ON THE SIGNED MATCHINGS OF GRAPHS

Samane Javan and Hamid Reza Maimani*

(C) 2020 by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract. For a graph G and any $v \in V(G), E_{G}(v)$ is the set of all edges incident with v. A function $f: E(G) \rightarrow\{-1,1\}$ is called a signed matching of G if $\sum_{e \in E_{G}(v)} f(e) \leq 1$ for every $v \in V(G)$. The weight of a signed matching f, is defined by $w(f)=\sum_{e \in E(G))} f(e)$. The signed matching number of G, denoted by $\beta_{1}^{\prime}(G)$, is the maximum $w(f)$ where the maximum is taken over all signed matchings over G. In this paper, we have obtained the signed matching number of some families of graphs and studied the signed matching number of subdivision and the edge deletion of edges of a graph.
Keywords: signed matching; signed matching number; bipartite graphs.

1. Introduction

In this paper, G is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ and size $|E|$ of G is denoted by $n(G)$ and $m(G)$, respectively.
Let $G=(V, E)$ be a graph. For $u \in V, E_{G}(v)=\{u v \in E \mid u \in V\}$ are called the edgeneighborhood of v in G. For simplicity $E_{G}(v)$ is denoted by $\mathrm{E}(v)$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=d_{G}(v)=|E(v)|$. The minimum degree and the maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. A vertex of degree one is called a leaf and its neighbour is called a support vertex. A graph, G, is called r-regular graph if $\operatorname{deg}_{G}(v)=r$ for every $v \in V(G)$. For a nonempty subset $X \subseteq E$ the edge induced subgraph of G, induced by X, denote by $\langle X\rangle$, is a subgraph with edge set X and a vertex v belong to $\langle X\rangle$ if v is incident with at least one edge in X. A k-partite graph is a graph which its vertex set can be partitioned into k sets $V_{1}, V_{2}, \cdots, V_{k}$ such that every edge of the graph has an end point in V_{i} and an end point in V_{j} for some $1 \leq i \neq j \leq k$. A complete k-partite graph is a k-partite graph that every vertex of each partite set is adjacent to all vertices of the other partite sets. We denote the complete k-partite graph

[^0]by $K_{n_{1}, n_{2}, \cdots, n_{k}}$, where $\left|V_{i}\right|=n_{i}$ for $1 \leq i \leq k$. In the case $k=2$, the k-partite and complete k-partite graph are called bipartite and complete bipartite graphs. We denote by P_{n}, C_{n}, K_{n} and $\overline{K_{n}}$, the path, the cycle, complete graph and the empty graph of order n, respectively. A double star $D S_{a, b}$ is a graph containing exactly two non-leaf vertices which one is adjacent to a leaves and the other is adjacent to b leaves. These two non-leaf of double star are called centers of double star. For a graph $G=(V, E)$ and $e=u v \in E$, a subdivision of G respect to e, denote by $S(G)$, is a graph obtained from G by deleting the edge e and add new vertex x and new edges $x u$ and $x v$. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two disjoint vertex sets. A graph $G=(V, E)$ is the join graph of G_{1} and G_{2}, if $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}, v \in V_{2}\right\}$. If G is the join graph of G_{1} and G_{2}, we shall write $G=G_{1}+G_{2}$. The graphs $W_{n}=C_{n}+K_{1}, F_{n}=P_{n}+K_{1}$, and $F r_{n}=n K_{2}+K_{1}$ are called wheel, fan and friendship graphs, respectively. For all graph-theoretic terminology not defined here, the reader is referred to [2].
Let $f: E(G) \rightarrow\{-1,1\}$ be a function. For every vertex v, we define $f_{G}(v)=$ $\sum_{e \in E_{G}(v)} f(e)$. A function $f: E(G) \rightarrow\{-1,1\}$ is called a signed matching of G if $f_{G}(v) \leq 1$ for every $v \in V(G)$. The weight of a signed matching f is defined by $w(f)=f(E(G))=\sum_{e \in E(G)} f(e)$. The signed matching number of G is $\beta_{1}^{\prime}(G)=\max$ $w(f)$, where the maximum is taken over all signed matchings. It seems natural to define $\beta_{1}^{\prime}\left(\overline{K_{n}}\right)=0$ for all totally disconnected graphs $\overline{K_{n}}$. A signed matching f on G, with $w(f)=\beta_{1}^{\prime}(G)$ is called a β_{1}^{\prime} - signed matching.
The concept of signed matching is defined by Wang [4], and further studied in, for example $[3,5,6]$. In [4], it is shown that a maximum signed matching can be found in strongly polynomial time. In addition, the exact value of $\beta_{1}^{\prime}(G)$ for paths, cycles, complete graphs and complete bipartite graphs were found [4].
In this paper, we have studied the signed matchings of subdivision and edge deletion of a graph. Also, we have studied the signed matchings of join of graphs.

2. Main Results

In this section, we first stated some of the results which would be useful in the remaining part of the paper. The following proposition provides a relation between $|E(G)|$ and $\beta_{1}^{\prime}(G)$.

Proposition 2.1. For any graph $G=(V(G), E(G))$, we have $\beta_{1}^{\prime}(G) \equiv|E(G)|(\bmod 2)$.

Proof. Let f be a β_{1}^{\prime}-signed matching on G. Suppose that P and M are the numbers of positive and negative edges respect to f, respectively. Hence

$$
P+M=|E(G)|, P-M=\beta_{1}^{\prime}(G)
$$

Therefore, $\beta_{1}^{\prime}(G)-|E(G)|=-2 M$ and we conclude that $\beta_{1}^{\prime}(G) \equiv|E(G)|(\bmod 2)$.
In [4], $\beta_{1}^{\prime}(G)$ for Eulerian graphs is given as follows.

Theorem 2.1. [4] Let G be a Eulerian graph of order n and size m. Then

$$
\beta_{1}^{\prime}(G)=\frac{1}{2}\left((-1)^{m}-1\right)
$$

Corollary 2.1. [4]Let n be a natural number. Then

$$
\beta_{1}^{\prime}\left(C_{n}\right)= \begin{cases}-1, & \text { if } n \neq 2 k \\ 0, & \text { if } n=2 k\end{cases}
$$

For non-Eulerian graph, the following theorem was given in [4]. Here we give an alternative proof for this theorem.

Theorem 2.2. Let G be a graph of order n with $2 k(k \geq 1)$ odd vertices. Then

$$
0 \leq \beta_{1}^{\prime}(G) \leq k
$$

Proof. Let $f: E(G) \longrightarrow\{1,-1\}$ be a β_{1}^{\prime}-signed matching of G. Hence $f_{G}(v) \leq 0$ for any even vertex v and $f_{G}(v) \leq 1$ for any odd vertex v. Therefore

$$
\left.2 \beta_{1}^{\prime}(G)=2 \sum_{e \in E} f(e)=\sum_{v \in V} f_{G}(v)\right) \leq 2 k
$$

and hence $\beta_{1}^{\prime}(G) \leq k$.
For the lower bound, note that, the edges of G can be partitioned to subsets $E_{1}, E_{2}, \cdots E_{k}$, such that for each i, the induced subgraph $\left\langle E_{i}\right\rangle$ is a trail connected odd vertices and at most one of these trails has odd length (see Theorem 5.3 of [2]). If we label the edges of each E_{i} alternately by 1 and -1 , we can find a signed matching with positive weight. Hence $\beta_{1}^{\prime}(G) \geq 0$.

As a straight result of Theorems 2.1 and 2.2, we have the following corollary.
Corollary 2.2. Let G be a graph. Hence $\beta_{1}^{\prime}(G)=-1$ if and only if G is a Eulerian graph of odd size.

Theorem 2.3. [4] Let m and n be two natural numbers. Then

$$
\beta_{1}^{\prime}\left(K_{m, n}\right)= \begin{cases}0 & \text { if } m n \equiv 0(\bmod 2) \\ \min \{m, n\} & \text { if } m n \equiv 1(\bmod 2)\end{cases}
$$

Theorem 2.4. Let m, n, p be positive integers. Then

$$
\beta_{1}^{\prime}\left(K_{m, n, p}\right)= \begin{cases}0 & \text { if } m \equiv n \equiv p \equiv 0(\bmod 2), \\ -1 & \text { if } m \equiv n \equiv p \equiv 1(\bmod 2), \\ 0 & \text { if } m \equiv n \equiv 0(\bmod 2), p \equiv 1(\bmod 2), \\ \min \{m, n\} & \text { if } m \equiv n \equiv 1(\bmod 2), p \equiv 0(\bmod 2)\end{cases}
$$

Proof. If $m \equiv n \equiv p(\bmod 2)$, then each vertex of $K_{m, n, p}$ has even degree and hence $K_{m, n, p}$ is an Eulerian graph. Therefore, the first and the second parts of theorem are obtained by Theorem 2.1. Now suppose that $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}, V_{2}=$ $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{3}=\left\{w_{1}, w_{2}, \ldots w_{p}\right\}$ are three parts of $K_{m, n, p}$ of sizes m, n and p, respectively. Let $f: E(G) \longrightarrow\{1,-1\}$ be a signed matching of $K_{m, n, p}$. At first consider the case $m \equiv n \equiv 0(\bmod 2)$ and $p \equiv 1(\bmod 2)$. Hence every vertex of V_{3} has even degree. Therefore $f_{K_{m, n, p}}(v) \leq 0$ for any $v \in V_{3}$. On the other hand $K_{m, n, p} \cong K_{m+n, p} \cup K_{m, n}$ and hence

$$
w(f)=\sum_{v \in V_{3}} f_{K_{m, n, p}}(v)+\sum_{v \in V_{2}} f_{K_{m, n}}(v)
$$

Note that For any $v \in V_{2}$, the degree of v in $K_{m, n}$ is even and hence $f_{K_{m, n}}(v) \leq$ 0 . Therefore $w(f) \leq 0$. Hence $\beta_{1}^{\prime}\left(K_{m, n, p}\right) \leq 0$. Now consider the function g : $E\left(K_{m, n, p}\right) \longrightarrow\{1,-1\}$ as follows:

$$
g\left(u_{i} v_{j}\right)=(-1)^{i+j}, g\left(u_{i} w_{j}\right)=(-1)^{i+j}, g\left(w_{i} v_{j}\right)=(-1)^{i+j}
$$

It is not difficult to see that g is a signed matching and $w(g)=0$. Therefore,, in this case $\beta_{1}^{\prime}\left(K_{m, n, p}\right)=0$.
Now suppose that $m \equiv n \equiv 1(\bmod 2)$ and $p \equiv 0(\bmod 2)$. Again, every vertex of V_{3} has even degree. Therefore $f_{K_{m, n, p}}(v) \leq 0$ for any $v \in V_{3}$. By the same argument as above we have

$$
w(f)=\sum_{v \in V_{3}} f_{K_{m, n, p}}(v)+f\left(E\left(K_{m, n}\right)\right) \leq f\left(E\left(K_{m, n}\right)\right)
$$

But $f\left(E\left(K_{m, n}\right)\right) \leq \min \{m, n\}$ by Theorem 2.3. Hence $\beta_{1}^{\prime}\left(K_{m, n, p}\right) \leq \min \{m, n\}$ By the same argument as above $\beta_{1}^{\prime}\left(K_{m, n, p}\right)=\min \{m, n\}$.

Theorem 2.5. Suppose that a and b are two integers. Then

$$
\beta_{1}^{\prime}\left(D S_{a, b}\right)= \begin{cases}3 & \text { if } a \equiv b \equiv 0(\bmod 2) \\ 1 & \text { if } a \equiv b \equiv 1(\bmod 2) \\ 2 & \text { if } a \equiv 1(\bmod 2), b \equiv 0(\bmod 2)\end{cases}
$$

Proof. Let u and v be centers of double star $D S_{a, b}$ of degrees $a+1$ and $b+1$. Suppose that $f: E\left(D S_{a, b}\right) \longrightarrow\{1,-1\}$ is a signed matching set. Hence $w(f)=$ $f_{D S_{a, b}}(u)+f_{D S_{a, b}}(v)-f(u v)$.
If $a \equiv b \equiv 1(\bmod 2)$, then $\operatorname{deg}(u)$ and $\operatorname{deg}(v)$ are even. Therefore, it follows that $f_{D S_{a, b}}(u), f_{D S_{a, b}}(v) \leq 0$. We conclude $w(f) \leq-f(u v) \leq 1$. Hence $\beta_{1}^{\prime}\left(D S_{a, b}\right) \leq$ 1. Now consider $g: E\left(D S_{a, b}\right) \longrightarrow\{1,-1\}$ such that $g(e)=1$ for $\frac{a+1}{2}$ edges of $E_{D S_{a, b}}(v) \backslash\{u v\}$ and $\frac{b+1}{2}$ edges of $E_{D S_{a, b}}(u) \backslash\{u v\}$ and $g(e)=-1$ for the remaining edges of $E_{D S_{a, b}}(v) \cup E_{D S_{a, b}}(u)$. Clearly g is a signed matching and $w(g)=1$. Hence $\beta_{1}^{\prime}\left(D S_{a, b}\right) \geq 1$ and we conclude $\beta_{1}^{\prime}\left(D S_{a, b}\right)=1$.
If $a \equiv b \equiv 0(\bmod 2)$, then $\operatorname{deg}(u)$ and $\operatorname{deg}(v)$ are odd. Therefore, it follows $\left.f_{D S_{a, b}}(v)\right), f_{D S_{a, b}}(u) \leq 1$. We conclude that $w(f) \leq 2-f(u v) \leq 3$. Hence
$\beta_{1}^{\prime}\left(D S_{a, b}\right) \leq 3$. Now consider $g: E\left(D S_{a, b}\right) \longrightarrow\{1,-1\}$ such that $g(e)=1$ for $\frac{a+2}{2}$ edges of $E_{D S_{a, b}}(v) \backslash\{u v\}$ and $\frac{b+2}{2}$ edges of $E_{D S_{a, b}}(u) \backslash\{u v\}$ and $g(e)=-1$ for the remaining edges of $E(v) \cup E(u)$. Again g is a signed matching with $w(g)=3$ and we conclude that $\beta_{1}^{\prime}\left(D S_{a, b}\right)=3$.
For the last case, suppose that $a \equiv 0(\bmod 2)$ and $b \equiv 1(\bmod 2)$. By the same argument as above, we conclude that $\beta_{1}^{\prime}\left(S_{a, b}\right)=2$.

Theorem 2.6. Let n be an integer. Then

$$
\beta_{1}^{\prime}\left(W_{n}\right)= \begin{cases}\left\lfloor\frac{n+1}{2}\right\rfloor & \text { if } n \equiv 0,3(\bmod 4) \\ \left\lfloor\frac{n+1}{2}\right\rfloor-1 & \text { if } n \equiv 1,2(\bmod 4)\end{cases}
$$

Proof. Suppose that $E\left(W_{n}\right)=\left\{v_{i} v_{i+1}, u v_{i}: 1 \leq i \leq n\right\}$, where indices computing in module n. Note that the vertex u has degree equal to n, and other vertices have degree 3 . If $n \equiv 0(\bmod 4)$, then W_{n} has n vertices of odd degree. Hence $\beta\left(W_{n}\right) \leq \frac{n}{2}=\left\lfloor\frac{n+1}{2}\right\rfloor$ by Theorem 2.2. Now define $f: E\left(W_{n}\right) \longrightarrow\{1,-1\}$ by

$$
f\left(u v_{4 i+1}\right)=f\left(u v_{4 i+2}\right)=f\left(v_{4 i+2} v_{4 i+3}\right)=f\left(v_{4 i+3} v_{4 i+4}\right)=f\left(v_{4 i+4} v_{4 i+5}\right)=1
$$

for $0 \leq i \leq \frac{n}{4}-1$ and $f(e)=-1$ for other edges of W_{n}. Clearly f is a signed matching with $w(f)=\frac{n}{2}=\left\lfloor\frac{n+1}{2}\right\rfloor$. So $\beta_{1}^{\prime}\left(W_{n}\right) \geq\left\lfloor\frac{n+1}{2}\right\rfloor$. Hence $\beta_{1}^{\prime}\left(W_{n}\right)=\left\lfloor\frac{n+1}{2}\right\rfloor$. The case $n \equiv 3(\bmod 4)$ is obtained by a similar argument as the above.
Now suppose that $n \equiv 2(\bmod 4)$. Hence $\beta_{1}^{\prime}\left(W_{n}\right) \leq \frac{n}{2}$ by Theorem 2.2. But $\beta_{1}^{\prime}\left(W_{n}\right) \neq \frac{n}{2}$ by Proposition 2.1 and therefore $\beta_{1}^{\prime}\left(W_{n}\right) \leq \frac{n}{2}-1$. Now define f : $E\left(W_{n}\right) \longrightarrow\{1,-1\}$ by

$$
f\left(u v_{n-1}\right)=f\left(v_{1} v_{n}\right)=1
$$

$$
f\left(u v_{4 i+1}\right)=f\left(u v_{4 i+2}\right)=f\left(v_{4 i+2} v_{4 i+3}\right)=f\left(v_{4 i+3} v_{4 i+4}\right)=f\left(v_{4 i+4} v_{4 i+5}\right)=1
$$

for $0 \leq i \leq \frac{n-6}{4}$ and $f(e)=-1$ for other edges of W_{n}. Clearly f is a signed matching with $w(f)=\frac{n}{2}-1=\left\lfloor\frac{n+1}{2}\right\rfloor-1$. So $\beta_{1}^{\prime}\left(W_{n}\right) \geq\left\lfloor\frac{n+1}{2}\right\rfloor-1$.

Theorem 2.7. Let n be an integer. Then

$$
\beta_{1}^{\prime}\left(F_{n}\right)= \begin{cases}\left\lfloor\frac{n-1}{2}\right\rfloor-1 & \text { if } n \equiv 0,3(\bmod 4) \\ \left\lfloor\frac{n-1}{2}\right\rfloor & \text { if } n \equiv 1,2(\bmod 4) .\end{cases}
$$

Proof. The result follows by a similar argument as the proof of Theorem 2.6.
Theorem 2.8. Let n be an integer. Then

$$
\beta_{1}^{\prime}\left(F r_{n}\right)= \begin{cases}0 & \text { if } n \equiv 0(\bmod 2) \\ -1 & \text { if } n \equiv 1(\bmod 2)\end{cases}
$$

Proof. Since the graph $F r_{n}$ is an Eulerian graph, the result follows from Theorem 2.1.

Theorem 2.9. Let G be a graph and e be an edge of G. If $S(G)$ is the subdivision of G by edge e, then

$$
\beta_{1}^{\prime}(G)-1 \leq \beta_{1}^{\prime}(S(G)) \leq \beta_{1}^{\prime}(G)+1
$$

In addition these bounds are sharp.
Proof. Suppose that $e=u v$ and $S(G)=G \backslash\{e\} \cup\{x u, x v\}$, where x is the new vertex. Let f be a β_{1}^{\prime}-signed matching of G. If $f(e)=1$ (or $f(e)=-1$), then define $g: E(S(G)) \longrightarrow\{1,-1\}$ by $g(x u)=1$ (or $g(x u)=-1), g(x v)=-1$ and $g(w)=f(w)$ for other edges of $S(G)$. Clearly g is a signed matching on $S(G)$ and $w(g)=\beta_{1}^{\prime}(G)-1$. Hence $\beta_{1}^{\prime}(G)-1 \leq \beta_{1}^{\prime}(S(G))$.
Now suppose that f is a β_{1}^{\prime}-signed matching of $S(G)$. Define signed matching g on G by $g(e)=-1$ and $g(w)=f(w)$ for other edges of G. we conclude that $\beta_{1}^{\prime}(S(G)) \leq \beta_{1}^{\prime}(G)+1$.
For any positive integer n, we have $S\left(C_{n}\right)=C_{n+1}$. If n is even, then $\beta_{1}^{\prime}\left(C_{n}\right)=0$ and $\beta_{1}^{\prime}\left(C_{n+1}\right)=-1$ by Corollary 2.1 and the lower bound is occurred. If n is odd, then $\beta_{1}^{\prime}\left(C_{n}\right)=-1$ and $\beta_{1}^{\prime}\left(C_{n+1}\right)=0$ by Corollary 2.1 and the we obtain the upper bound.

Theorem 2.10. Let G be a graph. Then

$$
\beta_{1}^{\prime}(G)-3 \leq \beta_{1}^{\prime}(G-e) \leq \beta_{1}^{\prime}(G)+1
$$

In addition these bounds are sharp.
Proof. Suppose that $e=u v$. Let f be a β_{1}^{\prime}-signed matching of G. If $f(e)=1$, then define $g: E(G-e) \longrightarrow\{1,-1\}$ by $g(x)=f(x)$ for any edge x of $G-e$. Clearly g is a signed matching on $G-e$ and $w(g)=\beta_{1}^{\prime}(G)-1$. Hence $\beta_{1}^{\prime}(G)-1 \leq \beta_{1}^{\prime}(G-e)$. If $f(e)=-1$, change the label of two edges e_{1} and e_{2} (which are adjacent to u and v in $G-e$, respectively) from 1 to -1 . Hence we have a signed matching on $G-e$ of weight $\beta_{1}^{\prime}(G)-3$ and hence $\beta_{1}^{\prime}(G)-3 \leq \beta_{1}^{\prime}(G-e)$.
Now suppose that f is a β_{1}^{\prime}-signed matching of $G-e$. Define signed matching g on G by $g(e)=-1$ and $g(w)=f(w)$ for other edges of G. We conclude that $\beta_{1}^{\prime}(G-e) \leq \beta_{1}^{\prime}(G)+1$.
Suppose that n is an even integer. We have $\beta_{1}^{\prime}\left(D S_{n, n}\right)=3$ by Theorem2.5. If x, y are centers of double star and $e=x y$, then $D S_{n, n}-e=2 K_{1, n}$ and we have $\beta_{1}^{\prime}\left(D S_{n, n}-e\right)=0$ by Theorem 2.3. Hence the lower bound is obtained. If n is even and m is odd, then $\beta_{1}^{\prime}\left(K_{1, n} \cup K_{1, m}\right)=1$ by Theorem 2.3. But $K_{1, n} \cup K_{1, m}+e=$ $D S_{m, n}$, where e joint two stars $K_{1, m}$ and $K_{1, n}$. Hence $\beta_{1}^{\prime}\left(D S_{m . n}\right)=2$ and upper bound is occurred.

Acknowledgments

The authors would like to thank the referees for their helpful remarks which have contributed to improve the presentation of the article.

REFERENCES

1. R. P. Anstee, A polynomial algorithm for b-matchings an alternative approach, Inform. Process. Lett. 24(3) (1987), 153-157.
2. G. Chartrand, L. Lesniak and Ping Zhang, Graphs and digraphs, Sixth Edition (Chapman and Hall, Boca Raton, 2015).
3. A.N. Ghameshlou, A. Khodkar, R. Saei and S. M. Sheikholeslami, Signed (b, k)- Edge Covers in Graphs, Intelligent Information Management 2 (2010), 143-148.
4. C. Wang, The signed matching in graphs, Discuss. Math. Graph Theory, 28(3)(2008), 477-486.
5. C. Wang, The signed k-submatching in graphs, Graphs Combin. 29(6) (2013), 19611971.
6. C. Wang, Signed b-matchings and b-edge covers of strong product graphs, Contrib. Discrete Math. 5(2) (2010), 1-10.
Samane Javan
Department of Mathematics
Science and Research Branch, Islamic Azad University
Tehran, Iran
javan.samane@gmail.com
Hamid Reza Maimani
Mathematics Section, Department of Basic Sciences
Shahid Rajaee Teacher Training University
P.O. Box 16785-163
Tehran, Iran
maimani@ipm.ir

[^0]: Received December 31, 2019; accepted January 26, 2020
 2010 Mathematics Subject Classification. Primary 05C69

 * Corresponding Author

