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Abstract. Identity-Based Encryption is a public-key cryptosystem that uses the re-
ceiver identifier information such as email address, IP address, name, etc, to compute a
public and a private key in a cryptosystem and encrypt a message. A message receiver
can obtain the secret key corresponding with his privacy information from private key
generator and he can decrypt the ciphertext. In this paper, we review Boneh-Franklin’s
scheme and use a bilinear map and Weil pairing’s properties to propose an identity-
based cryptography scheme based on isogeny of elliptic curves.
Keywords: Identity-based encryption; elliptic curves; isogeny of elliptic curves.

1. Introduction

Public key encryption (PKE), involves two distinct keys, public key, and private key.
The public key can be widely distributed without compromising its corresponding
private key. Identity-Based Encryption (IBE) is a public-key encryption scheme
in which the public key can be an arbitrary string. Identity-based encryption is
a cryptographic scheme, which enables any pair of users to communicate securely
without exchanging secret or public keys. Actually by the identity-based scheme,
if you know somebody’s name or email address you can send him a message which
only he can read. This issue has now been particularly attended by cryptographic
researchers and so far, many cryptography schemes are based on it has been pre-
sented.

The basic identity scheme was first proposed by Shamir [11] in 1984. The scheme
is specified by four phases:

1. Setup: In this phase, general system parameters and master-key are created.

2. Extraction: In this algorithm, the private key associated with an arbitrary
public key string ID ∈ {0, 1}∗ is created by using the master-key.
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3. Encryption: A message is encrypted using the public key ID.

4. Decryption: An encrypted message is decrypted having the corresponding
private key.

When the sender, Alice, sends an e-mail to the receiver, Bob, at bob@email.com, she
simply encrypts her message having the public key string ”bob@email.com”. In this
method, we need a trusted third party known as ”Private Key Generator” (PKG),
which computes a master private key and a public key. The PKG has a privileged
position by knowing some secret information that enables it to compute the private
keys for all the users in the system. Thus, when Bob receives the encrypted message
by his e-mail, he contacts to the PKG, authenticates himself to it in the same way,
then he obtains his private key from the PKG, and he can read his e-mail [1,6].
The problem of constructing an IBE was an open problem for many years. Finally,
Boneh and Franklin [1] proposed an IBE scheme using bilinear maps in 2001. Soon
after Boneh and Franklin’s announcement, it was detected that Clifford Cocks, had
designed a simple IBE years earlier.

Boneh and Franklin presented a functional IBE scheme in which the performance
of their approach is similar to the performance of ElGamal encryption in F∗

q , and
the security of their scheme is based on the Computational Diffie-Hellman (CDH)
hypothesis on elliptic curves.

In this paper, we propose an identity-based encryption scheme based on the iso-
genies between elliptic curves. The security of our scheme is based on the hardness
of the isogeny problem that is finding an isogeny between two given isogenous ellip-
tic curves. In our proposed scheme we use the endomorphism ring of an ordinary
elliptic curve E, (End(E)), and some its properties such as the commutativity of
End(E).

Basic Concepts of IBE. As mentioned earlier, in the IBE scheme Alice can use
the receiver’s identifier information which is presented by any string, such as email
address or IP address, even a digital image [10], to encrypt a message. Bob obtains a
private key corresponding to his identifier information from the trusted third party,
then he can decrypt the ciphertext (Fig. 1.1).

Universally an identity-based encryption scheme is specified by four randomized
algorithms:

1. Setup: First, the PKG creates a public key pkPKG and a master private key
skPKG, then he publishes pkPKG as a public key.

2. Extraction: Bob authenticates himself to the PKG and receives his private
key skBob corresponding to his identity, IDBob.

3. Encryption: Alice encrypts her message,M to the ciphertext C using IDBob

and pkPKG.

4. Decryption: Bob decrypts the ciphertext C, using his private key, skBob and
reconstruct the message M .
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Fig. 1.1: Identity-based encryption scheme

The rest of the paper is organized as follows: Section 2 contains a summary
of some preliminaries on elliptic curves, isogenies, and basic properties of the Weil
pairing. In section 3, we give a review of Boneh and Franklin’s IBE scheme. Our
proposed identity-based encryption scheme is given in Section 4. Finally, we dedi-
cate the security analysis of our scheme in Section 5.

2. Preliminaries

In this section, we first briefly introduce elliptic curves, isogenies and Weil pairing
(see [12, 15]).

2.1. Elliptic Curves

Elliptic Curve Cryptography (ECC) was introduced by Koblitz [5] and Miller [8]
in 1985. They proposed completely different cryptographic use of elliptic curves.
The main reason for the attractiveness of ECC is the fact that there is no sub-
exponential algorithm known for solving the Discrete Logarithm Problem (DLP)
on a properly chosen elliptic curve. We will refer to it later.

Definition 2.1. Let K be a field of characteristic not equal to 2 and 3. An elliptic
curve E over K is a curve given by a (short) Weierstrass equation of the form

y2 = x3 +Ax+B(2.1)

where A,B ∈ K, and its discriminant, ∆ = −16(4A3 + 27B2) is nonzero. The
j-invariant of the elliptic curve E is defined by

j = j(E) = 1728
4A3

4A3 + 27B2

furthermore, any elliptic curve E can be determined by its j-invariant. In other
words, two elliptic curves with the same j-invariant are isomorphic over K.
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We say that the elliptic curve E : y2 = x3 + Ax + B is defined over K, where
A,B ∈ K. For the elliptic curve E defined over K, the set of K-rational points of
E is defined by

E(K) = {(x, y) ∈ K2 : y2 = x3 +Ax+B} ∪ {O},

where, O is the point at infinity.

The set E(K) forms an abelian additive group with identity element O. Let
P = (xP , yP ) and Q = (xQ, yQ) be two points on the curve. The sum of P and Q
is defined as R = P +Q = (xR, yR) where,

1. If xP 6= xQ, then xR = m2 − xP − xQ and yR = m(xP − xR) − yP , where
m = (yQ − yP )/(xQ − xP ).

2. If xP = xQ and yP 6= yQ, then R = O.

3. If P = Q and yP 6= 0, then xR = m2 − 2xP and yR = m(xP − xR) − yP ,
where, m = (3x2P +A)/2yP .

4. If P = Q and yP = 0, then R = O.

5. If Q = O, then R = P .

For the Weierstrass equation described by (2.1), if P = (x, y), then −P = (x,−y).
Suppose E is an elliptic curve defined over a field K and Let n be a positive

integer, the n-torsion subgroup of E defined as follows

E[n] = {P ∈ E(K) | nP = O}.

If the characteristic of K does not divide n, or is zero, then E[n] ∼= Zn × Zn, and
if the characteristic of K is p > 0, n = prn′ with p ∤ n, then E[n] ∼= Zn′ × Zn or
Zn′ × Zn′ . For the elliptic curve E defined over the finite field Fq, q = pr for some
prime p, we say that E is supersingular if E[p] = {O}, and E is called ordinary if
E[P ] ∼= Zp.

Let the elliptic curve E defined over the field Fq. Then E(Fq) ∼= Zn for some
integer n ≥ 1, or E(Fq) ∼= Zn1

×Zn2
for some integers n1, n2 ≥ 1 with n1 dividing

n2. By Hasse’s theorem, for elliptic curve E over the finite field Fq, the order of E
satisfies | q + 1−#E(Fq) |≤ 2

√
q. The trace of the elliptic curve E denoted by aq,

is aq = q + 1−#E(Fq). The elliptic curve E is supersingular if and only if aq ≡ 0
(mod p), it means that #E(Fq) ≡ 1 (mod p).

Discrete Logarithm Problem: Let E be an elliptic curve defined over the finite
field Fq, P ∈ E and Q ∈ 〈P 〉. The Elliptic Curve Discrete Logarithm Problem
(ECDLP) is the problem of finding integer n such that Q = nP . It is Well-known
that the fastest known algorithm to solve the ECDLP over an arbitrary curve is
Pollard’s rho method, which has exponential time complexity. [9].
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2.2. Isogeny of Elliptic Curves

Definition 2.2. Let K be a field and let E1 and E2 be two elliptic curves defined
over K. An isogeny is a non-constant morphism ϕ : E1(K) → E2(K) satisfying
ϕ(OE1

) = OE2
. The isogeny ϕ can be displayed by

ϕ : (x, y) →
(

p(x)

q(x)
,
r(x)

s(x)
y

)

with polynomials p(x), q(x), r(x) and s(x) such that p(x) and q(x) do not have a
common factor. The degree of isogeny ϕ denoted by deg(ϕ), is the maximum degree
of the polynomials p(x) and q(x). Also, we define deg(0) = 0. The isogeny ϕ is
called separable, if deg(ϕ) = #ker(ϕ). We say that two elliptic curves E1 and E2

are l-isogenous when there exists a nonzero isogeny of degree l from E1 to E2. If
ϕ : E1 → E2 is an isogeny of degree l, then the dual of ϕ denoted by ϕ̂, is a unique
isogeny from E2 to E1 of the same degree l, such that ϕ̂◦ϕ = [l]E1

, the multiplication
by l map on E1 and also, ϕ◦ ϕ̂ = [l]E2

. By Tate’s theorem [9], two elliptic curves E1

and E2 are isogenous over the finite field Fq, if and only if #E1(Fq) = #E2(Fq). We
denote the set of isogenies from E1 to E2 byHom(E1, E2). The sum of two isogenies
ϕ and ψ is defined by (ϕ + ψ)(P ) = ϕ(P ) + ψ(P ), for each P ∈ E. It implies that
ϕ+ψ is an isogeny, and thus Hom(E1, E2) is a group. If E1 = E2, then we can also
compose isogenies. If E is an elliptic curve, we let End(E) = Hom(E,E) be the
ring whose addition law is as given above and whose multiplication is composition,
(ϕψ)(P ) = ϕ(ψ(P )). The ring End(E) is called the endomorphism ring of E. The
Frobenius endomorphism τq is defined by τq(x, y) = (xq, yq). It is an endomorphism
of E (see [15]).

2.3. Bilinear Map

Let G1 be an additive group of order r and G2 be a multiplicative group of the
same order. A function e : G1 × G1 → G2 is said to be a bilinear pairing if the
following properties hold

1. Bilinearity: for all P,Q ∈ G1 and a, b ∈ Z∗

r , e(aP, bQ) = e(P,Q)ab.

2. Non-degeneracy: there exist P,Q ∈ G1 such that e(P,Q) 6= 1.

3. Computability: for all P,Q ∈ G1, there exists an efficient algorithm to
compute e(P,Q).

As we will say in section 2.4, the example of an efficiently computable non-degenerate
the bilinear map is the Weil pairing.

2.4. Weil Pairing

As already mentioned if E be an elliptic curve over a field K and let n be an integer
not divisible by the characteristic of K, Then E[n] ∼= Zn × Zn. Let

µn = {x ∈ K|xn = 1},
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be the group of n-th roots of unity in K.Since n is not divided by the characteristic
of K, the equation xn = 1 has no multiple roots so, it has n distinct roots in K,
Therefore, µn is a cyclic group of order n. Any generator γ of µn is called a primitive
nth root of unity. This is equivalent to saying that γk = 1 if and only if k divided
by n.

Definition 2.3. Let E be an elliptic curve over a field K and let n be a positive
integer not divisible by the characteristic of K. Then there is a pairing

en = E[n]× E[n] → µn(2.2)

called the Weil Pairing. This concept satisfies the following properties:

1. en is bilinear in each variable. This means that

en(S1 + S2, T ) = en(S1, T )en(S2, T )(2.3)

and

en(S, T1 + T2) = en(S, T1)en(S, T2)(2.4)

for all S, S1, S2, T, T1, T2 ∈ E[n].

2. en is nondegenerate in each variable. This means that if en(S, T ) = 1 for all
T ∈ E[n] then S = ∞ and also that if en(S, T ) = 1 for all S ∈ E[n] then
T = ∞.

3. en(T, T ) = 1 for all T ∈ E[n].

4. en(S, T ) = en(T, S)
−1 for all S, T ∈ E[n].

5. en(σ(S), σ(T )) = σ(en(S, T )). For all automorphism σ of K such that σ is the
identity map on the coefficient of E (if E is in Weiratrass form, this means
that σ(A) = A and σ(B) = B).

6. en(α(S), α(T ) = en(S, T )
deg(α) for all separable endomorphisms α of E.

If the coefficient of E lie in a finite field Fq, the statement also holds when α is the
Frobenius endomorphism τQ. (Actually, the statement holds for all endomorphism
α, separable or not.)

Now we say that the isogenies ϕ and ϕ̂ are dual (or adjoint) concerning the Weil
pairing. Let ϕ : E1 → E2 be an isogeny of elliptic curves and let ϕ̂ be its dual, and
let en be a Weil pairing. Then en(ϕ(S), T ) = en(S, ϕ̂(T )) for all n-torsion points
S ∈ E1[n] and T ∈ E2[n] (see [7]).
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3. Boneh-Franklin Scheme

Boneh and Franklin’s Scheme can be built from any bilinear map ê : G1×G1 → G2

between two groups G1 and G2 as long as a variant of the computational Diffie-
Hellman problem in G1 is hard. They use the Weil pairing on elliptic curves as an
example of such a map. They describe the scheme in four phases:

1. Setup: The PKG specifies an elliptic curveE over Fp. It Chooses an arbitrary
P ∈ E/Fp of order q. The PKG also specifies two hash functions H1 : Fp2 →
{0, 1}n and H2 : {0, 1}∗ → Fp. The PKG picks a random s ∈ Z∗

q as a master
key and denoted it by pkPKG. Then it computes a public key pkPKG = sP .
The PKG publishes {E,F, P,H1, H2, pkPKG}.

2. Extraction: Bob contacts the PKG to get his private key. The PKG first
maps, Bob’s identity, IDBob ∈ {0, 1}∗ to a point QID ∈ E/Fp of order q, then
it computes skBob = sQID where QID = H1(ID) and s is the master key.

3. Encryption: Alice encrypt her message M ∈ {0, 1}l (where l denotes the
length of M). under the public key, pkPKG and IDBob which is mapped
to a point QID ∈ E/Fp of order q. She computes U = rP and V =
H2(ê(QID, pkPKG)

r)⊕M , where r is chosen at random from Zq and QID =
H1(ID). The resulting ciphertext C = (U, V ) is sent to Bob.

4. Decryption: Bob receives the ciphertext C, and checks it. If U ∈ E/Fp is
not a point of order q rejects the ciphertext. Otherwise, to decrypt C using
his private key, skBob and computes:

V ⊕H2(ê(skBob, U)) =M(3.1)

This completes the description as follows:

ê(skBob, U) = ê(sQID, rP )

= ê(QID, P )
sr

= ê(QID, pkPKG)
r

Thus, applying decryption after encryption produces the original message M
as required.

4. Proposed Scheme

This section details our newly proposed identity-based encryption using isogeny of
elliptic curves.

Let Fq be the field of order q, where q is a power of a prime number p and n be
a positive integer coprime to p. Let E be an ordinary elliptic curve over Fq, and let
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en : E[n]× E[n] → µn be the Weil en-pairing. In our scheme, we use an algorithm
A to convert a string IDBob ∈ {0, 1}∗ to a point QID ∈ E of order n.

The phases in the proposed scheme are Setup phase, Extraction phase, Encryp-
tion phase and Decryption phase. The procedure of our scheme is described in
detail as follows:

1. Setup: The PKG randomly chooses an isogeny ϕ ∈ End(E) as its master
key and maps IDBob ∈ {0, 1}∗ to a point QID ∈ E[n] by using algorithm A.
The PKG computes a public key as follows:

pkPKG = ϕ(QID),

and publishes {E, q, ϕ(QID)}.

2. Extraction: The PKG computes Bob’s private key skBob = ϕ̂(QID), and
sends it to Bob.

3. Encryption: Alice encrypts the message M using Bob’s public key, IDBob,
by performing the following steps:

a) She uses algorithm A to map IDBob into the point QID ∈ E[n].

b) She chooses an isogeny ψ ∈ End(E).

c) She sets the ciphertext to be C = (u, v), where

u = ψ(QID), v = en(ϕ(QID), ψ̂(QID)) +M,

then she sends C = (u, v) to Bob.

4. Decryption: Upon receiving C = (u, v), Bob computes

en(u, skBob) = en(ψ(QID), ϕ̂(QID))

= en(QID, ψ̂(ϕ̂QID))

= en(QID, ϕ̂(ψ̂(QID))

= en(ϕ(QID), ψ̂(QID)),

and extracts the original message M = v − en(ψ(QID), ϕ̂(QID)) as required.

5. Security analysis

In this section, we analyze the security of our proposed scheme, which is based on
the hardness of some isogeny problems as stated in the following.

Problem 1 (Isogeny Problem): For two given isogenous elliptic curves E1

and E2, find an isogeny ϕ : E1 → E2.

Problem 2 (Isogeny Logarithm Problem): Let E1 and E2 be two isogenous
elliptic curves, P ∈ E1 and Q ∈ E2. Find an isogeny ϕ : E1 → E2 such that
Q = ϕ(P ).
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Problem 1 is a hard problem that has been studied by many researchers [2, 3, 4, 6,
13]. The hardness of this problem over ordinary curves is as hard as the discrete
logarithm problem, so its security is at the same level. Problem 2 is even harder
than problem 1 because it must satisfy the extra term Q = ϕ(P ).

Generally, as mentioned earlier, there is no efficient algorithm to find an isogeny
between two elliptic curves and it seems hard to determine the structure ofHom(E1, E2)
and also End(E). Furthermore according to isogeny logarithm problem there is no
efficient algorithm to find an isogeny ϕ by having P and Q = ϕ(P ) .

Forward secrecy: Recall that in our proposed scheme, the public parameters
are {E,Fq, ϕ(QID)}. Suppose Eve (the adversary) knows pkPKG = ϕ(QID). To

extract a message M , he must compute e(ϕ(QID), ψ̂(QID)). But having E, he
could get no knowledge of isogeny ϕ ∈ End(E). Without the knowledge, this is
exactly an isogeny problem that Eve is not able to solve, hence he cannot compute
e(ϕ(QID), ψ̂(QID)).
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