NORMAL CAYLEY GRAPHS OF CERTAIN GROUPS WHICH ARE LOCALLY PRIMITIVE

A. Mahmiani

Abstract. Let $\Gamma = Cay(G, S)$ be the Cayley graph of a finite group *G* on *S*. We call Γ X-locally primitive if $R(G) \le X \le Aut(\Gamma)$ and X_v acts primitively on $\Gamma(v) = \{u \in G : u \text{ is ad jacent to } v \text{ in } \Gamma\}$, for all vertices v, where R(G) denotes the right regular representation of *G* and X_v denotes the stabilizer of v under *X*. In this paper we consider a certain group of order 8n and prove that it is never an X-locally primitive normal connected Cayley graph of valency at least 3.

Keywords: Cayley graph, connected graph, finite group, locally primitive graph.

1. Introduction

In this paper we are concerned with simple connected graphs $\Gamma = (V, E)$, where V and E denote the set of vertices and edges of Γ . An edge joining $u, v \in V$ is denoted by $\{u, v\}$. The group of automorphisms of Γ is a subgroup X of $Aut(\Gamma)$. The graph Γ is called X-vertex transitive (vertex-transitive in the case of X = A) if X is transitive on V, and Γ is called X-locally primitive (locally primitive in short) if $X_v = \{g \in X : v_g = v\}$ is primitive on $\Gamma(v)$, for each vertex $v \in V$, where $\Gamma(v)$ denotes the set of all vertices of which are adjacent to v. The degree of a vertex v is denoted by deg(v) and is equal to $|\Gamma(v)|$, A graph is called regular of degree d if the degree of each vertex is equal to d.

Let *G* be a finite group and *S* be an inverse closed subset of *G*, i.e., $S = S^{-1}$, such that $1 \notin S$. The Cayley graph Cay(G, S) on *G* with respect to *S* is a graph with vertex set *G* and edge set {{g, sg} : $g \in G, s \in S$ }. it can be proved that a Cayley graph Cay(G, S) is connected if and only if $G = \langle S \rangle$, i.e., *G* is generated by *S*. A Cayley graph Cay(G, S) is always regular of degree |*S*|. For $g \in G$ we define the mapping $\rho_g : G \to G$ by $\rho_g(x) = xg$ for all $x \in G$. Clearly ρ_g is an automorphism of the Cayley graph Cay(G, S) isomorphic to *G*, called the right regular representation of

Received November 19, 2014; Accepted June 03, 2015

²⁰¹⁰ Mathematics Subject Classification. Primary 05C25; Secondary 20B25

G. Since R(G) acts regularly on *G* we deduce that Cay(G, S) is a vertex-transitive graph.

For two inverse closed subsets *S* and *T* of a group *G* not containing the identity element 1 of *G*, if there is an automorphism α of *G* such that $S^{\alpha} = T$ then *S* and *T* are said to be equivalent, and in this case we have $Cay(G, S) \cong Cay(G, T)$.

Let $\Gamma = Cay(G, S)$ be the Cayley graph of a finite group *G* on *S*. Let

$$Aut(G, S) = \{\alpha \in Aut(G) : S^{\alpha} = S\}$$

and set $A = Aut(\Gamma)$. Then $N_A(R(G)) = R(G) \times Aut(G, S)$.

The following definition is initiated in [7].

Definition 1.1. Let $\Gamma = Cay(G, S)$ be the Cayley graph *G* on a set *S*. Then Γ is said to be normal if R(G) is a normal subgroup of $Aut(\Gamma)$.

It is proved in [1] that $\Gamma = Cay(G, S)$ is normal if and only if $A = Aut(\Gamma) = R(G) \times Aut(G, S)$, where × denotes semi-direct product of groups, and in this case $A_1 = Aut(G, S)$ where A_1 is the stabilizer of the identity 1 of *G* in *A*. The normality of Cayley graphs have been extensively studied from different views by many authors. In [6] all disconnected normal Cayley graphs are obtained. Therefore, it suffices to study the connected Cayley graphs when one investigates the normality of Cayley graphs. A class of normal Cayley graphs has been studied in [5]. One aspect of studying Cayley graphs is the investigation of their automorphism groups as permutation groups. Locally primitive Cayley graphs have been studied in [2], [3] and [4].

In [4] a complete characterization of locally primitive normal Cayley graphs of metacyclic groups is given and in particular it is proved that if $\Gamma = Cay(G, S)$ is a connected X-locally primitive normal Cayley graph of degree at least 3, where $G \cong Z_m Z_n$ is a non-abelian meta-cyclic group, and $R(G) \leq X \leq Aut(\Gamma)$ then n = 2 and $G \cong D_{2m}$ is a dihedral group. Motivated by this result we consider a class of groups of order 8n denoted by V_{8n} where $V_{8n} = \langle a, b : a^{2n} = b^4 = 1, ba = a^{-1}b^{-1}, b^{-1}a = a^{-1}b\rangle$ and investigate X-locally primitive normal Cayley graphs $\Gamma = Cay(V_{8n}, S)$ of degree at least 3 and prove that Γ is never an X-locally primitive normal connected Cayley graph for all

 $X, R(V_{8n}) \le X \le R(V_{8n}) \times Aut(R(V_{8n}, S)).$

2. Preliminary results

Lemma 2.1. Let $\Gamma = Cay(G, S)$, |S|3 be a connected X-locally primitive normal Cayley graph, where $R(G) \le X \le Aut(\Gamma)$. Then

1. $G = \langle S \rangle$, and all elements of S are involutions and conjugate under Aut(G, S).

2. $X_1 = Aut(G, S)$ acts faithfully and primitively on S.

74

Proof. By normality of F we have *Aut*(Γ) = *R*(*G*) × *Aut*(*G*, *S*) where the action of *Aut*(*G*, *S*) on *R*(*G*), or equivalently on *G*, is by conjugation. By connectedness we have *G* = ⟨*S*⟩ and by local permittivity condition $X_1 ≤ Aut(G, S)$ acts primitively on $\Gamma(1) = S$. Since *G* = ⟨*S*⟩, the action of X_1 on *S* is faithful and (2) is proved. Action of X_1 on *S* is by conjugation and this means that elements of *S* are conjugate under X_1 . Now for $x \in S$ we have $\{x, x^{-1}\} ⊆ S$ and $\{x, x^{-1}\}^{\alpha} = \{(x), (\alpha(x)^{-1})\}$ for all $\alpha \in X_1$. Because of permittivity and |S| ≥ 3 we obtain $x = x^{-1}$, $\forall x \in S$, implying that all elements of *S* are involutions and the Lemma is proved. □

Next, let us consider the dihedral group D_8 of order 8. We have $D_8 = \langle a, b : a^2 = b^4 = 1, a^{-1}ba = b^{-1} \rangle = V_8$. Elements of order 4 in D_8 are *b* and b^3 and elements of order 2 are *a*, *ab*², *ab*, *ab*³ and *b*². It is well-known that $|Aut(D_8)| = 8$ and that $Aut(D_8) \cong D_8$. We can produce all 8 elements of $Aut(D_8)$ by giving their effects on *a* and *b* as follows:

$$f_{1}: \left\{ \begin{array}{l} a \to a \\ b \to b \end{array} \right. f_{2}: \left\{ \begin{array}{l} a \to ab^{2} \\ b \to b \end{array} \right. f_{3}: \left\{ \begin{array}{l} a \to ab \\ b \to b \end{array} \right. f_{4}: \left\{ \begin{array}{l} a \to ab^{3} \\ b \to b \end{array} \right. f_{5}: \left\{ \begin{array}{l} a \to a \\ b \to b^{3} \end{array} \right. f_{6}: \left\{ \begin{array}{l} a \to ab^{2} \\ b \to b^{3} \end{array} \right. f_{7}: \left\{ \begin{array}{l} a \to ab \\ b \to b^{3} \end{array} \right. f_{8}: \left\{ \begin{array}{l} a \to ab^{3} \\ b \to b^{3} \end{array} \right. f_{8}: \left\{ \begin{array}{l} a \to ab^{3} \\ b \to b^{3} \end{array} \right. f_{8}: \left\{ \begin{array}{l} a \to ab^{3} \\ b \to b^{3} \end{array} \right. f_{8}: \left\{ \begin{array}{l} a \to ab^{3} \\ b \to b^{3} \end{array} \right. f_{8}: \left\{ \begin{array}{l} a \to ab^{3} \\ b \to b^{3} \end{array} \right. f_{8}: \left\{ \begin{array}{l} a \to ab^{3} \\ b \to b^{3} \end{array} \right\}$$

We try to find a subset *S* of $D_8\{1\}$ of cardinality at least 3 such that $\Gamma = Cay(D_8, S)$ is a connected X-locally primitive normal Cayley graph. By Lemma 2.1, $S \subseteq \{a, ab^2, ab, ab^3, b^2\}$, and since $f_i(b^2) = b^2$ for all $1 \le i \le 8$, we must have $b^2 / \in S$.

From the other hand since $X_1 \leq Aut(D_8, S)$ acts transitively on *S*, we must have $|S|||X_1|$ hence from $|X_1|||Aut(D_8, S)|$ we obtain $|X_1||8$ hence|S|| 8 from which we deduce |S| = 4. Therefore $S \subseteq \{a, ab^2, ab, ab^3\}$ and it 8. If $|X_1| = 4$ then X_1 can not act primitively on *S* and if $|X_1| = 8$, then $X_1 = Aut(D_8, S) = D_8$ and it is evident that D_8 can not act primitively on a set of size 4.

The above investigations show that $\gamma = Cay(D_8, S)$ is never an X-locally primitive normal connected Cayley graph for any X with $R(D_8) \le X \le Aut(\Gamma)$. Therefore in our further discussion about D_{8n} we will assume n > 1.

3. Main result

Let V_{8n} denote the following group given by generators and relations:

$$V_{8n} = \langle a, b : a^{2n} = b^4 = 1, ba = a^{-1}b^{-1}, b^{-1}a = a^{-1}b \rangle$$

It is easy to verify the following facts about V_{8n} :

*Elements of order 2 in V_{8n} , are of the following types:

Type(I): a^n , b^2 , $a^n b^2$

A. Mahmiani

Type(II): $a^i, b, i = 1, 3, ..., 2n - 1$ Type(III): $a^i b^3, i = 1, 3, ..., 2n - 1$ Therefore V_{8n} has 2n + 3 elements of order 2,

$$*Z(V_{8n}) = 1, b^2$$
 and

$$G' = \langle a^2, b^2 \rangle, |G'| = 2n,$$

if n is odd and

$$G' = \langle a^2 b^2 \rangle, |G'| = n$$

if *n* is even.

* Elements of order 2n in V_{8n} , are:

$$a^{i}.(i,2n) = 1; a^{i}b^{2}.(i,2n) = 1; a^{i}b^{2}$$

with (i, 2n) = 2 in case *n* is odd.

Lemma 3.1. $|Aut(V_{8n})| = 4n\varphi(2n)$ if n > 1 and $|Aut(V_8)| = 8$.

Proof. . It is clear that $V_8 \cong D_8$ and $Aut(V_8) = D_8$, hence we will assume n > 1. For $f \in Aut(V_{8n})$ it is enough to define f(a) and f(b) so that f(a) and f(b) are elements of order 2n and 4 respectively. Since $Z(V_{8n}) = \{1, b^2\}$, we must have $f(b^2) = b^2$, hence $f(b) = a^i$ leads to contradiction. Since the order of a is equal to 2n, we can define $f(a) = a^k$, (k, 2n) = 1, and in this case for f(b) we have the following possibilities: $f(b) = a^l b$ or $a^l b^3$, l even, $0 \le 1 \le 2n$. It can be verified that such an f is indeed an automorphism of f giving the total of $2n\varphi(n)$ automorphisms. Similarly we have to define $f(a) = a^k b^2$, (k, 2n) = 1, and $f(b) = a^l b$ or $a^l b^3$ where 1 is even, $0 \le 1 \le 2n$. We will obtain $2n\varphi(n)$ automorphism in this cases well. If n is odd, $a^k b^2$ with (k, 2n) = 2 is also art element of order 2n, hence we may define $f(a) = a^k b^2$ and $f(b) = a^l b$ or $a^l b^3$, l even, $0 \le 1 \le 2n$. But in this case it can be verified that f(ab) = f(a)f(b) is not an element of order 2, hence if can not he extended to an automorphism of V_{8n} . Therefore if n > 1 there are $4n\varphi(n)$ automorphisms of V_{8n} and the Lemma is proved. □

Lemma 3.2. If *n* is even involutions of V_{8n} , generate a proper subgroup of V_{8n} , of order 4*n*, and if *n* is odd, the involutions of Type (II) and (III) generate a proper subgroup of V_{8n} of order 4*n*.

Proof. Using the relations in defining definition of V_{8n} , we may use induction to prove:

 $ba^k = a^{-k}b$ if k is even, $ba^k = a^{-k}b^{-1}$ if k is odd.

Therefore choosing involutions of Type (II) or (III) and multiplying them we obtain:

Type (II) Type (II): $a^k ba^l b = a^{k-1}, k, l$ odd, Type (II) Type (III): $a^k ba^l b^3 = a^{k-1}b^2, k, l$ odd, Type (III) Type (III): $a^k b^3 a^l b^3 = a^{k-1}, k, l$ odd.

76

Therefore a^{2k} and $a^{2k}b^2$, $0 \le k < n$, are also generated by involutions of Type (II) and (III). But if *n* is even, then a^n , b^2 and a^nb^2 , which are involutions of Type (I), are also generated. Therefore involutions of Type (II) and (III) generate a subgroup of V_{8n} , with order 4n. If *n* is odd, then $\{a^{2k}, a^{2k}b^2 : 0 \le k < n\}$ does not include a *n* and a^nb^2 , hence the subgroup generated by involutions of Type (II) and (III) generate a proper subgroup of V_{8n} , with order 4n. \Box

Theorem 3.1. $\Gamma = Cay(V_{8n}, S)$ is never a connected X-locally primitive normal Cayley graph for any subset $S \subseteq V_{8n}$, of cardinality at least 3, where

$$R(V_{8n}) \le X \le Aut(\Gamma).$$

Proof. Since *V*₈ = *D*₈, by previous section such an *S* does not exist. Hence we may assume *n* > 1. By Lemma 2.1 all elements of *S* should be involutions and *V*_{8n} = ⟨*S*⟩. By Lemma 3.2 if n is even such an *S* does not exist, hence we may assume that *n* is odd. By Lemma 3.2 elements of *S* can not be only of Type (II) or (III), hence *S* must contain at least one involution of Type (I). Also $b^2 \in S$ because $f(b^2) = b^2$, for all $f \in Aut(\Gamma)$. If a $n \in S$, then by Lemma 3.1 either $f(a) = a^k$, (*k*, 2*n*) = 1, or $f(a) = a^k b^2$, (*k*, 2*n*) = 1, implying $f(a^n) = a^{kn} = a^n$ or $f(a^n) = a^n b^2$ respectively. Of course $f(a) = a^k$ is not possible and if $f(a^n) = a^n b^2$, then $f(a^n b^2) = a^{kn} a^{2n} b^2 = a^n$. Therefore $\{a^n b^2, a^n\}$ is invariant under all $f \in Aut(\Gamma)$, and also it is part of *S* contradicting the fact that $|S| \ge 3$. Similarly $a^n b^2 \in S$ leads to a contradiction, and the theorem is proved. □

Acknowledgment

The author would like to thank the referee of the paper for his/her comments and suggestions.

REFERENCES

- 1. C. D. Godsil, On the full automorphism group of a graph, 1981, 1:243256.
- 2. CH. Li nad J. Pan, *Locally primitive graphs of prime-power order*, J. Aust. Math. Soc.,2009, 86:111122.
- C. H. Li, C. E. Praeger, A. Venkatesh and S, Zhou, *Finite locally primitivegraphs*, 2002, 246: 197218.
- 4. J. Pan., *Locally primitive normal Cayley graphs of metacyclic groups*, Electronic J. Combin. 2009, 16: 96.
- 5. C. E. Praeger, *Finite normal edge-transitive Cayley graphs*, Bull. Aust. Math. Soc., 1996, 60: 207220.
- C. Q. Wang, D. J. Wang and M. Y. Xu, On normal Cayley graphs of finite groups, Science in china, 1998, A 28:131139.
- M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math, 1998, 182:309319.

A. Mahmiani

Anehgaldi Mahmiani Islamic Azad University Gonbad Kavoos branch Gonbad Kavoos, Iran mahmiani_a@yahoo.com

78