COMMON FIXED POINT THEOREMS INVOLVING C-CLASS FUNCTIONS IN G-METRIC SPACES

Taieb Hamaizia ${ }^{1}$ and Arslan Hojat Ansari ${ }^{2}$
${ }^{1}$ Dynamic Systems and Control Laboratory
Department of Mathematics and Informatics, OEB University, Algeria
${ }^{2}$ Department of Mathematics and Applied Mathematics
Sefako Makgatho Health Sciences University,Ga-Rankuwa
Pretoria, Medunsa-0204, South Africa

Abstract

The purpose of this paper is to prove some common fixed point theorems using the concept of C class function in G-metric spaces. Moreover, some examples are presented to illustrate the validity of our results. Key words: fixed-point theorems, C-class functions, G-metric space.

1. Introduction and Preliminaries

In [13], Mustafa and Sims introduced a new class of generalized metric space, called G-metric, as generalization of a metric space (X, d). In fact, various researchers studied several and many fixed point theorems for self mappings in this structure (G-metric), for example we refer readers to References ($[2,3,4,6,7,8,9$, $10,12,14,15,16,17,18,19,20,21,22]$).

In this paper, we will obtain common fixed point results for three mappings satisfying certain contractive conditions on G-metric space. The obtained results extend many recent results in the literature.

The following definitions and results will be needed:

[^0]Definition 1.1. [13] Let X be a nonempty set. Suppose that the mapping G : $X \times X \times X \rightarrow \mathbb{R}^{+}$satisfies:
(a) $G(x, y, z)=0$ if $x=y=z$;
(b) $0<G(x, x, y)$ for all $x, y \in X$. with $x \neq y$;
(c) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$;
(d) $G(x, y, z)=G(x, z, y)=G(y, z, x)=\cdots$ (symmetry in all three variables); and
(e) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$.

Then G is called a G-metric on X and (X, G) is called a G-metric space.
Note that if $G(x, y, z)=0$ then $x=y=z$.
Definition 1.2. [13] A sequence $\left\{x_{n}\right\}$ in a G-metric space X is:
(i) a G-Cauchy sequence if, for every $\varepsilon>0$, there is a natural number n_{0} such that for all $n, m, l \geq n_{0}, G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$
(ii) a G-Convergent sequence if, for any $\varepsilon>0$, there is an $x \in X$ and an $n_{0} \in N$ such that for all $n, m \geq n_{0}, G\left(x_{n}, x_{m}, x\right)<\varepsilon$.

A G-metric space on X is said to be G-complete if every G-Cauchy sequence in X is G-convergent in X. It is known that $\left\{x_{n}\right\} G$-converges to $x \in X$ if and only if $G\left(x_{m}, x_{n}, x\right) \rightarrow 0$ as $n, m \rightarrow+\infty$.

Proposition 1.1. [13] Let X be a G-metric space. Then the following are equivalent:
(1) The sequence $\left\{x_{n}\right\}$ is G-convergent to x.
(2) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$.
(3) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow+\infty$.
(4) $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow+\infty$.

Proposition 1.2. [13] Let X be a G-metric space. Then the following are equivalent:
(1) The sequence $\left\{x_{n}\right\}$ is G-Cauchy.
(2) For every for every $\varepsilon>0$ there exists $n_{0} \in N$ such that for all $n, m \geq n_{0}$, $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$; that is, if $G\left(x_{n}, x_{m}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow+\infty$.

Definition 1.3. [13] A G-metric space (X, G) is called symmetric G-metric space if $G(x, y, y)=G(y, x, x)$ for all $x, y \in X$, and called nonsymmetric if it is not symmetric.

Definition 1.4. [13] A G-metric space X is said to be complete if every G-Cauchy sequence in X is G-convergent in X.

Proposition 1.3. [13] Let (X, G) be a G-metric space, then the function $G(x, y, z)$ is jointly continuous in all three variables.

Recently, Arslan Hojat Ansari in [5] introduced the concept of a C-class functions which covers a large class of contractive conditions.

Definition 1.5. [5] A continuous function $F:[0,+\infty)^{2} \rightarrow \mathbb{R}$ is called C-class function if for any $s, t \in[0,+\infty)$; the following conditions hold
$c 1 \quad F(s, t) \leq s ;$
$c 2 F(s, t)=s$ implies that either $s=0$ or $t=0$.
An extra condition on F that $F(0,0)=0$ could be imposed in some cases if required. The letter C will denote the class of all C - functions.

Example 1.1. The following examples shows that the class C is nonempty:

1. $F(s, t)=s-t:$
2. $F(s, t)=m s$; for some $m \in(0,1)$.
3. $F(s, t)=\frac{s}{(1+t)^{r}}$ for some $r \in(0,1)$.
4. $F(s, t)=\frac{\log \left(t+a^{s}\right)}{(1+t)}$, for some $a>1$.

Let Φ_{u} denote the class of the functions $\varphi:[0,+\infty) \rightarrow[0,+\infty), \varphi(0) \geq 0$ Therefore, the condition $\varphi(0) \geq 0$ is meaningless. It may be $\varphi(0)=0$.

In 1984, Khan et al. [11] introduced altering distance function as follows:
Definition 1.6. [11] A function $\psi:[0,+\infty) \rightarrow[0,+\infty)$ is called an altering distance function if the following properties are satisfied:
i) ψ is non-decreasing and continuous,
ii) $\psi(t)=0$ if and only if $t=0$.

Let us suppose that Ψ denote the class of the altering distance functions.
Definition 1.7. A tripled (ψ, φ, F) where $\psi \in \Psi ; \varphi \in \Phi_{u}$ and $F \in C$ is said to be a monotone if for any $x, y \in[0,1)$,

$$
x \leq y \text { implies } F(\psi(x), \varphi(x)) \leq F(\psi(y), \varphi(y))
$$

Example 1.2. Let $F(s, t)=s-t, \varphi(x)=\sqrt{x}$

$$
\psi(x)=\left\{\begin{array}{c}
\sqrt{x} \text { if } \quad 0 \leq x \leq 1 \\
x^{2} \text { if } x>1
\end{array}\right.
$$

then (ψ, φ, F) is monotone.

2. Main results

Now, we are ready to state our main theorem
Theorem 2.1. Let (X, G) be a complete G-metric space and suppose mappings f, g and $h: X \rightarrow X$ satisfy

$$
\begin{equation*}
\psi(G(f x, g y, h z)) \leq F(\psi(M(x, y, z)), \varphi(M(x, y, z))) \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in X$, where $F:[0,+\infty)^{2} \rightarrow \mathbb{R}$ is C-class function, $\psi:[0,+\infty) \rightarrow$ $[0,+\infty)$ is an altering distance function, $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ is an ultra altering distance function and

$$
\begin{aligned}
M(x, y, z)= & \max \{G(x, y, z), G(x, x, f x), G(y, y, g y), G(z, z, h z) \\
& G(x, f x, g y), G(y, g y, h z), G(z, h z, f x)\}
\end{aligned}
$$

Then f, g and h have a unique common fixed point in X. Moreover, any fixed point of f is a fixed point of g and h and conversely.

Proof. Suppose that x_{0} is an arbitrary point in X. Define a sequence $\left\{x_{n}\right\}$ by $x_{3 n+1}=f x_{3 n}, x_{3 n+2}=g x_{3 n+1}, x_{3 n+3}=h x_{3 n+2}$.

Firstly, taking $G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)=0$, for some n. Using (2.1), we obtain

$$
\psi\left(G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right) \leq F\left(\psi\left(M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right), \varphi\left(M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)\right)
$$

where

$$
\begin{aligned}
M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)= & \max \left\{G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n}, x_{3 n}, f x_{3 n}\right),\right. \\
& G\left(x_{3 n+1}, x_{3 n+1}, g x_{3 n+1}\right), G\left(x_{3 n+2}, x_{3 n+2}, h x_{3 n+2}\right), \\
& G\left(x_{3 n}, f x_{3 n}, g x_{3 n+1}\right), G\left(x_{3 n+1}, g x_{3 n+1}, h x_{3 n+2}\right), \\
& \left.G\left(x_{3 n+2}, h x_{3 n+2}, f x_{3 n}\right)\right\} \\
= & \max \left\{G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n}, x_{3 n}, x_{3 n+1}\right),\right. \\
& G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n}, x_{3 n}, x_{3 n+1}\right), \\
& G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right), \\
& \left.G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+1}\right)\right\} .
\end{aligned}
$$

So

$$
\begin{aligned}
\psi\left(G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right) & \leq F\left(\psi \left(G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right), \varphi\left(G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right)\right.\right. \\
& \leq \psi\left(G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right.
\end{aligned}
$$

implies that $\psi\left(G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)=0\right.$ and

$$
\begin{equation*}
x_{3 n+1}=x_{3 n+2}=x_{3 n+3} \tag{2.2}
\end{equation*}
$$

The same arguments, we obtain $x_{3 n+2}=x_{3 n+3}=x_{3 n+4}$ and hence $x_{3 n}$ becomes a common fixed point of f, g and h.

Now, by taking $G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)>0$ for every n and using (2.1), we obtain

$$
\begin{aligned}
& \psi\left(G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right) \leq \\
& \quad F\left(\psi\left(M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right), \varphi\left(M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)= & \max \left\{G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n}, x_{3 n}, f x_{3 n}\right)\right. \\
& G\left(x_{3 n+1}, x_{3 n+1}, g x_{3 n+1}\right), G\left(x_{3 n+2}, x_{3 n+2}, h x_{3 n+2}\right), \\
& G\left(x_{3 n}, f x_{3 n}, g x_{3 n+1}\right), G\left(x_{3 n+1}, g x_{3 n+1}, h x_{3 n+2}\right) \\
& \left.G\left(x_{3 n+2}, h x_{3 n+2}, f x_{3 n}\right)\right\} \\
= & \max \left\{G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n}, x_{3 n}, x_{3 n+1}\right)\right. \\
& G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n}, x_{3 n}, x_{3 n+1}\right) \\
& G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \\
& \left.G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+1}\right)\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \psi\left(G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right) \\
& \quad \leq F\binom{\psi\left(\max \left\{G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right), G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right\}\right),}{\varphi\left(\max \left\{G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right\}\right)}
\end{aligned}
$$

Suppose max $\left\{G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right), G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right\}=G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)$, so, we find the same result of (2.2), we obtain $G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)=0$, This contradicts the assumption. Thus,

$$
\begin{aligned}
& \psi\left(G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right) \\
\leq & F\left(\psi\left(G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right), \varphi\left(G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)\right) \\
\leq & \psi\left(G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right) .
\end{aligned}
$$

Then

$$
\psi\left(G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right) \leq \psi\left(G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)
$$

By the nondecreasing of ψ, it follows that

$$
G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)
$$

Similarly, we find

$$
\begin{aligned}
G\left(x_{3 n+3}, x_{3 n+4}, x_{3 n+5}\right) & \leq G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+4}\right) \\
& \leq G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)
\end{aligned}
$$

Consequently, it can be shown that for all n,

$$
G\left(x_{n+1}, x_{n+2}, x_{n+3}\right) \leq G\left(x_{n}, x_{n+1}, x_{n+2}\right)
$$

Therefore, $\left\{G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right\}$ is a non increasing sequence, then there exists $L \geq 0$, such that

$$
\psi\left(\lim _{n \rightarrow+\infty} G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right) \leq F\binom{\psi\left(\lim _{n \rightarrow+\infty} G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)}{\varphi\left(\lim _{n \rightarrow+\infty} \inf G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)}
$$

Then, we have

$$
\psi(L) \leq F(\psi(L), \varphi(L)) \leq \psi(L)
$$

Thus $\psi(L)=0$ and we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)=0 \tag{2.3}
\end{equation*}
$$

Now, we shall show that $\left\{x_{n}\right\}$ is a G-Cauchy sequence. It is sufficient to show that $\left\{x_{3 n}\right\}$ is G-Cauchy in X. If it is not, there is $\varepsilon>0$ and integers $3 n_{k}, 3 m_{k}$ with $3 m_{k}>3 n_{k}>k$ such that

$$
\begin{equation*}
G\left(x_{3 n_{k}}, x_{3 m_{k}}, x_{3 m_{k}}\right) \geq \varepsilon \quad \text { and } \quad G\left(x_{3 n_{k}}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)<\varepsilon \tag{2.4}
\end{equation*}
$$

Now, (2.3) and (2.4) give

$$
\begin{aligned}
\varepsilon \leq & G\left(x_{3 n_{k}}, x_{3 m_{k}}, x_{3 m_{k}}\right) \\
\leq & G\left(x_{3 n_{k}}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)+G\left(x_{3 m_{k}-3}, x_{3 m_{k}}, x_{3 m_{k}}\right) \\
\leq & G\left(x_{3 n_{k}}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)+G\left(x_{3 m_{k}-3}, x_{3 m_{k}-1}, x_{3 m_{k}-1}\right) \\
& +G\left(x_{3 m_{k}-1}, x_{3 m_{k}}, x_{3 m_{k}}\right) \\
\leq & G\left(x_{3 n_{k}}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)+G\left(x_{3 m_{k}-1}, x_{3 m_{k}-2}, x_{3 m_{k}-3}\right) \\
& +G\left(x_{3 m_{k}-1}, x_{3 m_{k}}, x_{3 m_{k}+1}\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} G\left(x_{3 n_{k}}, x_{3 m_{k}}, x_{3 m_{k}}\right)=\varepsilon \tag{2.5}
\end{equation*}
$$

Also, in the same manner, we obtain

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} G\left(x_{3 n_{k}+1}, x_{3 m_{k}+2}, x_{3 m_{k}+3}\right)=\varepsilon \tag{2.6}
\end{equation*}
$$

However, by using (2.3) and (2.6), we obtain

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} G\left(x_{3 n_{k}}, x_{3 m_{k}+1}, x_{3 m_{k}+2}\right)=\varepsilon \tag{2.7}
\end{equation*}
$$

Also, using (2.3) and (2.7) we have

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} G\left(x_{3 n_{k}}, x_{3 n_{k}+1}, x_{3 m_{k}+2}\right)=\varepsilon . \tag{2.8}
\end{equation*}
$$

Now, from the definition of $M(x, y, z)$ and from (2.3), (2.6), (2.7), (2.8) we get

$$
\begin{aligned}
& M\left(x_{3 n_{k}}, x_{3 m_{k}+1}, x_{3 m_{k}+2}\right) \\
= & \max \left\{G\left(x_{3 n_{k}}, x_{3 m_{k}+1}, x_{3 m_{k}+2}\right), G\left(x_{3 n_{k}}, x_{3 n_{k}}, x_{3 n_{k}+1}\right),\right. \\
& G\left(x_{3 m_{k}+1}, x_{3 m_{k}+1}, x_{3 m_{k}+2}\right), G\left(x_{3 m_{k}+2}, x_{3 m_{k}+2}, x_{3 m_{k}+3}\right), \\
& G\left(x_{3 n_{k}}, x_{3 n_{k}+1}, x_{3 m_{k}+2}\right), G\left(x_{3 m_{k}+1}, x_{3 m_{k}+2}, x_{3 m_{k}+3}\right), \\
& \left.G\left(x_{3 m_{k}+2}, x_{3 m_{k}+3}, x_{3 n_{k}+1}\right)\right\}
\end{aligned}
$$

Hence

$$
\lim _{k \rightarrow+\infty} M\left(x_{3 n_{k}}, x_{3 m_{k}+1}, x_{3 m_{k}+2}\right)=\max \{\varepsilon, 0,0,0, \varepsilon, \varepsilon, \varepsilon\}=\varepsilon
$$

From (2.1), we obtain

$$
\begin{aligned}
\psi\left(G\left(x_{3 n_{k}+1}, x_{3 m_{k}+2}, x_{3 m_{k}+3}\right)\right) & =\psi\left(G\left(f x_{3 n_{k}}, g x_{3 m_{k}+1}, h x_{3 m_{k}+2}\right)\right) \\
& \leq F\binom{\psi\left(M\left(x_{3 n_{k}}, x_{3 m_{k}+1}, x_{3 m_{k}+2}\right)\right)}{\varphi\left(M\left(x_{3 n_{k}}, x_{3 m_{k}+1}, x_{3 m_{k}+2}\right)\right)}
\end{aligned}
$$

So, as $k \rightarrow+\infty$, we have

$$
\psi(\varepsilon) \leq F(\psi(\varepsilon), \varphi(\varepsilon)) \leq \psi(\varepsilon)
$$

which leads to a contradiction because $\varepsilon>0$.
It follows that $\left\{x_{3 n}\right\}$ is a G-Cauchy sequence and by the G-completeness of X, there exists $u \in X$ such that $\left\{x_{n}\right\}$ converges to u as $n \rightarrow+\infty$. We claim that $f u=u$. For this, consider
$\psi\left(G\left(f u, x_{3 n+2}, x_{3 n+3}\right)\right) \leq F\left(\psi\left(M\left(u, x_{3 n+1}, x_{3 n+2}\right)\right), \varphi\left(M\left(u, x_{3 n+1}, x_{3 n+2}\right)\right)\right)$,
where

$$
\begin{aligned}
& M\left(u, x_{3 n+1}, x_{3 n+2}\right) \\
= & \max \left\{G\left(u, x_{3 n+1}, x_{3 n+2}\right), G(u, u, f u), G\left(x_{3 n+1}, x_{3 n+1}, g x_{3 n+1}\right),\right. \\
& G\left(x_{3 n+2}, x_{3 n+2}, h x_{3 n+2}\right), G\left(u, f u, g x_{3 n+1}\right), \\
& \left.G\left(x_{3 n+1}, g x_{3 n+1}, h x_{3 n+2}\right), G\left(x_{3 n+2}, h x_{3 n+2}, f u\right)\right\} \\
= & \max \left\{G\left(u, x_{3 n+1}, x_{3 n+2}\right), G(u, u, f u), G\left(x_{3 n+1}, x_{3 n+1}, x_{3 n+2}\right),\right. \\
& G\left(x_{3 n+2}, x_{3 n+2}, x_{3 n+3}\right), G\left(u, f u, x_{3 n+2}\right), \\
& \left.G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right), G\left(x_{3 n+2}, x_{3 n+3}, f u\right)\right\} .
\end{aligned}
$$

Letting $n \rightarrow+\infty$, we obtain that

$$
\psi(G(f u, u, u)) \leq F(\psi(G(f u, u, u)), \varphi G(f u, u, u))) \leq \psi(G(f u, u, u))
$$

Hence $f u=u$. Similarly it can be shown that $g u=u$ and $h u=u$.

Finally, to show the uniqueness of common fixed point. Suppose that v is another common fixed point of f, g and h. Then

$$
\psi(G(u, v, v))=\psi(G(f u, g v, h v)) \leq F(\psi M(u, v, v), \varphi(M(u, v, v))
$$

where

$$
\begin{aligned}
M(u, v, v)= & \max \{G(u, v, v), G(u, u, f u), G(v, v, g v), \\
& G(v, v, h v), G(u, f u, v), G(v, g v, h v), G(v, h v, f u)\} \\
= & \max \{G(u, v, v), G(u, u, u), G(v, v, v), \\
& G(v, v, v), G(u, u, v), G(v, v, v), G(v, v, u)\} \\
= & \max \{G(u, v, v), G(u, u, v)\}
\end{aligned}
$$

If $M(u, v, v)=G(u, v, v)$, then

$$
\psi(G(u, v, v)) \leq F(\psi(G(u, v, v)), \varphi(G(u, v, v))) \leq \psi(G(u, v, v))
$$

which implies that $G(u, v, v)=0$, a contradiction.
If

$$
M(u, v, v)=G(u, u, v)
$$

we can find

$$
\psi(G(u, v, v)) \leq F(\psi(G(u, u, v)), \varphi(G(u, u, v))) \leq \psi(G(u, u, v))
$$

so, by nondecreasing of ψ, it follows that

$$
\begin{equation*}
G(u, v, v) \leq G(u, u, v) \tag{2.9}
\end{equation*}
$$

Again applying (2.1), we have

$$
\psi(G(u, u, v)) \leq F(\psi(G(u, v, v)), \varphi(G(u, v, v))) \leq \psi(G(u, v, v))
$$

This implies that

$$
\begin{equation*}
G(u, u, v) \leq G(u, v, v) \tag{2.10}
\end{equation*}
$$

by (2.9) and (2.10), we get $G(u, u, v)=G(u, v, v)$, a contradiction. Hence u is a unique common fixed point of f, g and h.

Now, we prove that every fixed point of f is a fixed point of g and h. suppose that for some p in X, we have $f(p)=p$. We claim that $p=g(p)=h(p)$.

If not then in the case when $p \neq g(p)$ or $p \neq h(p)$ we obtain

$$
\psi(G(p, g p, h p))=\psi(G(f p, g p, h p)) \leq F(\psi M((p, p, p), \varphi(M((p, p, p))
$$

where

$$
\begin{aligned}
M(p, p, p)= & \max \{G(p, p, p), G(p, p, f p), G(p, p, g p), G(p, p, h p) \\
& G(p, f p, g p), G(p, g p, h p), G(p, h p, f p)\} \\
= & \max \{0, G(p, p, g p), G(p, p, h p), G(p, g p, h p)\} \\
= & G(p, g p, h p)
\end{aligned}
$$

Thus

$$
\psi(G(p, g p, h p)) \leq F(\psi(G(p, g p, h p)), \varphi(G(p, g p, h p))) \leq \psi(G(p, g p, h p))
$$

a contradiction. Therefore in all cases, we conclude that, $f(p)=g(p)=h(p)=p$. Hence, every fixed point of f is a fixed point of g and h, and conversely.

Now, we give an example to support Theorem 2.1.
Example 2.1. Let $X=[0,1]$ and $G(x, y, z)=\max \{|x-y|,|y-z|,|z-x|\}$ be a G-metric on X. Define $f, g, h: X \rightarrow X$ by

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
\frac{x}{15}, x \in\left[0, \frac{1}{2}\right) \\
\frac{x}{11}, x \in\left[\frac{1}{2}, 1\right]
\end{array}\right] \\
& g(x)=\left\{\begin{array}{l}
\frac{x}{9}, x \in\left[0, \frac{1}{2}\right) \\
\frac{x}{7}, x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
\end{aligned}
$$

and

$$
h(x)=\left\{\begin{array}{l}
\frac{x}{7}, x \in\left[0, \frac{1}{2}\right) \\
\frac{x}{4}, x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

We take $\psi(t)=t$ and $F(t, s)=\frac{9}{10} t$ for $t \in[0,+\infty)$, so that

$$
F(\psi(M(x, y, z)), \varphi(M(x, y, z)))=\frac{9}{10} \psi(M(x, y, z))=\frac{9}{10} M(x, y, z)
$$

where

$$
M(x, y, z)=\max \left\{\begin{array}{c}
G(x, y, z), G(x, x, f x), G(y, y, g y), G(z, z, h z) \\
G(x, f x, g y), G(y, g y, h z), G(z, h z, f x)
\end{array}\right\}
$$

a) If $x, y, z \in\left[0, \frac{1}{2}\right)$

$G(x, y, z)=\max \{\|x-y\|,\|y-z\|,\|z-x\|\}$
$G(x, x, f x)=\frac{14}{15} x$
$G(y, y, g y)=\frac{8}{9} y$
$G(z, z, h z)=\frac{6}{7} y$

Then, $M(x, y, z)=\max \left\{\max \{|x-y|,|y-z|,|z-x|\}, \frac{14}{15} x, \frac{8}{9} x, \frac{6}{7} x\right\}$.
So,

$$
\begin{aligned}
\psi(G(f x, g y, h z)) & =G(f x, g y, h z)=\max \{|f x-g y|,|g y-h z|,|h z-f x|\} \\
& =\max \left\{\left|\frac{x}{15}-\frac{y}{9}\right|,\left|\frac{y}{9}-\frac{z}{7}\right|,\left|\frac{z}{7}-\frac{x}{15}\right|\right\} \\
& \leq \frac{9}{10} \max \left\{\max \{|x-y|,|y-z|,|z-x|\}, \frac{14}{15} x, \frac{8}{9} y, \frac{6}{7} z\right\} \\
& =\frac{9}{10} M(x, y, z)
\end{aligned}
$$

b) If $x, y, z \in\left[\frac{1}{2}, 1\right]$

$G(x, y, z)=\max \{\|x-y\|,\|y-z\|,\|z-x\|\}$
$G(x, x, f x)=\frac{10}{11} x$
$G(y, y, g y)=\frac{6}{7} y$
$G(z, z, h z)=\frac{3}{4} z$

Then, $M(x, y, z)=\max \left\{\max \{|x-y|,|y-z|,|z-x|\}, \frac{10}{11} x, \frac{6}{7} x, \frac{3}{4} x\right\}$.
We have,

$$
\begin{aligned}
\psi(G(f x, g y, h z)) & =G(f x, g y, h z)=\max \{|f x-g y|,|g y-h z|,|h z-f x|\} \\
& =\max \left\{\left|\frac{x}{11}-\frac{y}{7}\right|,\left|\frac{y}{7}-\frac{z}{4}\right|,\left|\frac{z}{4}-\frac{x}{11}\right|\right\} \\
& \leq \frac{9}{10} \max \left\{\max \{|x-y|,|y-z|,|z-x|\}, \frac{10}{11} x, \frac{6}{7} y, \frac{3}{4} z\right\} \\
& =\frac{9}{10} M(x, y, z)
\end{aligned}
$$

c) If $x \in\left[0, \frac{1}{2}\right)$ and $y, z \in\left[\frac{1}{2}, 1\right)$

$G(x, y, z)=\max \{\|x-y\|,\|y-z\|,\|z-x\|\}$
$G(x, x, f x)=\frac{14}{15} x$
$G(y, y, g y)=\frac{6}{7} y$
$G(z, z, h z)=\frac{3}{4} z$

Then, $M(x, y, z)=\max \left\{\max \{|x-y|,|y-z|,|z-x|\}, \frac{14}{15} x, \frac{6}{7} y, \frac{3}{4} z\right\}$
We get,

$$
\begin{aligned}
\psi(G(f x, g y, h z)) & =G(f x, g y, h z)=\max \{|f x-g y|,|g y-h z|,|h z-f x|\} \\
& =\max \left\{\left|\frac{x}{11}-\frac{y}{7}\right|,\left|\frac{y}{7}-\frac{z}{4}\right|,\left|\frac{z}{4}-\frac{x}{11}\right|\right\} \\
& \leq \frac{9}{10} \max \left\{\max \{|x-y|,|y-z|,|z-x|\}, \frac{14}{15} x, \frac{6}{7} y, \frac{3}{4} z\right\} \\
& =\frac{9}{10} M(x, y, z)
\end{aligned}
$$

d) As above results, we can find that the other cases are the same.

Therefore, all the conditions of Theorem 2.1 are satisfied. Then 0 is the unique common fixed point of f, g and h. Moreover, each fixed point of f is a fixed point of g and h, and conversely.

Corollary 2.1. Let f, g and h be self maps on a complete G-metric space X satisfying the inequality

$$
\begin{equation*}
\psi(G(f x, g y, h z)) \leq F(\psi(G(x, y, z)), \varphi(G(x, y, z))), \tag{2.11}
\end{equation*}
$$

for all $x, y, z \in X$, where $F:[0,+\infty)^{2} \rightarrow \mathbb{R}$ is C-class function, $\psi:[0,+\infty) \rightarrow$ $[0,+\infty)$ is an altering distance function, $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ is an ultra altering distance function. Then f, g and h have a unique common fixed point in X. Moreover, any fixed point of f is a fixed point of g and h and conversely.

Corollary 2.2. [1] Let f, g and h be self maps on a complete G-metric space X satisfying the inequality

$$
\psi(G(f x, g y, h z)) \leq \psi(M(x, y, z))-\varphi(M(x, y, z))
$$

where $\varphi \in \Psi, \psi \in \Psi$ and

$$
\begin{array}{r}
M(x, y, z)=\max \{G(x, y, z), G(x, x, f x), G(y, y, g y), G(z, z, h z) \\
G(x, f x, g y), G(y, g y, h z), G(z, h z, f x)\}
\end{array}
$$

for all $x, y, z \in X$. Then f, g and h have a unique common fixed point in X. Moreover, any fixed point of f is a fixed point of g and h and conversely.

Proof. Set $F(s, t)=s-t$ in Theorem 2.1.
Remark 2.1. Put $\psi(t)=t, F(s, t)=k s$ with $k \in(0,1)$, we can find corollary 2.3 of [14]

REFERENCES

1. M. Abbas, T. Nazir, W. Shatanawi and Z. Mustafa: Fixed and related fixed point theorems for three maps in G-metric spaces. Hacettepe Journal of Mathematics and Statistics, 41 (2012), 291-306.
2. R. P Agarwal, Z. Kadelburg and S. Radenović: On coupled fixed point results in asymmetric G-metric spaces. Journal of Inequalities and Applications, 2013, 2013-528.
3. R. P. Agarwal, E. Karapinar, D. O'Regan and A.F.R.-de-Hierro: Fixed Point Theory in Metric Type Spaces, Springer International Publishing Switzerland, 2015.
4. I. Altun, M. Aslantas and H. Sahin: Best proximity point results for p-proximal contractions. Acta Math. Hungar, 162 (2020), 393-402.
5. A. H. Ansari: Note on φ - ψ-contractive type mappings and related fixed point", The 2nd regional conference on mathematics and applications, Payame Noor University, 377-380, 2014.
6. M. Aslantas, H. Sahin and I. Altun: Best proximity point theorems for cyclic pcontractions with some consequences and applications. Nonlinear Analysis: Modelling and Control, 26 (2021), 113-129.
7. M. Aslantas, H. Sahin and D. Turkoglu: Some Caristi type fixed point theorems. The Journal of Analysis,(2020) 1-15.
8. L. Ćirić: Some recent results in metrical fixed point theory, University of Belgrade, Beograd 2003, Serbia.
9. T. Hamaizia: Fixed point theorems involving C-class functions in Gb-metric spaces. Journal of Applied Mathematics and Informatics, 39 (2021), 529-539.
10. T. Hamaizia and A. H. Ansari: Related fixed point on two metric spaces via C-class functions. Palestine Journal of Mathematics, 10 (2021), 537-546.
11. M. S. Khan, M. Swaleh and S. Sessa: Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30 (1984), 1-9.
12. E. Malkowski and V. Rakoc̆ević: Advanced Functional Analysis, CRS Press, Taylor and Francis Group, Boca Raton, FL,2019
13. Z. Mustafa and B. Sims: new approach to generalized metric spaces. Journal of Nonlinear and Convex Analysis, 7 (2006), 289-297.
14. Z. Mustafa, H. Obiedat and F. Awawdeh: Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Applications 2008, Article ID 189870, 12 pages.
15. Z. Mustafa, W. Shatanawi and M. Bataineh: Fixed point theorem on uncomplete G-metric spaces. J. Math. Stat. 4 (2008), 196-201 .
16. Z. Mustafa, W. Shatanawi and M. Bataineh: Existance of fixed point results in G-metric spaces, Inter. J. Mathematics and Math. Sciences. 2009, Article ID 283028, 10 pages.
17. Z. Mustafa and B. Sims: Fixed point theorems for contractive mappings in complete G-metric space, Fixed Point Theory Appl., 2009, Article ID 917175, 10 pages.
18. Z. Mustafa and H. Obiedat: A fixed point theorem of Reich in G-metric spaces. Cubo, 12 (2010), 83-93.
19. V. Popa: A general fixed point theorem for several mappings in G-metric spaces, Sci. Stud. Res., Ser. Math. Inform. 21 (2011), 205-214.
20. V. Popa and A-M. Patriciu: A General fixed point theorem for a pair of self mappings with common limit rang property in G-metric spaces, Facta Universitatis(Nis), Ser. Math. Inform. 29 (2014), 351-370.
21. H. Sahin, M. Aslantas and I. Altun: Feng-Liu type approach to best proximity point results for multivalued mappings. Journal of Fixed Point Theory and Applications, 22 (2020), 1-13.
22. W. Shatanawi: Fixed point theory for contractive mappings satisfying ϕ-maps in G-metric spaces. Fixed Point Theory Appl. (2010), Article ID 181650, 9 pages.

[^0]: Received January 05, 2020, accepted: March 06, 2022
 Communicated by Marko Petković
 Corresponding Author: Taieb Hamaizia, Dynamic Systems and Control Laboratory, Department of Mathematics and Informatics, OEB University, Algeria | E-mail: tayeb042000@yahoo.fr 2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25.

