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Abstract. In this study, we introduce the notions of Cesàro, strongly Cesàro and sta-
tistical derivatives for real valued functions. These notions are based on the concepts of
Cesàro and statistical convergence of a sequence. Then we establish some relationships
between strongly Cesàro derivative and statistical derivative.
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functions; convergence of a sequence.

1. Introduction

In mathematical analysis, the concepts of limit, continuity and derivative for a
function are given respectively. In the literature, the concept of Cesàro limit has
been known for many years. Later, Cesàro continuity, statistical limit and statisti-
cal continuity concepts were given (see [5]). In [3] strongly sequentially continuous
functions were defined and studied. Cesàro derivative and statistical derivative def-
initions do not appear in the literature. We will introduce the concepts of Cesàro
derivative and statistical derivative in this study to fill the gap in the literature.

A sequence x = (xk) is said to be Cesàro summable to the number u if

lim
n→∞

1

n

n
∑

k=1

xk = u,

in this case we write (C, 1)− limxn = u, strongly Cesàro summable to the number
u if

lim
n→∞

1

n

n
∑

k=1

|xk − u| = 0,
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in this case we write [C, 1]− lim xn = u, and statistically convergent to the number
u if for every ǫ > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − u| ≥ ǫ}| = 0

where the vertical bars indicate the number of elements in the enclosed set, in this
case we write st− limxn = u.

Let (an) and (bn) be two sequences of real numbers such that (C, 1)− lim an = a

and (C, 1)− lim bn = b. It is known that

(C, 1)− lim an.bn = a.b and (C, 1)− lim(an + bn) = a+ b.

The idea of statistical convergence was introduced by Steinhaus in [13] and Fast
in [6] independently and since then has been studied by other authors including
[4, 7, 11] and [14]. Recently, the articles [1], [2], [8], [9] and [10] have been published
on statistical convergence and its applications.

2. Cesàro Derivative

Very basic finite difference formulas approximates the derivative f ′(x) using a se-
quence xn > 0 such that limn→∞ xn = 0. Two basic formulas for derivative of a
function f : R → R at a point x0 are

limn→∞
f(x0+xn)−f(x0)

xn

= f ′(x0) and limn→∞
f(x0+xn)−f(x0−xn)

2xn

= f ′(x0).

The first formula is Newton’s difference quotient and determines the slope of
a secant line of the graph of f . The second formula is the symmetric difference
quotient and determines the slope of a cord of the graph of f . For more detail (see
[12]).
With the similar approach we will now define the Cesàro derivative.

Definition 2.1. A function f : R → R has a Cesàro derivative w ∈ R at a point
x0 ∈ R if

lim
n→∞

1

n

n
∑

k=1

f(x0 + xk)− f(x0)

xk

= w

holds whenever xn > 0 and limn→∞ xn = 0.

An equivalent definition to the Definition 2.1 as follows:

Definition 2.2. A function f : R → R has a Cesàro derivative w ∈ R at a point
x0 ∈ R if

lim
n→∞

1

n

n
∑

k=1

f(x0 + xk)− f(x0 − xk)

2xk

= w

holds whenever xn > 0 and limn→∞ xn = 0.
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A function f : R → R is Cesàro continuous at a point x0 if

(C, 1)− lim f(x0 + xn) = f(x0)

holds for each sequence (xn) → 0.

Theorem 2.1. Let a function f : R → R has a Cesàro derivative w ∈ R at a point
x0 ∈ R then f is Cesàro continuous at the point x0.

Proof. Let limxn = 0. Clearly

f(x0 + xn)− f(x0) =
f(x0 + xn)− f(x0)

xn

xn

holds for each n ∈ N. Since limxn = 0 implies (C, 1)− limxn = 0, we can write

(C, 1)− lim(f(x0 + xn)− f(x0)) = (C, 1)− lim
f(x0 + xn)− f(x0)

xn

(C, 1)− limxn.

Hence, from the assumption we have

(C, 1)− lim f(x0 + xn) = f(x0)

so f is Cesàro continuous at the point x0.

Definition 2.3. A function f : R → R has a strongly Cesàro derivative w ∈ R at
a point x0 ∈ R if

lim
n→∞

1

n

n
∑

k=1

∣

∣

∣

∣

f(x0 + xk)− f(x0)

xk

− w

∣

∣

∣

∣

= 0

holds whenever xn > 0 and limn→∞ xn = 0.

An equivalent definition to the Definition 2.3 as follows:

Definition 2.4. A function f : R → R has a strongly Cesàro derivative w ∈ R at
a point x0 ∈ R if

lim
n→∞

1

n

n
∑

k=1

∣

∣

∣

∣

f(x0 + xk)− f(x0 − xk)

2xk

− w

∣

∣

∣

∣

= 0

holds whenever xn > 0 and limn→∞ xn = 0.

It is clear from the definitions of Cesàro and strongly Cesàro derivatives that if a
function has a strongly Cesàro derivative at point x0, it has a Cesàro derivative at
that point.
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3. Statistical Derivative

In this section, we first give the definition of statistical derivative and then we
establish some relationships between the strongly Cesàro derivative and statistical
derivative.

Definition 3.1. A function f : R → R has a statistical derivative w ∈ R at a
point x0 ∈ R if

lim
n→∞

1

n

∣

∣

∣

∣

{

k ≤ n :

∣

∣

∣

∣

f(x0 + xk)− f(x0)

xk

− w

∣

∣

∣

∣

≥ ǫ

}∣

∣

∣

∣

= 0

holds whenever xn > 0 and limn→∞ xn = 0.

An equivalent definition to the Definition 3.1 as follows:

Definition 3.2. A function f : R → R has a statistical derivative w ∈ R at a
point x0 ∈ R if

lim
n→∞

1

n

∣

∣

∣

∣

{

k ≤ n :

∣

∣

∣

∣

f(x0 + xk)− f(x0 − xk)

2xk

− w

∣

∣

∣

∣

≥ ǫ

}∣

∣

∣

∣

= 0

holds whenever xn > 0 and limn→∞ xn = 0.

If a function has derivative it has statistical derivative but converse may not be
true.

Theorem 3.1. a) If a function f : R → R has strongly Cesàro derivative at a
point x0 ∈ R then it has statistical derivative at the point x0.

b) If
(

f(x0+xk)−f(x0)
xk

)

is bounded for each k ∈ N and f has statistical derivative

at a point x0 ∈ R then f has strongly Cesàro derivative at the point x0.

Proof. Let’s write yk instead of f(x0+xk)−f(x0)
xk

for simplicity.

a) Let f has strongly Cesàro derivative at a point x0 ∈ R. For an arbitrary
ǫ > 0, we get

1

n

n
∑

k=1

|yk − w| =





1

n

n
∑

k=1|yk−w|≥ǫ

|yk − w| +
1

n

n
∑

k=1|yk−w|<ǫ

|yk − w|





≥
1

n

n
∑

k=1|yk−w|≥ǫ

|yk − w|

≥
1

n
|{1 ≤ k ≤ n : |yk − w| ≥ ǫ}|ǫ.
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Hence, we have

lim
n→∞

1

n
|{1 ≤ k ≤ n : |yk − w| ≥ ǫ}| = 0

that is, f has a statistical derivative at the point x0.

b) Now suppose that f has a statistical derivative at the point x0 and bounded,

since
(

f(x0+xk)−f(x0)
xk

)

is bounded for each k ∈ N, say |yk−w| ≤ K for all k. Given

ǫ > 0, we get

1

n

n
∑

k=1

|yk − w| =
1

n





n
∑

k=1|yk−w|≥ǫ

|yk − w|+

n
∑

k=1|yk−w|<ǫ

|yk − w|





≤
1

n



K

n
∑

k=1|yk−w|≥ǫ

1 +

n
∑

k=1|yk−w|<ǫ

|yk − w|





≤ K
1

n
|{1 ≤ k ≤ n : |yk − w| ≥ ǫ}|+

1

n

n
∑

k=1

ǫ

hence we have,

lim
n→∞

1

n

n
∑

k=1

|yk − w| = 0,

that is f has strongly Cesàro derivative at the point x0.
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