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1. Introduction and Preliminaries

In [13], Mustafa and Sims introduced a new class of generalized metric space,
called G-metric, as generalization of a metric space (X, d). In fact, various re-
searchers studied several and many fixed point theorems for self mappings in this
structure (G-metric), for example we refer readers to References ([2, 3, 4, 6, 7, 8, 9,
10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22]).

In this paper, we will obtain common fixed point results for three mappings
satisfying certain contractive conditions on G-metric space. The obtained results
extend many recent results in the literature.

The following definitions and results will be needed:
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Definition 1.1. [13] Let X be a nonempty set. Suppose that the mapping G :
X ×X ×X → R+ satisfies:

(a) G(x, y, z) = 0 if x = y = z;

(b) 0 < G(x, x, y) for all x, y ∈ X. with x ̸= y;

(c) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ̸= z;

(d) G(x, y, z) = G(x, z, y) = G(y, z, x) =··· (symmetry in all three variables); and

(e) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then G is called a G-metric on X and (X,G) is called a G-metric space.

Note that if G(x, y, z) = 0 then x = y = z.

Definition 1.2. [13] A sequence {xn} in a G-metric space X is:

(i) a G-Cauchy sequence if, for every ε > 0, there is a natural number n0 such
that for all n,m, l ≥ n0, G(xn, xm, xl) < ε

(ii) a G-Convergent sequence if, for any ε > 0, there is an x ∈ X and an n0 ∈ N
such that for all n,m ≥ n0, G(xn, xm, x) < ε.

A G-metric space on X is said to be G-complete if every G-Cauchy sequence in
X is G-convergent in X. It is known that {xn} G-converges to x ∈ X if and only
if G(xm, xn, x) → 0 as n,m→ +∞.

Proposition 1.1. [13] Let X be a G-metric space. Then the following are equiv-
alent:

(1) The sequence {xn} is G-convergent to x.

(2) G(xn, xn, x) → 0 as n→ +∞.

(3) G(xn, x, x) → 0 as n→ +∞.

(4) G(xn, xm, x) → 0 as n,m→ +∞.

Proposition 1.2. [13] Let X be a G-metric space. Then the following are equiv-
alent:

(1) The sequence {xn} is G-Cauchy.

(2) For every for every ε > 0 there exists n0 ∈ N such that for all n,m ≥ n0,
G(xn, xm, xm) < ε; that is, if G(xn, xm, xm) → 0 as n,m→ +∞.
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Definition 1.3. [13] A G-metric space (X,G) is called symmetric G-metric space
if G(x, y, y) = G(y, x, x) for all x, y ∈ X, and called nonsymmetric if it is not
symmetric.

Definition 1.4. [13] A G-metric space X is said to be complete if every G-Cauchy
sequence in X is G-convergent in X.

Proposition 1.3. [13] Let (X,G) be a G-metric space, then the function G(x, y, z)
is jointly continuous in all three variables.

Recently, Arslan Hojat Ansari in [5] introduced the concept of a C-class functions
which covers a large class of contractive conditions.

Definition 1.5. [5] A continuous function F : [0,+∞)2 → R is called C-class
function if for any s, t ∈ [0,+∞); the following conditions hold

c1 F (s, t) ≤ s;

c2 F (s, t) = s implies that either s = 0 or t = 0.

An extra condition on F that F (0, 0) = 0 could be imposed in some cases if
required. The letter C will denote the class of all C- functions.

Example 1.1. The following examples shows that the class C is nonempty:

1. F (s, t) = s− t:

2. F (s, t) = ms; for some m ∈ (0, 1).

3. F (s, t) = s
(1+t)r

for some r ∈ (0, 1).

4. F (s, t) = log(t+as)
(1+t)

, for some a > 1.

Let Φu denote the class of the functions φ : [0,+∞) → [0,+∞), φ(0) ≥ 0
Therefore, the condition φ(0) ≥ 0 is meaningless. It may be φ(0) = 0.

In 1984, Khan et al. [11] introduced altering distance function as follows:

Definition 1.6. [11] A function ψ : [0,+∞) → [0,+∞) is called an altering dis-
tance function if the following properties are satisfied:

i) ψ is non-decreasing and continuous,

ii) ψ(t) = 0 if and only if t = 0.

Let us suppose that Ψ denote the class of the altering distance functions.

Definition 1.7. A tripled (ψ,φ, F ) where ψ ∈ Ψ; φ ∈ Φu and F ∈ C is said to
be a monotone if for any x, y ∈ [0, 1),

x ≤ y implies F (ψ(x), φ(x)) ≤ F (ψ(y), φ(y)).

Example 1.2. Let F (s, t) = s− t, φ(x) =
√
x

ψ(x) =

{ √
x if 0 ≤ x ≤ 1
x2 if x > 1

,

then (ψ,φ, F ) is monotone.
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2. Main results

Now, we are ready to state our main theorem

Theorem 2.1. Let (X,G) be a complete G-metric space and suppose mappings f,
g and h : X → X satisfy

ψ (G(fx, gy, hz)) ≤ F (ψ (M(x, y, z)) , φ (M(x, y, z))) ,(2.1)

for all x, y, z ∈ X, where F : [0,+∞)2 → R is C-class function, ψ : [0,+∞) →
[0,+∞) is an altering distance function, φ : [0,+∞) → [0,+∞) is an ultra altering
distance function and

M(x, y, z) = max{G(x, y, z), G(x, x, fx), G(y, y, gy), G(z, z, hz),
G(x, fx, gy), G(y, gy, hz), G(z, hz, fx)}.

Then f, g and h have a unique common fixed point in X. Moreover, any fixed point
of f is a fixed point of g and h and conversely.

Proof. Suppose that x0 is an arbitrary point in X. Define a sequence {xn} by
x3n+1 = fx3n, x3n+2 = gx3n+1, x3n+3 = hx3n+2.

Firstly, taking G(x3n, x3n+1, x3n+2) = 0, for some n. Using (2.1), we obtain

ψ (G(x3n+1, x3n+2, x3n+3)) ≤ F (ψ (M(x3n, x3n+1, x3n+2)) , φ (M(x3n, x3n+1, x3n+2))) ,

where

M(x3n, x3n+1, x3n+2) = max{G(x3n, x3n+1, x3n+2), G(x3n, x3n, fx3n),

G(x3n+1, x3n+1, gx3n+1), G(x3n+2, x3n+2, hx3n+2),

G(x3n, fx3n, gx3n+1), G(x3n+1, gx3n+1, hx3n+2),

G(x3n+2, hx3n+2, fx3n)}
= max{G(x3n, x3n+1, x3n+2), G(x3n, x3n, x3n+1),

G(x3n, x3n+1, x3n+2), G(x3n, x3n, x3n+1),

G(x3n, x3n+1, x3n+2), G(x3n+1, x3n+2, x3n+3),

G(x3n+2, x3n+3, x3n+1)}.

So

ψ (G(x3n+1, x3n+2, x3n+3)) ≤ F (ψ (G(x3n+1, x3n+2, x3n+3) , φ (G(x3n+1, x3n+2, x3n+3))

≤ ψ (G(x3n+1, x3n+2, x3n+3)

implies that ψ (G(x3n+1, x3n+2, x3n+3) = 0 and

x3n+1 = x3n+2 = x3n+3.(2.2)

The same arguments, we obtain x3n+2 = x3n+3 = x3n+4 and hence x3n becomes a
common fixed point of f, g and h.
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Now, by taking G(x3n, x3n+1, x3n+2) > 0 for every n and using (2.1), we obtain

ψ (G(x3n+1, x3n+2, x3n+3)) ≤
F (ψ (M(x3n, x3n+1, x3n+2)) , φ (M(x3n, x3n+1, x3n+2))) ,

where

M(x3n, x3n+1, x3n+2) = max{G(x3n, x3n+1, x3n+2), G(x3n, x3n, fx3n),

G(x3n+1, x3n+1, gx3n+1), G(x3n+2, x3n+2, hx3n+2),

G(x3n, fx3n, gx3n+1), G(x3n+1, gx3n+1, hx3n+2),

G(x3n+2, hx3n+2, fx3n)}
= max{G(x3n, x3n+1, x3n+2), G(x3n, x3n, x3n+1),

G(x3n, x3n+1, x3n+2), G(x3n, x3n, x3n+1),

G(x3n, x3n+1, x3n+2), G(x3n+1, x3n+2, x3n+3),

G(x3n+2, x3n+3, x3n+1)}.

Hence

ψ (G(x3n+1, x3n+2, x3n+3))

≤ F

(
ψ (max {G(x3n+1, x3n+2, x3n+3), G(x3n, x3n+1, x3n+2)}) ,
φ(max {G(x3n, x3n+1, x3n+2), G(x3n+1, x3n+2, x3n+3)}).

)
Suppose max {G(x3n+1, x3n+2, x3n+3), G(x3n, x3n+1, x3n+2)} = G(x3n+1, x3n+2, x3n+3),
so, we find the same result of (2.2) , we obtain G(x3n, x3n+1, x3n+2) = 0, This con-
tradicts the assumption. Thus,

ψ (G(x3n+1, x3n+2, x3n+3))

≤ F (ψ (G(x3n, x3n+1, x3n+2)) , φ(G(x3n, x3n+1, x3n+2)))

≤ ψ (G(x3n, x3n+1, x3n+2)) .

Then
ψ (G(x3n+1, x3n+2, x3n+3)) ≤ ψ (G(x3n, x3n+1, x3n+2)) .

By the nondecreasing of ψ , it follows that

G(x3n+1, x3n+2, x3n+3) ≤ G(x3n, x3n+1, x3n+2).

Similarly, we find

G(x3n+3, x3n+4, x3n+5) ≤ G(x3n+2, x3n+3, x3n+4)

≤ G(x3n+1, x3n+2, x3n+3) ≤ G(x3n, x3n+1, x3n+2),

Consequently, it can be shown that for all n,

G(xn+1, xn+2, xn+3) ≤ G(xn, xn+1, xn+2).
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Therefore, {G(x3n+1, x3n+2, x3n+3)} is a non increasing sequence, then there exists
L ≥ 0, such that

ψ

(
lim

n→+∞
G(x3n+1, x3n+2, x3n+3)

)
≤ F

 ψ

(
lim

n→+∞
G(x3n, x3n+1, x3n+2)

)
,

φ( lim
n→+∞

inf G(x3n, x3n+1, x3n+2)).


Then, we have

ψ (L) ≤ F (ψ (L) , φ(L)) ≤ ψ (L)

Thus ψ(L) = 0 and we conclude that

lim
n→+∞

G(x3n+1, x3n+2, x3n+3) = 0.(2.3)

Now, we shall show that {xn} is a G-Cauchy sequence. It is sufficient to show that
{x3n} is G-Cauchy in X. If it is not, there is ε > 0 and integers 3nk, 3mk with
3mk > 3nk > k such that

G(x3nk
, x3mk

, x3mk
) ≥ ε and G(x3nk

, x3mk−3, x3mk−3) < ε(2.4)

Now, (2.3) and (2.4) give

ε ≤ G(x3nk
, x3mk

, x3mk
)

≤ G(x3nk
, x3mk−3, x3mk−3) +G(x3mk−3, x3mk

, x3mk
)

≤ G(x3nk
, x3mk−3, x3mk−3) +G(x3mk−3, x3mk−1, x3mk−1)

+G(x3mk−1, x3mk
, x3mk

)

≤ G(x3nk
, x3mk−3, x3mk−3) +G(x3mk−1, x3mk−2, x3mk−3)

+G(x3mk−1, x3mk
, x3mk+1),

which implies that

lim
k→+∞

G(x3nk
, x3mk

, x3mk
) = ε.(2.5)

Also, in the same manner, we obtain

lim
k→+∞

G(x3nk+1, x3mk+2, x3mk+3) = ε.(2.6)

However, by using (2.3) and (2.6), we obtain

lim
k→+∞

G(x3nk
, x3mk+1, x3mk+2) = ε.(2.7)

Also, using (2.3) and (2.7) we have

lim
k→+∞

G(x3nk
, x3nk+1, x3mk+2) = ε.(2.8)
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Now, from the definition of M(x, y, z) and from (2.3), (2.6), (2.7), (2.8) we get

M(x3nk
, x3mk+1, x3mk+2)

= max{G(x3nk
, x3mk+1, x3mk+2), G(x3nk

, x3nk
, x3nk+1),

G(x3mk+1, x3mk+1, x3mk+2), G(x3mk+2, x3mk+2, x3mk+3),

G(x3nk
, x3nk+1, x3mk+2), G(x3mk+1, x3mk+2, x3mk+3),

G(x3mk+2, x3mk+3, x3nk+1)}

Hence

lim
k→+∞

M(x3nk
, x3mk+1, x3mk+2) = max{ε, 0, 0, 0, ε, ε, ε} = ε.

From (2.1), we obtain

ψ (G(x3nk+1, x3mk+2, x3mk+3)) = ψ (G(fx3nk
, gx3mk+1, hx3mk+2))

≤ F

(
ψ (M(x3nk

, x3mk+1, x3mk+2)) ,
φ (M(x3nk

, x3mk+1, x3mk+2))

)
,

So, as k → +∞, we have

ψ (ε) ≤ F (ψ (ε) , φ (ε)) ≤ ψ (ε)

which leads to a contradiction because ε > 0.

It follows that {x3n} is a G-Cauchy sequence and by the G-completeness of X,
there exists u ∈ X such that {xn} converges to u as n → +∞. We claim that
fu = u. For this, consider

ψ (G(fu, x3n+2, x3n+3)) ≤ F (ψ (M(u, x3n+1, x3n+2)) , φ (M(u, x3n+1, x3n+2))) ,

where

M(u, x3n+1, x3n+2)

= max{G(u, x3n+1, x3n+2), G(u, u, fu), G(x3n+1, x3n+1, gx3n+1),

G(x3n+2, x3n+2, hx3n+2), G(u, fu, gx3n+1),

G(x3n+1, gx3n+1, hx3n+2), G(x3n+2, hx3n+2, fu)}
= max{G(u, x3n+1, x3n+2), G(u, u, fu), G(x3n+1, x3n+1, x3n+2),

G(x3n+2, x3n+2, x3n+3), G(u, fu, x3n+2),

G(x3n+1, x3n+2, x3n+3), G(x3n+2, x3n+3, fu)}.

Letting n→ +∞, we obtain that

ψ (G(fu, u, u)) ≤ F (ψ (G(fu, u, u)) , φG(fu, u, u))) ≤ ψ (G(fu, u, u))

Hence fu = u. Similarly it can be shown that gu = u and hu = u.
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Finally, to show the uniqueness of common fixed point. Suppose that v is another
common fixed point of f , g and h. Then

ψ (G(u, v, v)) = ψ (G(fu, gv, hv)) ≤ F (ψM(u, v, v), φ (M(u, v, v)) ,

where

M(u, v, v) = max{G(u, v, v), G(u, u, fu), G(v, v, gv),
G(v, v, hv), G(u, fu, v), G(v, gv, hv), G(v, hv, fu)}

= max{G(u, v, v), G(u, u, u), G(v, v, v),
G(v, v, v), G(u, u, v), G(v, v, v), G(v, v, u)}

= max{G(u, v, v), G(u, u, v)}

If M(u, v, v) = G(u, v, v), then

ψ (G(u, v, v)) ≤ F (ψ (G(u, v, v)) , φ (G(u, v, v))) ≤ ψ (G(u, v, v))

which implies that G(u, v, v) = 0, a contradiction.

If
M(u, v, v) = G(u, u, v),

we can find

ψ (G(u, v, v)) ≤ F (ψ (G(u, u, v)) , φ (G(u, u, v))) ≤ ψ (G(u, u, v))

so, by nondecreasing of ψ, it follows that

G(u, v, v) ≤ G(u, u, v)(2.9)

Again applying (2.1), we have

ψ (G(u, u, v)) ≤ F (ψ (G(u, v, v)) , φ (G(u, v, v))) ≤ ψ (G(u, v, v)) .

This implies that
G(u, u, v) ≤ G(u, v, v)(2.10)

by (2.9) and (2.10), we get G(u, u, v) = G(u, v, v), a contradiction. Hence u is a
unique common fixed point of f, g and h.

Now, we prove that every fixed point of f is a fixed point of g and h. suppose
that for some p in X, we have f(p) = p. We claim that p = g(p) = h(p).

If not then in the case when p ̸= g(p) or p ̸= h(p) we obtain

ψ (G(p, gp, hp)) = ψ (G(fp, gp, hp)) ≤ F (ψM((p, p, p), φ (M((p, p, p)) ,

where

M(p, p, p) = max{G(p, p, p), G(p, p, fp), G(p, p, gp), G(p, p, hp),
G(p, fp, gp), G(p, gp, hp), G(p, hp, fp)}

= max {0, G(p, p, gp), G(p, p, hp), G(p, gp, hp)}
= G(p, gp, hp)
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Thus

ψ (G(p, gp, hp)) ≤ F (ψ (G(p, gp, hp)) , φ(G(p, gp, hp))) ≤ ψ (G(p, gp, hp))

a contradiction.Therefore in all cases, we conclude that, f(p) = g(p) = h(p) = p.
Hence, every fixed point of f is a fixed point of g and h, and conversely.

Now, we give an example to support Theorem 2.1.

Example 2.1. Let X = [0, 1] and G(x, y, z) = max{|x−y|, |y−z|, |z−x|} be a G- metric
on X. Define f, g, h : X → X by

f(x) =

{
x
15
, x ∈

[
0, 1

2

)
x
11
, x ∈

[
1
2
, 1
]

g(x) =

{
x
9
, x ∈

[
0, 1

2

)
x
7
, x ∈

[
1
2
, 1
]

and

h(x) =

{
x
7
, x ∈

[
0, 1

2

)
x
4
, x ∈

[
1
2
, 1
]

We take ψ(t) = t and F (t, s) = 9
10
t for t ∈ [0,+∞), so that

F (ψ (M(x, y, z)) , φ (M(x, y, z))) =
9

10
ψ (M(x, y, z)) =

9

10
M(x, y, z)

where

M(x, y, z) = max

{
G(x, y, z), G(x, x, fx), G(y, y, gy), G(z, z, hz),

G(x, fx, gy), G(y, gy, hz), G(z, hz, fx)

}

a) If x, y, z ∈
[
0, 1

2

)
G(x, y, z) = max{|x− y|, |y − z|, |z − x|}
G(x, x, fx) = 14

15
x

G(y, y, gy) = 8
9
y

G(z, z, hz) = 6
7
y

Then, M(x, y, z) = max
{
max{|x− y|, |y − z|, |z − x|}, 14

15
x, 8

9
x, 6

7
x
}
.

So,

ψ (G(fx, gy, hz)) = G(fx, gy, hz) = max{|fx− gy|, |gy − hz|, |hz − fx|}

= max{| x
15

− y

9
|, |y

9
− z

7
|, |z

7
− x

15
|}

≤ 9

10
max

{
max{|x− y|, |y − z|, |z − x|}, 14

15
x,

8

9
y,

6

7
z

}
=

9

10
M(x, y, z)

b) If x, y, z ∈
[
1
2
, 1
]
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G(x, y, z) = max{|x− y|, |y − z|, |z − x|}
G(x, x, fx) = 10

11
x

G(y, y, gy) = 6
7
y

G(z, z, hz) = 3
4
z

Then, M(x, y, z) = max
{
max{|x− y|, |y − z|, |z − x|}, 10

11
x, 6

7
x, 3

4
x
}
.

We have,

ψ (G(fx, gy, hz)) = G(fx, gy, hz) = max{|fx− gy|, |gy − hz|, |hz − fx|}

= max{| x
11

− y

7
|, |y

7
− z

4
|, |z

4
− x

11
|}

≤ 9

10
max

{
max{|x− y|, |y − z|, |z − x|}, 10

11
x,

6

7
y,

3

4
z

}
=

9

10
M(x, y, z)

c) If x ∈
[
0, 1

2

)
and y, z ∈

[
1
2
, 1
)

G(x, y, z) = max{|x− y|, |y − z|, |z − x|}
G(x, x, fx) = 14

15
x

G(y, y, gy) = 6
7
y

G(z, z, hz) = 3
4
z

Then, M(x, y, z) = max
{
max{|x− y|, |y − z|, |z − x|}, 14

15
x, 6

7
y, 3

4
z
}

We get,

ψ (G(fx, gy, hz)) = G(fx, gy, hz) = max{|fx− gy|, |gy − hz|, |hz − fx|}

= max{| x
11

− y

7
|, |y

7
− z

4
|, |z

4
− x

11
|}

≤ 9

10
max

{
max{|x− y|, |y − z|, |z − x|}, 14

15
x,

6

7
y,

3

4
z

}
=

9

10
M(x, y, z)

d) As above results, we can find that the other cases are the same.

Therefore, all the conditions of Theorem 2.1 are satisfied. Then 0 is the unique common
fixed point of f , g and h. Moreover, each fixed point of f is a fixed point of g and h, and
conversely.

Corollary 2.1. Let f, g and h be self maps on a complete G-metric space X
satisfying the inequality

ψ (G(fx, gy, hz)) ≤ F (ψ (G(x, y, z)) , φ (G(x, y, z))) ,(2.11)

for all x, y, z ∈ X, where F : [0,+∞)2 → R is C-class function, ψ : [0,+∞) →
[0,+∞) is an altering distance function, φ : [0,+∞) → [0,+∞) is an ultra alter-
ing distance function. Then f, g and h have a unique common fixed point in X.
Moreover, any fixed point of f is a fixed point of g and h and conversely.
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Corollary 2.2. [1] Let f, g and h be self maps on a complete G-metric space X
satisfying the inequality

ψ (G(fx, gy, hz)) ≤ ψ (M(x, y, z))− φ (M(x, y, z))

where φ ∈ Ψ, ψ ∈ Ψ and

M(x, y, z) = max{G(x, y, z), G(x, x, fx), G(y, y, gy), G(z, z, hz),
G(x, fx, gy), G(y, gy, hz), G(z, hz, fx)}

for all x, y, z ∈ X. Then f, g and h have a unique common fixed point in X.
Moreover, any fixed point of f is a fixed point of g and h and conversely.

Proof. Set F (s, t) = s− t in Theorem 2.1.

Remark 2.1. Put ψ(t) = t, F (s, t) = ks with k ∈ (0, 1) ,we can find corollary 2.3 of [14]
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