1,2, \ldots)$. Then by definition we have $d_{g}\left(K_{i}^{c}\right)=0$ and it is clear that $d_{g}\left(K_{i}\right)=$ $d_{g}(\mathbb{N}),(i=1,2, \ldots)$. Also it is easy to control that

$$
\begin{equation*}
\ldots \subset K_{i+1} \subset K_{i} \subset \ldots \subset K_{2} \subset K_{1} \tag{1.1}
\end{equation*}
$$

Let $\left\{T_{j}\right\}_{j \in \mathbb{N}}$ be a strictly increasing sequence of positive real numbers. Let choose an arbitrary number $a_{1} \in K_{1}$. By (1.1) we can choose an element $a_{2} \in K_{2}$, $a_{2}>a_{1}$ such that for each $n \geq a_{2}$ we have $\frac{K_{2}(n)}{g(n)}>T_{2}$. Moreover choose $a_{3}>a_{2}$, $a_{3} \in K_{3}$ such that for each $n \geq a_{3}$ we have $\frac{K_{3}(n)}{g(n)}>T_{3}$. If we proceed in this way we obtain a sequence $a_{1}<a_{2} \ldots<a_{i}<\ldots$ of positive integers such that

$$
\begin{equation*}
a_{i} \in K_{i},(i=1,2, \ldots) \text { and } \frac{K_{i}(n)}{g(n)}>T_{i} \tag{1.2}
\end{equation*}
$$

for each $n \geq a_{i}, i=1,2, \ldots$
Let us establish the set K as follows: each natural number of the interval [1, a_{1}] belong to K, moreover, any natural number of the interval $\left[a_{i}, a_{i+1}\right.$] belongs to K if and only if it belongs to $K_{i}(i=1,2, \ldots)$. From (1.1) and (1.2) we have

$$
\frac{K(n)}{g(n)} \geq \frac{K_{i}(n)}{g(n)}>T_{i}
$$

for each $n, a_{i} \leq n<a_{i+1}$. By last inequality it is clear that $\bar{d}_{g}(K)=\infty$.
Let $\varepsilon>0$, and choose i such that $\frac{1}{i}<\varepsilon$. Let $n \geq a_{i}, n \in K$. There exists a number $t \geq i$ such that $a_{t} \leq n<a_{t+1}$. But from the definition of $K, n \in K_{t}$. Thus $\left|x_{n}-L\right|<\frac{1}{t} \leq \frac{1}{i}<\varepsilon$. Hence, $\lim _{n \rightarrow \infty} x_{k_{n}}=L$.

Remark 1.1. The converse of Theorem 1.1 is not true.

Example 1.2. Let us consider the sequence

$$
\left(x_{k}\right):= \begin{cases}1, & k=n^{2} \\ 0, & k \neq n^{2}\end{cases}
$$

and $g(n)=n^{1 / 4}$. It is clear that the set $K=\left\{k: k=n^{2}, n \in \mathbb{N}\right\} \subset \mathbb{N}$ has the property $\bar{d}_{g}(K)=\infty$. But $g-s t-\lim x_{k} \neq 1$.

Let us note that every statistical convergent sequence is also weight- g-statistical convergent to the same number. But the converse of this situation is not true.

Example 1.3. Let $a_{k}=2^{2^{k}}$, and

$$
g(n):=\left\{\begin{array}{cc}
a_{2 k}, & n \in\left[a_{k}, a_{k+1}\right), \quad k=1,2, \ldots \\
1, & n<4 .
\end{array}\right.
$$

Let $A_{k}:=\left\{n \in \mathbb{N}: a_{k} \leq n<2 a_{k}\right\}$ and $A:=\cup_{k \geq 1} A_{k}$. Let us take account the sequence

$$
x_{n}:= \begin{cases}1, & n \in A \\ 0, & n \notin A .\end{cases}
$$

It is clear that $\frac{1}{2} a_{k} \leq\left|A_{k}\right| \leq a_{k}$. Let us check that $x_{n} \nrightarrow 0(s t)$. If we put $m_{k}=\max A_{k}$, we obtain

$$
\frac{\left|\left\{k \leq n:\left|x_{k}-0\right| \geq \varepsilon\right\}\right|}{n}=\frac{\left|\left\{k \leq n: x_{k} \in A\right\}\right|}{n}=\frac{|A|}{m_{k}} \geq \frac{\left|A_{k}\right|}{m_{k}} \geq \frac{\frac{1}{2} a_{k}}{2 a_{k}}=\frac{1}{4}
$$

for all $k \geq 1$.
Moreover, $g-s t-\lim x_{k}=0$. For sufficiently large n, we have

$$
\begin{aligned}
\frac{\left|\left\{k \leq n:\left|x_{k}-0\right| \geq \varepsilon\right\}\right|}{g(n)} & =\frac{\left|\left\{k \leq n: x_{k} \in A\right\}\right|}{g(n)}=\frac{|A|}{g(n)} \\
& =\frac{\left|\left\{k \leq m_{k}: x_{k} \in A\right\}\right|}{g\left(m_{k}\right)} \\
& \leq \frac{\left|A_{k}\right|}{a_{2 k}} \leq \frac{a_{k}}{a_{2 k}} \rightarrow 0
\end{aligned}
$$

Definition 1.3. Let $x=\left(x_{k}\right)$ be a real valued sequence. x is weight g-statistical Cauchy sequence if for each $\varepsilon>0$ there exists a natural number $N=N(\varepsilon)$ such that

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \leq n:\left|x_{k}-x_{N}\right| \geq \varepsilon\right\}\right|}{g(n)}=0
$$

i.e., $\left|x_{k}-x_{N}\right|<\varepsilon \quad(g-a . a . k)$. In this case we write x is weight g-Cauchy sequence.

Lemma 1.1. The following statements are equivalent:
(i) x is a weight g-statistically convergent sequence,
(ii) x is a weight g-statistically Cauchy sequence,
(iii) x is a sequence for which there is a convergent sequence y such that $x_{k}=y_{k}$ ($g-a . a . k)$.

Proof. $(i) \Rightarrow(i i)$ Let us assume that x is a weight g-statistical convergent sequence. Suppose $\varepsilon>0$ and $g-s t-\lim x=L$. Then $\left|x_{k}-L\right|<\frac{\varepsilon}{2}(g-a . a . k)$ holds.

If we choose a natural number N such that $\left|x_{N}-L\right|<\frac{\varepsilon}{2}$, then we have

$$
\left|x_{k}-x_{N}\right|<\left|x_{k}-L\right|+\left|x_{N}-L\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}(g-a . a . k) .
$$

Hence, x is a weight g-statistical Cauchy sequence.
$(i i) \Rightarrow(i i i)$ Let us assume that x is a weight g-statistical Cauchy sequence.
Choose $N(1)$ such that the interval $I=\left[x_{N(1)}-1, x_{N(1)}+1\right]$ contains $x_{k}(g-a . a . k)$.
Also apply (ii) to choose M such that $I^{\prime}=\left[x_{M}-\frac{1}{2}, x_{M}+\frac{1}{2}\right]$ contains $x_{k}(g-a . a . k)$.
We claim that

$$
I_{1}=I \cap I^{\prime} \text { contains } x_{k}(g-a . a . k)
$$

for

$$
\left\{k \leq n: x_{k} \notin I \cap I^{\prime}\right\}=\left\{k \leq n: x_{k} \notin I\right\} \cup\left\{k \leq n: x_{k} \notin I^{\prime}\right\} .
$$

Thus,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{g(n)}\left|\left\{k \leq n: x_{k} \notin I \cap I^{\prime}\right\}\right| \leq \\
\leq & \lim _{n \rightarrow \infty} \frac{1}{g(n)}\left|\left\{k \leq n: x_{k} \notin I\right\}\right|+\lim _{n \rightarrow \infty} \frac{1}{g(n)}\left|\left\{k \leq n: x_{k} \notin I^{\prime}\right\}\right|=0 .
\end{aligned}
$$

So, I_{1} is closed interval of length less than or equal to 1 and contains $x_{k}(g-a . a . k)$. Now we continue by choosing $N(2)$ such that $I^{\prime \prime}=\left[x_{N(2)}-\frac{1}{4}, x_{N(2)}+\frac{1}{4}\right]$ contains $x_{k}(g-a . a . k)$, by the previously argument $I_{2}=I_{1} \cap I^{\prime \prime}$ contains $x_{k}(g-a . a . k)$, and I_{2} has length less than or equal to $\frac{1}{2}$. Proceeding inductively we construct a sequence $\left\{I_{m}\right\}_{m=1}^{\infty}$ of closed intervals such that for each $m, I_{m+1} \subseteq I_{m}$, and the length of I_{m} is not greater than 2^{1-m}, and $x_{k} \in I_{m}(g-a . a . k)$. From the Nested Interval Theorem there is a number α such that $\alpha=\cap_{m=1}^{\infty} I_{m}$. If we use $x_{k} \in I_{m}(g-a . a . k)$, we can choose an increasing positive sequence $\left\{T_{m}\right\}_{m=1}^{\infty}$ such that

$$
\begin{equation*}
\frac{1}{g(n)}\left|\left\{k \leq n: x_{k} \notin I_{m}\right\}\right|<\frac{1}{g(m)} \text { if } n>T_{m} \tag{1.3}
\end{equation*}
$$

Next define a subsequence z of x consisting of all terms x_{k} such that $k>T_{1}$ and if $T_{m}<k \leq T_{m+1}$ then $x_{k} \notin I_{m}$.

Now define the sequence y by

$$
y_{k}=\left\{\begin{aligned}
\alpha, & \text { if } x_{k} \text { is a term of } z \\
x_{k}, & \text { otherwise }
\end{aligned}\right.
$$

Then $\lim y_{k}=\alpha$; for, if $\varepsilon>\frac{1}{g(m)}>0$ and $k>T_{m}$ then either x_{k} is a term of z, which means $y_{k}=\alpha$ or $y_{k}=x_{k} \in I_{m}$ and $\left|y_{k}-\alpha\right| \leq$ length of $I_{m}<2^{1-m}$. We also assert that $x_{k}=y_{k}(g-a . a . k)$. To confirm this we observe that if $T_{m}<n<T_{m+1}$ then

$$
\left\{k \leq n: y_{k} \neq x_{k}\right\} \subseteq\left\{k \leq n: x_{k} \notin I_{m}\right\}
$$

so from (1.3)

$$
\frac{1}{g(n)}\left|\left\{k \leq n: y_{k} \neq x_{k}\right\}\right| \leq \frac{1}{g(n)}\left|\left\{k \leq n: x_{k} \notin I_{m}\right\}\right|<\frac{1}{g(m)}
$$

is obtained. Thus, the limit as $n \rightarrow \infty$ is 0 and $x_{k}=y_{k}(g-a . a . k)$.
$(i i i) \Rightarrow(i)$ Let us assume that $x_{k}=y_{k}(g-a \cdot a \cdot k)$ and $\lim y_{k}=L . \quad$ Suppose $\varepsilon>0$. Then for each n,

$$
\left\{k \leq n:\left|x_{k}-L\right|>\varepsilon\right\} \subseteq\left\{k \leq n: x_{k} \neq y_{k}\right\} \cup\left\{k \leq n:\left|y_{k}-L\right|>\varepsilon\right\}
$$

from the assumption $\lim y_{k}=L$, the second set contains a fixed number of integers, say $l=l(\varepsilon)$. So,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{g(n)}\left|\left\{k \leq n:\left|x_{k}-L\right|>\varepsilon\right\}\right| & \leq \lim _{n \rightarrow \infty} \frac{1}{g(n)}\left|\left\{k \leq n: x_{k} \neq y_{k}\right\}\right|+ \\
& +\lim _{n \rightarrow \infty} \frac{l}{g(n)}=0
\end{aligned}
$$

because $x_{k}=y_{k}(g-a . a . k)$. Hence, $\left|x_{k}-L\right| \leq \varepsilon(g-a . a . k)$. So, the proof is complete.

Corollary 1.1. Let x be a real valued sequence. If $g-s t-\lim x_{k}=L$, then x has a subsequence y such that $\lim y_{k}=L$.

2. Inclusion Between Two $g-s t$-Convergence

Let G denotes the set of all functions $g: \mathbb{N} \rightarrow[0, \infty)$ satisfying the condition $g(n) \rightarrow \infty$ and $\frac{n}{g(n)} \nrightarrow 0$. In this section, we will introduce some inclusions between various $g \in G$.

Lemma 2.1. Let $g_{1}, g_{2} \in G$ such that there exist $M, m>0$ and $k_{0} \in \mathbb{N}$ such that $m \leq \frac{g_{1}(n)}{g_{2}(n)} \leq M$ for all $n \geq k_{0}$. Then $C_{g_{1}}^{s t}(x)=C_{g_{2}}^{s t}(x)$.

Proof. Suppose the sequence x is weight g_{1}-statistical convergence to L. This implies that for each $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g_{1}(n)}=0
$$

Together with the fact that $\frac{g_{1}(n)}{g_{2}(n)} \leq M$, this implies that

$$
\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{M g_{2}(n)} \leq \frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g_{1}(n)}
$$

for all $n \geq k_{0}$. This implies

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{M g_{2}(n)} \leq \lim _{n \rightarrow \infty} \frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g_{1}(n)}=0
$$

From the hypothesis we obtain

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g_{2}(n)}=0
$$

Thus, the sequence x is weight g_{2}-statistical convergent to L. So, $C_{g_{1}}^{s t}(x) \subset C_{g_{2}}^{s t}(x)$. We can prove the iclusion $C_{g_{2}}^{s t}(x) \subset C_{g_{1}}^{s t}(x)$ by similar way.

Lemma 2.2. For each function $f \in G$ there exists a nondecreasing function $g \in G$ such that $C_{f}^{s t}(x)=C_{g}^{s t}(x)$. Moreover,

$$
\begin{equation*}
g(n) \leq f(n) \tag{2.1}
\end{equation*}
$$

for all $n \in \mathbb{N}$.

Proof. If f is nondecreasing, it is nclear. Otherwise, define the related function $g: \mathbb{N} \rightarrow[0, \infty)$ as follows. Let $a_{1}=\min \{f(n): n \in \mathbb{N}\}, i_{1}=\max \left\{i \in \mathbb{N}: f(i)=a_{1}\right\}$ and $g(i)=a_{1}$ for $0 \leq i \leq i_{1}$. Next, let $a_{2}=\min \left\{f(n): n>i_{1}\right\}, i_{2}=\max \{i \in N$: $\left.f(i)=a_{2}\right\}$ and $g(i)=a_{2}$ for $i_{1}<i \leq i_{2}$. Rest of the function g is established by induction.

Obviously, the function g is nondecreasing and $g(n) \rightarrow \infty$. By the construction, $g(n) \leq f(n)$, for all $n \in \mathbb{N}$. Hence $\frac{n}{f(n)} \leq \frac{n}{g(n)}$ for all n which implies that $\frac{n}{g(n)} \nrightarrow 0$. Thus $g \in G$.

Let $\left(x_{n}\right)$ be a weight g-statistical convergent sequence to L. So, for each $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g(n)}=0
$$

holds. From (2.1) we have following inequality

$$
\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f(n)} \leq \frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g(n)}
$$

If we take limit when $n \rightarrow \infty$ we obtain $f-s t-\lim x_{k}=L$. Thus, the inclusion $C_{g}^{s t} \subset C_{f}^{s t}$.

By construction, for each $n \in \mathbb{N}$ there exist $m \geq n$ such that $g(n)=g(m)=$ $f(m)$. Suppose that $x_{n} \nrightarrow L(g-s t)$. Then there exists a, where $a \in \mathbb{R}^{+} \cup\{+\infty\}$ and an inreasing sequence $\left(n_{i}\right)$ of indices such that

$$
\lim _{i \rightarrow \infty} \frac{\left|\left\{k \leq n_{i}:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g\left(n_{i}\right)}=a>0 .
$$

For each $i \in \mathbb{N}$ we can find $m_{i} \geq n_{i}$ such that $g\left(n_{i}\right)=g\left(m_{i}\right)=f\left(m_{i}\right)$. Hence

$$
\frac{\left|\left\{k \leq n_{i}:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g\left(n_{i}\right)} \leq \frac{\left|\left\{k \leq m_{i}:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f\left(m_{i}\right)}
$$

holds. So, $x_{n} \nrightarrow L(f-s t)$.
Lemma 2.3. Let $f \in G$ be such that $\frac{n}{f(n)} \rightarrow \infty, L, \varepsilon$ real numbers with $\varepsilon>0$. Then there exists a sequence $\left(x_{n}\right)$ such that $\left(\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f(n)}\right)$ is bounded but not convergent to zero.

Proof. Firstly, let us assume that f is nondecreasing. Take to the smallest non negative integer, k_{0}, such that for $n \geq k_{0}, f(n)>2$. Let us define a set $A \subset$ $\mathbb{N} \backslash\left\{0,1,2, \ldots k_{0}-1\right\}$ inductively, deciding whether $n \geq k_{0}$ should belong to A or not. Let $n \notin A$ for all $n<k_{0}$. Suppose that $n \geq k_{0}$ and then we have defined $A(n)$. If $\frac{|A(n)|}{f(n+1)}<1$ then let $n \in A$. Otherwise, let $n \notin A$. So, we construct the set A. From this construction and the condition $f(n) \rightarrow \infty, A$ is infinite.

We assert that $\mathbb{N} \backslash A$ is also infinite. Let us assume that it is finite and choose $n_{0} \in \mathbb{N}$ such that $n \in A$ for all $n \geq n_{0}$. Then, we have

$$
\frac{n-n_{0}}{f(n+1)} \leq \frac{|A(n)|}{f(n+1)}<1
$$

for all $n \geq n_{0}$. But this is impossible because of the assumption, $\frac{n-n_{0}}{f(n+1)} \rightarrow \infty$. Now, we will show that $\frac{|A(n)|}{f(n)}<2$ for each $n \geq k_{0}$. It is clear that if $n=k_{0}$ it is true. Suppose that $\frac{|A(n)|}{f(n)}<2$ for a fixed $n \geq k_{0}$.

If $\frac{|A(n)|}{f(n+1)}<1$, we have

$$
\begin{aligned}
\frac{|A(n+1)|}{f(n+1)} & =\frac{|A(n)|}{f(n+1)}+\frac{1}{f(n+1)} \\
& \leq \frac{|A(n)|}{f(n+1)}+\frac{1}{f(n)} \\
& \leq 1+\frac{1}{2}<2
\end{aligned}
$$

If $\frac{|A(n)|}{f(n+1)}>1$, then $n \notin A$ and so,

$$
\frac{|A(n+1)|}{f(n+1)}=\frac{|A(n)|}{f(n+1)} \leq \frac{|A(n)|}{f(n)}<2 .
$$

Now, let us define a sequence $\left(x_{n}\right)$ as follows:

$$
x_{n}:= \begin{cases}n & n \in A \\ L & n \notin A\end{cases}
$$

where $L \in \mathbb{R}$ is a fixed number. It is clear that the sequence $\left(\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f(n)}\right)$ is bounded from the first part of this proof.

Now, we will show that the sequence $\left(\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f(n)}\right)$ is not convergent to 0 . For this aim consider any $n \geq k_{0}$. We will find $m \geq n$ such that $\frac{|A(m)|}{f(m)} \geq 1$. If $\frac{|A(n)|}{f(n)} \geq 1$, put $m:=n$. Otherwise, choose the smallest $m \geq n$ such that $m \in \mathbb{N} \backslash A$. Then $\frac{|A(m)|}{f(m+1)} \geq 1$ and so, $\frac{|A(m)|}{f(m)} \geq 1$. Thus, the sequence $\left(\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f(n)}\right)$ is not convergent to 0 .

Now, let us back to the general case where $f \in G$ need not be nondecreasing. Then we assume the associated function $g \in G$ from Lemma 2.2. Note that $\frac{n}{g(n)} \rightarrow$ ∞ since $\frac{n}{g(n)} \geq \frac{n}{f(n)}$ for all n and $\frac{n}{f(n)} \rightarrow \infty$. By the above reasons we obtain the respective set A for g. Thus, $\frac{|A(n)|}{g(n)} \nrightarrow 0$ and the sequence $\left(\frac{|A(n)|}{g(n)}\right)$ is bounded. Then $\frac{|A(n)|}{f(n)} \nrightarrow 0$, and the sequence $\left(\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f(n)}\right)$ is bounded since $g(n) \leq f(n)$ for all $n \in \mathbb{N}$.

Theorem 2.1. If g_{1}, g_{2} belong to G such that $\frac{g_{2}(n)}{g_{1}(n)} \rightarrow \infty$ then $C_{g_{1}}^{s t}(x) \subsetneq C_{g_{2}}^{s t}(x)$. If $g \in G$ and $\frac{n}{g(n)} \rightarrow \infty$ then $C_{g}^{s t}(x) \subsetneq C^{s t}(x)$.

Proof. To prove the first claim note that the inclusion $C_{g_{1}}^{s t}(x) \subset C_{g_{2}}^{s t}(x)$ follows from Lemma 2.1. Set $f:=\sqrt{g_{1} \cdot g_{2}}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f(n)}{g_{1}(n)}=\lim _{n \rightarrow \infty} \frac{g_{2}(n)}{f(n)}=\infty \tag{2.2}
\end{equation*}
$$

Also we have

$$
\frac{n}{g_{1}(n)}=\frac{n}{g_{2}(n)} \cdot \frac{g_{2}(n)}{g_{1}(n)} \rightarrow \infty
$$

So $\frac{n}{f(n)}=\sqrt{\frac{n^{2}}{g_{1}(n) g_{2}(n)}} \rightarrow \infty$. Hence f have the assumption of Lemma 2.3. Take the sequence $\left(x_{n}\right)$ obtained in this lemma. Then $x_{n} \in C_{g_{2}}^{s t}(x)$ but $x_{n} \notin C_{g_{1}}^{s t}(x)$. Indeed, using (2.2) we have

$$
\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g_{2}(n)}=\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f(n)} \cdot \frac{f(n)}{g_{2}(n)} \rightarrow 0
$$

because $\left(\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f(n)}\right)_{n \in \mathbb{N}}$ is bounded from Lemma 2.3. Thus, $x_{n} \in C_{g_{2}}^{s t}(x)$. To prove that $x_{n} \notin C_{g_{1}}^{s t}(x)$ observe that

$$
\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{g_{1}(n)}=\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f(n)} \frac{f(n)}{g_{1}(n)}
$$

So, $x_{n} \notin C_{g_{1}}^{s t}(x)$ because $\frac{\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|}{f(n)} \nrightarrow 0$, and $\frac{f(n)}{g_{1}(n)} \rightarrow \infty$ from (2.2).
If we take $g_{2}(n)=n$, for all $n \in \mathbb{N}$, second assertion proved easily from the same way.

Corollary 2.1. Let $0<\alpha<\beta \leq 1$ and $g_{1}(n)=n^{\alpha}$, $g_{2}=n^{\beta}$ for $n \in \mathbb{N}$. Then $C_{g_{1}}^{s t}(x) \subsetneq C_{g_{2}}^{s t}(x)$.

Example 2.1. Let

$$
g_{1}(n)=\left\{\begin{aligned}
n, & \text { for even } n \in \mathbb{N} \\
\sqrt{n}, & \text { for odd } n \in \mathbb{N}
\end{aligned}\right.
$$

and $g_{2}(n)=\sqrt{n}$ for $n \in \mathbb{N}$. It is clear that, $\lim _{\sup _{n \rightarrow \infty} \frac{g_{1}(n)}{g_{2}(n)}}^{G^{\prime}}=\infty$. However, $C_{g_{1}}^{s t}(x)=$ $C_{g_{2}}^{s t}(x)$. Indeed, construct a nondecreasing function $g \in G$ such that $C_{g}^{s t}(x)=C_{g_{1}}^{s t}(x)$, according to the method used in the proof of Lemma 2.1. Then it follows from simple calculations that g is given by

$$
g(n)=\left\{\begin{aligned}
\sqrt{n+1} & \text { for even } n \in \mathbb{N} \\
\sqrt{n} & \text { for odd } n \in \mathbb{N} .
\end{aligned}\right.
$$

Obviously, $\frac{1}{2} \leq \frac{g(n)}{g_{2}(n)} \leq 2$ for all $n \geq 1$. Therefore, by Lemma 2.1 we have $C_{g}^{s t}(x)=C_{g_{1}}^{s t}(x)$.
Theorem 2.2. There exists a function $g \in G$ such that $C_{g}^{s t}$ is different from $C_{n^{\alpha}}^{\text {st }}$ with $0<\alpha<1$.

Proof. Let a_{k} and $g(n)$ defined as in Example 1.3. Let $A_{k}:=\left\{n \in \mathbb{N}: a_{k+1}-\right.$ $\left.\left(a_{k+1}\right)^{1 / 4} \leq n<a_{k+1}\right\}$ and $A=\cup_{k \geq 2} A_{k}$. Let us take account the sequence

$$
x_{n}=\left\{\begin{array}{cc}
n, & n \in A \\
0, & n \notin A .
\end{array}\right.
$$

It is clear that $\frac{1}{2}\left(a_{k+1}\right)^{1 / 4} \leq\left|B_{k}\right| \leq\left(a_{k+1}\right)^{1 / 4}$. Let us check that $g-s t-\lim x_{k} \neq$ 0 . For $k>0$ we have

$$
\frac{\left|\left\{k \leq a_{k+1}-1:\left|x_{k}-0\right| \geq \varepsilon\right\}\right|}{g\left(a_{k+1}-1\right)} \geq \frac{\frac{1}{2}\left|B_{k}\right|}{g\left(a_{k}\right)} \geq \frac{\frac{1}{4}\left(a_{k+1}\right)^{1 / 4}}{\left(a_{k+1}\right)^{1 / 4}}=\frac{1}{4}
$$

so, $g-s t-\lim x_{k} \neq 0$. Furthermore,

$$
\left|\left\{k \leq a_{k+1}:\left|x_{k}-0\right| \geq \varepsilon\right\}\right| \leq\left(a_{k}\right)^{1 / 4}+\left(a_{k+1}\right)^{1 / 4} \leq 2\left(a_{k+1}\right)^{1 / 4}
$$

and so,

$$
\frac{\left|\left\{k \leq a_{k+1}:\left|x_{k}-0\right| \geq \varepsilon\right\}\right|}{\left(a_{k+1}\right)^{1 / 3}} \leq \frac{2\left(a_{k+1}\right)^{1 / 4}}{\left(a_{k+1}\right)^{1 / 3}}=2\left(a_{k+1}\right)^{-1 / 12} \rightarrow 0,(k \rightarrow \infty)
$$

holds.
Now, fix any $n \geq 4$ and choose a unique $k \in \mathbb{N}$ such that $n \in\left[a_{k}, a_{k+1}\right)$. If $n<a_{k+1}-\left(a_{k+1}\right)^{1 / 4}$ then

$$
\begin{aligned}
\frac{\left|\left\{k \leq n:\left|x_{k}-0\right| \geq \varepsilon\right\}\right|}{n^{1 / 3}} & =\frac{\left|\left\{k \leq a_{k}:\left|x_{k}-0\right| \geq \varepsilon\right\}\right|}{n^{1 / 3}} \\
& \leq \frac{\left|\left\{k \leq n:\left|x_{k}-0\right| \geq \varepsilon\right\}\right|}{\left(a_{k}\right)^{1 / 3}} \leq 2\left(a_{k}\right)^{-1 / 12}
\end{aligned}
$$

If $a_{k+1}-\left(a_{k+1}\right)^{1 / 4} \leq n<a_{k+1}$ then for $b>a>0$, the function

$$
f(x):=\frac{a+x}{(b+x)^{1 / 3}}, x \geq 0
$$

is increasing, thus

$$
\frac{\left|\left\{k \leq n:\left|x_{k}-0\right| \geq \varepsilon\right\}\right|}{n^{1 / 3}} \leq \frac{\left|\left\{k \leq a_{k+1}:\left|x_{k}-0\right| \geq \varepsilon\right\}\right|}{\left(a_{k+1}\right)^{1 / 3}}
$$

So, $x_{n} \in C_{n^{1 / 3}}^{s t}(x)$.
Now, let $0<\alpha<1, \alpha \neq \frac{1}{3}$. If $\alpha<\frac{1}{3}$ then from Corollary $2.1 C_{n^{\alpha}}^{s t} \subsetneq C_{n^{1 / 3}}^{s t}$ and $C_{g}^{s t} \backslash C_{n^{\alpha}}^{s t} \neq \emptyset$ because $C_{g}^{s t} \backslash C_{n^{1 / 3}}^{s t} \neq \emptyset$. If $\alpha>\frac{1}{3}$ then $C_{n^{\alpha}}^{s t} \backslash C_{g}^{s t} \neq \emptyset$. By the same way we can show that $x_{n} \in C^{s t} \backslash C_{g}^{s t}$. So $C_{g}^{s t} \subsetneq C^{s t}$.

Acknowledgement

The authors would like to thank Professor Mehmet Küçükaslan for his discussions some steps during the preparation of this paper.

REFERENCES

1. M. Balcerzak, P. Das, M. Filipczak and J. Swaczyna: Generalized kinds of density and the associated ideals. Acta Math. Hungar. 147(1) (2015), 97-115.
2. S. Bhunia, P. Das and S. K. Pal: Restricting statistical convergence. Acta Mathematica Hungarica, 134(1-2) (2012), 153-161.
3. R. Çolak: Statistical convergence of order α. Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India (2010), 121-129.
4. P. Das and E. Savaş: On generalized statistical and ideal convergence of metric-valued sequences. Reprinted in Ukrainian Math. J. 68(12) (2017), 1849-1859. Ukrain. Mat. Zh. 68(12) (2016), 1598-1606.
5. H. FAST: Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
6. J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301-313.
7. Ş. Konca, M. Küçükaslan and E. Genç: I-statistical convergence of double sequences defined by weight functions in a locally solid Riesz space. Konuralp J. Math. 7(1) (2019), 55-61.
8. M. Küçükaslan and M. Yilmaztürk: On deferred statistical convergence of sequences. Kyungpook Math. J., 56 (2006), 357-366.
9. M. Yilmaztürk, O. Mizrak and M. Küçükaslan: Deferred statistical cluster points of real valued sequences. Univ. J. Appl. Math., 1 (2013), 1-6.
10. E. Savaş: On some generalizd sequence spaces defined by modulus. Indian J. Pure Appl. Math., 30(5) (1999), 973-978.
11. E. Savaş: Strong almost convergence and almost λ-statistical convergence. Hokkaido Math., 29(3) (2000), 531-536.
12. E. Savaş and P. Das: On I-statistical and I-lacunary statistical convergence of weight g. Bull. Math. Anal. Appl., 11(2) (2019), 2-11.
13. E. Savaş: On I-lacunary statistical convergence of weight g of sequences of sets. Filomat 31(16) (2017), 5315-5322.
14. E. Savaş: I_{θ}-statistical convergence of weight g in topological groups. Mathematics and computing, Springer Proc. Math. Stat., 253, Springer, Singapore, 2018, 43-51.
15. I. J. Schoenberg: The integrability of certain functions and related summability methods. The American Mathematical Monthly 66(5) (1959), 361-775.

Abdu Awel Adem
Mersin University
Faculty of Science and Arts
Department of Mathematics
33343 Mersin, Turkey
abdua90@gmail.com
Maya Altınok
Tarsus University
Faculty of Technology
Department of Natural and Mathematical Sciences
33460 Mersin, Turkey
mayakantar@gmail.com or mayaaltinok@tarsus.edu.tr

[^0]: Received December 02, 2019; accepted February 19, 2020
 2010 Mathematics Subject Classification. Primary 40A05; Secondary 46A45

