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BEST PROXIMITY POINTS IN NON-ARCHIMEDEAN FUZZY METRIC
SPACES ∗

Penumarthy ParvateesamMurthy and Rashmi Kenvat

Abstract. In this article we establish best proximity point theorems for non-self proximal
contractions in the setting of Non-Archimedean Fuzzy Metric Space which are more
general than the notion of self-contractions. At the end of this paper, we support our
theorems of proximity points by providing an example.
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1. Introduction

In 1965 Zadeh([10]) introduced the concept of fuzzy set. Using the idea of
fuzzy sets Kramosil and Michalek ([8]) introduced the concept of fuzzy metric
space in the year 1975. Later on, George and Veermani([1]) modified the concept of
fuzzy metric spaces and defined a Hausdorff topology on this fuzzy metric space
which has very important applications in quantum particle physics, particularly
in connection with both string and E-infinity theory. It has also been shown that
every metric induces a fuzzy metric in Hausdroff topology.
In particular, Mihet([2]) proved a fuzzy Banach contraction result for complete
Non-Archimedean fuzzy metric spaces ([2], Theorem 3.16); For more results on
Non-Archimedean fuzzy metric space we suggest ([5], [11], [17], [18], [19], [20]).
On the other hand, Vetro and Salimi([6]) investigated the existence and uniqueness
of the best proximity points in a Non-Archimedean fuzzymetric space, suggesting
a way to obtain some points after the unavailability of fixed points, approximate
points for non-self maps extend and fuzzify the existing results in metric spaces.
For more results on best proximity point, we suggest ([3], [7], [4], [13] - [18], [22],
[21]).
Best proximity point is one of the most interesting results in the extension of Fixed
Point Theorem in metric space for non-self mapping such that A to B does not
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necessarily have a fixed point where A and B are nonempty closed subsets of a
complete metric space (X, d),with A ∩ B = φ.
Let T : A→ B; then a point x in A is called a best proximity point of T, if d(x,T(x)) =
d(A,B) � 0, whenever a non-self mapping T has no fixed point, where d(A,B) =
inf{d(x, y) : x ∈ A, y ∈ B}.
A best proximitypoint represents anoptimal solution to the equationT(x) = x. Since
best proximity point reduces to a fixed point, if the defined non-self mappings,
the best proximity point theorems are natural generalizations of the fixed point
theorems.
In this paper we establish best proximity point theorems for non-self proximal
contractions in the setting of Non-Archimedean Fuzzy Metric Space which are
more general than the notion of self-contractions. In this way we extend and
fuzzify the existing results of Basha([12]) of metric spaces. Also, we provide one
example in support of our theorems for best proximity point.
We recall the following definitions for our results.

Definition 1.1. ([10]) A fuzzy set A in X is a function with domain X and values
in [0, 1].

Definition 1.2. ([9]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:

1. ∗ is associative and commutative;

2. ∗ is continuous;
3. a ∗ 1 = a for every a ∈ [0, 1];
4. a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 1.3. ([1]) A triplet (X,M, ∗) is said to be a fuzzymetric space(in the sense
of George and Veeramani), if X is an arbitrary set, ∗ is a continuous t-norm and M
is a fuzzy set on X2 × (0,∞) satisfying the following conditions for all x, y, z ∈ X
and t, s > 0:

(F1) Mx,y(t) > 0,

(F2) Mx,y(t) = 1 if and only if x = y,

(F3) Mx,y(t) =My,x(t),

(F4) Mx,y(·) : (0,∞)→ [0, 1] is continuous.

(F5) Mx,y(t) ∗My,z(s) ≤Mx,z(t + s),
If we replace F5 by

(F6) Mx,y(t) ∗My,z(s) ≤Mx,z max(t, s),
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then the triplet (X,M, ∗) is called non-Archimedean fuzzy metric space.
Note that, since (F6) implies (F4), each non-Archimedean fuzzy metric space is a
fuzzy metric space.

Definition 1.4. ([1]) Let (X,M, ∗) be a fuzzy metric space (or non-Archimedean
fuzzy metric space), then

(a) a sequence {xn} in X is said to be convergent to x if

limn→∞Mxn ,x(t) = 1,

for all t > 0;

(b) a sequence {xn} in X is said to be a Cauchy sequence if for any ε > 0, there
exists n0 ∈N, such that

Mxn ,xm(t) > 1 − ε,
for all t > 0 and n,m ≥ n0;

(c) a fuzzymetric space (X,M, ∗) is said to be complete if and only if everyCauchy
sequence in X is convergent.

2. Preliminaries

For a given two non-empty subsetsA and B of a non-Archimedean fuzzymetric
space (X,M, ∗), the following notions are used through out this section:
M(A,B, t) = sup{M(x, y, t) : x ∈ A and y ∈ B}
A0 = {x ∈ A : M(x, y, t) =M(A,B, t) for some y ∈ B}
B0 = {y ∈ B : M(x, y, t) =M(A,B, t) for some x ∈ A}
for all t > 0.

In 2011, Basha([12] introduced the concept of approximately compact, proximal
contraction of first kind and proximal contraction of second kind in complete met-
ric space.
Here, we are going to introduce these definitions in the setting of non-Archimedean
fuzzy metric space.

Definition 2.1. A is said to be approximately compact with respect to B if every
sequence {xn} of A satisfying the condition that M(y, xn, t) → M(y,A, t) for some y
in B and for all t > 0 has a convergent sub sequence.

It is evident that every set is approximately compact with respect to itself. If A
intersects B, then A ∩ B is contained in both A0 and B0. Further, it can be seen that
if A is compact and B is approximately compact with respect to A, then the sets A0

and B0 are non-empty.



482 Penumarthy P. Murthy and Rashmi Kewat

Definition 2.2. A mapping T : A → B is said to be a proximal contraction of first
kind if there exists a non-negative number k ∈ [0, 1) such that, for all u1, u2, x1, x2 in
A,{

M(u1,Tx1, t) =M(A,B, t)
M(u2,Tx2, t) =M(A,B, t). ⇒M(u1, u2, kt) ≥M(x1, x2, t)

for all t > 0.

It is easy to see that a self-mapping that is a proximal contraction of the first
kind is precisely a contraction. However, a non-self proximal contraction non-self-
mapping is not necessarily a contraction.

Definition 2.3. A non-self mapping T : A→ B is said to be a proximal contraction
of second kind if there exists a non-negative real number k ∈ [0, 1) and for all t > 0
such that for all u1, u2, x1, x2 in A,

M(Tu1,Tu2, t) ≥M(Tx1,Tx2,
t
k
)

whenever x1, x2, u1 and u2 are elements in A satisfying the condition that

M(u1,Tx1, t) =M(A,B, t) and M(u2,Tx2, t) =M(A,B, t).

The requirement for a self-mapping T to be a proximal contraction of second kind
is that

M(T2x1,T2x2, t) ≥M(Tx1,Tx2,
t
k2
)

for all x1 and x2 in the domain of T.

It is remarkable that every contraction self-mapping is a proximal contraction of
second kind but the converse is not true.
Consider R endowed with the Euclidean metric. Let the self mapping T : [0, 1]→
[0, 1] be defined as

T(x) =
{

0, if x is rational;
1, otherwise.

Then, T is a proximal contraction of second kind but not a contraction. Also,
a self-mapping that is a proximal contraction of second kind is not necessarily
continuous.

Definition 2.4. Given T : A → B and an isometry � : A → A, the mapping T is
said to preserve isometric distance with respect to � if

M(T�x1,T�x2, t) =M(Tx1,Tx2, t)

for all x1 and x2 in A and t > 0.
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3. Main Results

The following main result is a best proximity point theorem for non-self-
mappings which are proximal contractions of the first kind as well as of the second
kind.

Theorem 3.1. Let (X,M, ∗) be complete non-Archimedean fuzzy metric space. Let A and
B be non-void closed subsets of (X,M, ∗) such that A is approximatively compact with
respect to B. Further suppose that A0 and B0 are non-void. Let T : A→ B and � : A→ A
satisfy the following conditions:

(a) T is a continuous proximal contraction of second kind.

(b) � is an isometry.

(c) T(A0) is contained in B0.

(d) A0 is contained in �(A0).

(e) T preserves isometric distance with respect to �.

Then, there exists an element x in A such that

M(�x,Tx, t) =M(A,B, t) for all t > 0.

Further, ifx∗ is another element for which the preceding conclusion holds, then Tx and Tx∗
are identical.

Proof. Let x0 be a fixed element in A0. Since T(A0) is contained in B0 and A0 is
contained in �(A0), there exists an element x1 in A0 such that

M(�x1,Tx0, t) =M(A,B, t).

Again, since Tx1 is an element ofT(A0) which is contained in B0, andA0 is contained
in �(A0), it follows that there is an element x2 in A0 such that

M(�x2,Tx1, t) =M(A,B, t).

Continuing in this way we will have xn in A0, and it is possible to find xn+1 in A0

such that
M(�xn+1,Txn, t) =M(A,B, t).

for every positive integer n because of the fact that T(A0) is contained in B0 and A0
is contained in �(A0). As T is a proximal contraction of second kind,

M(T�xn+1,T�xn, kt) ≥M(Txn,Txn−1, t).
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Since T preserves isometric distance with respect to �,

M(Txn+1,Txn, kt) ≥M(Txn,Txn−1, t).

So, it follows that {Txn} is a Cauchy sequence and hence it converges to some ele-
ment y in B.
Further,

M(y,A, t) ≥M(y, �xn, t)

≥M(y,Txn−1, t2 ) ∗M(Txn−1, �xn, t2 )

=M(y,Txn−1, t2 ) ∗M(A,B, t)

≥M(y,Txn−1, t2 ) ∗M(y,A, t)

Therefore, M(y, �xn, t) → M(y,A, t). In view of the fact that A is approximatively
compact with respect to B, {�xn} has a subsequence {�xnk} converging to some z in
A. Therefore, it can be concluded that

M(z, y, t) = lim
k→∞

M(�xnk ,Txnk−1, t) =M(A,B, t).

Eventually, z is a member of A0. Since A0 is contained in �(A0), z = �x for some
x in A0. As �(xnk) → �(x) and � is an isometry, xnk → x. Since the mapping T is
continuous, it follows that Txnk → Tx. Consequently, y and Tx are identical. Thus,
it follows that

M(�x,Tx, t) = lim
k→∞

M(�xnk ,Txnk−1, t) =M(A,B, t).

Suppose that there is another element x∗ such that

M(�x∗,Tx∗, t) =M(A,B, t).

Since T is a proximal contraction of second kind,

M(T�x,T�x∗, t) ≥M(Tx,Tx∗,
t
k
)

As T preserves isometric distance with respect to �,we have

M(Tx,Tx∗, t) ≥M(Tx,Tx∗,
t
k
)

which implies that Tx = Tx∗. This completes the proof of the theorem.

If � is the identity mapping, then the preceding theorem yields the following
corollary.
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Corollary 3.1. Let A and B be non-empty, closed subsets of a complete fuzzy metric space
such that A is approximatively compact with respect to B. Further, suppose that A0 and B0

are non-empty. Let T : A→ B satisfy the following conditions.

(a) T is a continuous proximal contraction of second kind.

(b) T(A0) is contained in B0.

Then, there exists an element x in A such that M(x,Tx, t) =M(A,B, t).
Moreover, if x∗ is another best proximity point of T, then Tx and Tx∗ are identical.

The following result provides another generalization of Banach’s contraction prin-
ciple to the case of non-self mappings.

Theorem 3.2. Let X be a complete fuzzy metric space. Let A and B be non-empty, closed
subsets of X. Further, suppose that A0 and B0 are non-empty. Let T : A→ B and � : A→ A
satisfy the following conditions.

(a) T is a continuous proximal contraction of first kind.

(b) � is an isometry.

(c) T(A0) is contained in B0.

(d) A0 is contained in �(A0).

Then, there exists an element x in A such that

M(�x,Tx, t) =M(A,B, t) for all t > 0.

Proof. Proceeding as in Theorem(3.1), there exists a sequence {xn} in A satisfying
the following condition.

M(�xn+1,Txn, t) =M(A,B, t).

Since T is a proximal contraction of first kind, we have

M(�xn+1, �xn, kt) ≥M(xn, xn−1, t).

Since � is an isometry, it follows that

M(xn+1, xn, kt) ≥M(xn, xn−1, t).

Therefore, {xn} is a Cauchy sequence and hence converges to some x in A. Since �
and T are continuous, we have

M(�x,Tx, t) = lim
n→∞M(�xn+1,Txn, t) =M(A,B, t).
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Suppose that there is another element x∗ such that

M(�x∗,Tx∗, t) =M(A,B, t).

Since T is a proximal contraction of first kind and � is an isometry, we have

M(x, x∗, t) =M(�x, �x∗, t) ≥M(x, x∗,
t
k
)

which implies that x and x∗ are identical. This completes the proof of the theo-
rem.

If � is the identity mapping, then the preceding theorem yields the following best
proximity point theorem.

Corollary 3.2. Let X be a complete fuzzy metric space. Let A and B be non-empty, closed
subsets of X. Further, suppose that A0 and B0 are non-empty. Let T : A → B satisfy the
following conditions.

(a) T is a continuous proximal contraction of first kind.

(b) T(A0) is contained in B0.

Then, there exists an element x in A such that

M(x,Tx, t) =M(A,B, t) for t > 0.

Example 3.1. LetX = N and letM : X×X× (0,+∞)→ (0, 1] be the non-Archimedean fuzzy
metric given by

M(x, y, t) =
{ x

y , if x ≤ y,
y
x , otherwise.

for all t > 0.
Thus, (X,M, ∗) is complete with a ∗ b = ab for all a, b ∈ [0, 1].
Define the sets

A = {1, 2, 3, 4, 5} and B = {6, 7, 8, 9, 10},
so that M(A,B, t) = 5

6 . Clearly, A and B are nonempty closed subsets of X;A0(t) = {5} and
B0(t) = {6}.
Also define T : A→ B by

T(x) =
{

6, if x = 5,
x + 5, otherwise.

Notice that T(A0(t)) ⊂ B0(t) and �(x) = x so all the hypothesis of Theorem(3.1) holds true.
Assume that M(u,Tx, t) = M(A,B, t) for some u, x ∈ A, then (u, x) = (5, 1) or (u, x) = (5, 5).
Next, putting (u, x) = (5, 1) and (v, y) = (5, 5), then M(T2u,T2v, kt) = M(5, 5, kt) = 1 ≥
M(u, v, t).
for all t > 0.
We conclude that all the hypotheses of Theorem(3.1) are satisfied, and so there exists a
unique x∗ ∈ A such that M(x∗,Tx∗, t) =M(A,B, t) for all t > 0.Here, x∗ = 5.
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