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c© 2020 by University of Nǐs, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract. In this paper, we study the class of mth root (α, β)-metrics which is a signif-
icant class mixed of two classes of metrics: m-th root metrics and (α, β)-metrics. First,
we find the necessary and sufficient condition under which the quartic (α, β)-metrics
are conformally Berwald. Then, we find the necessary and sufficient condition under
which the cubic (α, β)-metrics are conformally Berwald. Finally, we construct some
conformal Finslerian invariants.
Keywords: (α, β)-metrics; Finslerian invariants; conformally Berwald metrics; Rie-
mannian metrics.

1. Introduction

The conformal transformations of the class of Riemannian metrics have been well
investigated and developed. The class of Finsler metrics are a natural generalization
of the class of Riemannian metrics. The conformal transformation of Finsler metrics
was initiated by Knebelman in [10] and studied by Hashiguchi in [4]. Let F and
F̄ be two Finsler metrics on a manifold M . In [4], Hashiguchi proved that F is
conformal to F̄ if and only if there exists a scalar function κ = κ(x) such that
F̄ = eκF . The scalar function κ is called the conformal factor. A Finsler metric
is called a conformally flat metric if it is locally conformal to a locally Minkowski
metric [26]. There are many efforts to find a conformally invariant curvature tensor
similar to the Weyl conformal curvature of a Riemannian metric and to establish
the condition for a Finsler metric to be conformally flat. In [20], Szilasi-Vincze
gave an intrinsic proof of the Weyl theorem, which states that the projective and
conformal properties of a Finsler metric determine its metric properties uniquely.
Therefore the conformal properties of Finsler metrics deserve extra attention.

A Berwald metric is much closer to a Riemannian metric than the other class of
Finsler metrics because any geodesic of a Berwald metric must be that of a Rieman-
nian metric [17]. A Finsler metric F on a manifold M is said to be a Berwald metric
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if there exists a torsion-free affine connection ∇ on M whose parallel transport pre-
serves F , namely, if c = c(t) is a smooth path in M with the endpoints x1 and x2,
and Pc : Tx1

M → Tx2
M is the ∇-parallel transport along c, then for all y ∈ TxM ,

Fx2

(

Pc(y)
)

= Fx1
(y) holds. Thus a Riemannian metric viewed as a special Berwald

metric, with the associated connection ∇ the Levi-Civita connection.

A Finsler metric conformally related to a Berwald metric is called conformally
Berwald metric. In [6], Hashiguchi-Ichijyō proved that a Finsler metric F = F (x, y)
on a manifold M is conformal to a Berwald metric if and only if it is a Wagner
metric (see also [28]). The Wagner metrics form an important class of the so-called
generalized Berwald metrics admitting Finsler connections whose horizontal part
depends only on the position - more precisely there exists a linear connection on
M such that the indicatrix hypersurfaces are invariant under the parallel transport.
Also, Berwald metrics in the classical sense are characterized by a similar property
of the canonical Berwald connection. If a Berwald metric has vanishing Riemannian
curvature, then it is called a locally Minkowski metric. In [8], Hashiguchi-Ichijyō
determined all conformally flat Randers surfaces. Then, Hashiguchi proved that a
conformally flat Randers metric is conformally Berwald metric and the associated
Riemannian metric is also conformally flat [5]. He also studied the converse problem.
In [1], Aikou obtained the conditions for a Finsler metric to be locally or globally
conformal to a Berwald metric. In [7], Hōjō-Matsumoto-Okubo found the necessary
and sufficient conditions under which a Randers metric and Kropina metric be a
conformally Berwald metric. In [27], Vincze discussed the problem whether how we
can check the conformality of a Finsler metric to a Berwald metric. His method
is based on a differential 1-form constructing on the underlying manifold by the
help of integral formulas such that its exterior derivative is conformally invariant.
If the Finsler metric is conformal to a Berwald metric, then the exterior derivative
vanishes [27]. In [15], Matveev-Nikolayevsky obtained some results regarding locally
conformally Berwald closed metrics that are not globally conformally Berwald. In
[30], Xia-Zhong found some explicit examples of complex Berwald metrics which are
neither Hermitian metrics nor conformal changes of complex Minkowski metrics.

In order to find explicit examples of conformally Berwald metrics, one can
investigate the class of m-th root Finsler metrics. Let M be an n-dimensional
manifold, TM its tangent bundle and (xi, yi) the coordinates in a local chart
on TM . Let F : TM → R be a scalar function defined by F = m

√
A, where

A := ai1...im(x)yi1yi2 . . . yim and ai1...im is symmetric in all its indices. Then F
is called an m-th root Finsler metric on M [19]. For more progress, see [21], [24]
and [25]. The fourth root metric is called a quartic metric [22][23]. The significant

quartic metric F = 4

√

yiyjykyl is called Berwald-Moór metric which has important
role in the theory of space-time structure and gravitation as well as in unified gauge
field theories [2][3][16].

We show that every 4-th root metric F = 4

√

aijkl(x)yiyjykyl on a manifold M
of dimension n ≥ 3 can be written in the following form

F = 4

√

c1α4 + c2α2β2 + c3β4,
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where α =
√

aij(x)yiyj is a Riemannian and β = bi(x)y
i is a 1-form on M . For n =

2, F can be written as F = 4

√

c1α4 + c2α2β2. Then, we characterize conformally
Berwald 4-th root (α, β)-metric as follows.

Theorem 1.1. Let F = 4

√

c1α4 + c2α2β2 + c3β4 be a non-Riemanian quartic (α, β)-
metric on an n-dimensional manifold M , where ci are nonzero constants. Then F
is a conformally Berwald metric if and only if β satisfies following

rij =
rss

n− 1

(

aij −
1

b2
bibj

)

− 1

b2

(

bisj + bjsi

)

,(1.1)

sij =
1

b2

(

bisj − bjsi

)

(1.2)

and the conformal factor κ = κ(x) satisfies

κi = − 1

b2

(

2si +
1

n− 1
rssbi

)

,(1.3)

where κi := ∂κ/∂xi and b := ||β||α =
√

aijbibj.

Suppose that the quartic (α, β)-metric F = 4

√

c1α4 + c2α2β2 + c3β4 is a Berwald
metric. Then by Lemma 2.3, β is parallel with respect to α. Therefore rij = sij = 0
and F satisfies (1.1) and (1.2). In this case, (1.3) implies that κ = constant. Thus,
we conclude the following.

Corollary 1.1. Let F = 4

√

c1α4 + c2α2β2 + c3β4 be a non-Riemannian Berwald
quartic (α, β)-metric. Then F is a conformally Berwald metric if and only if the
conformal transformation is homothetic.

It is remarkable that, the Corollary 1.1 confirms the Vincze’s theorem in [27] that
say a conformal transformation between two non-Riemannian Berwald metrics must
be a homothety.

By the same argument used in proof of Theorem 1.1, one can get the following
result.

Corollary 1.2. Let F = 4

√

c1α4 + c2α2β2 be a non-Riemanian quartic (α, β)-
metric on an n-dimensional manifold M , where ci are nonzero constants. Then F
is a conformally Berwald metric if and only if β satisfies (1.1) and (1.2) and the
conformal factor κ = κ(x) satisfies (1.3).

The third root metric F = 3

√

aijk(x)yiyjyk is called the cubic metric. In [29],
Wegener studied cubic Finsler metrics of dimensions two and three. Wegener’s paper
is only an abstract of his PhD thesis without all details and calculations. In [12],
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Matsumoto wrote an improved version of Wegener’s results. In [13], Matsumoto-
Numata proved that every cubic (α, β)-metric on a manifold M of dimension n ≥ 3
can be written in the following form

F = 3

√

c1α2β + c2β3.

For n = 2, they showed that F is given by F = 3

√

α2β. In this paper, we prove the
following.

Theorem 1.2. Let (M,F ) be an n-dimensional Finsler manifold. Then the fol-
lowing hold:

(i) The cubic (α, β)-metric F = 3

√

c1α2β + c2β3 is a conformally Berwald metric
if and only if β satisfies

rij =
1

b2
(bjri + birj)− br f̄r(c1aij + 3c2bibj)− aijb

rkr,(1.4)

sij =
1

b2
(bisj − bjsi)(1.5)

and the conformal factor κ = κ(x) satisfies

κj =
2

b2
(rj − ubj)− 2(2c1 + 3c2b

2)f̄j ,(1.6)

where c1 and c2 are nonzero constants, κr := ∂κ/∂xr, f := biκja
ij, fi :=

∂f/∂xi, and

u :=
1

2
(2c1f̄r − κr)b

r, f̄j :=
1

3b2(c1 + c2b2)
(sj + rj) .

(ii) The cubic (α, β)-metric F = 3

√

α2β is a conformally Berwald metric if and
only if β satisfies

rij =
1

b2
(bjri + birj)− br(κr +

1

3
f̄r)aij −

2h

b2
bibj ,(1.7)

sij =
1

b2
(bisj − bjsi)(1.8)

and the conformal factor κ = κ(x) satisfies

κj =
2

b2
(rj − hbj)−

4

3
f̄j ,(1.9)

where

h :=
1

6
(2f̄r − 3κr)b

r, f̄j =
1

b2
(sj + rj).
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2. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. First, we remark some
notions about an (α, β)-metric. An (α, β)-metric is a Finsler metric on a manifold
M defined by F := αφ(s), where s = β/α, φ = φ(s) is a scalar function on an
open interval (−b0, b0), α =

√

aij(x)yiyj is a Riemannian metric and β = bi(x)y
i

is a 1-form on M . The metric α is called the associated Riemannian metric of the
(α, β)-metric F . Throughout this paper, we assume that the associated Riemannian
metric of an (α, β)-metric is positive-definite.

For an (α, β)-metric F := αφ(s), s = β/α, one can define bi|jθ
j := dbi − bjθ

j
i ,

where θi := dxi and {θji := γj
ik(x)dx

k} denote the Levi-Civita connection forms of
the Riemannian metric α. Let us put

rij :=
1
2

(

bi|j + bj|i
)

, sij :=
1
2

(

bi|j − bj|i
)

,

rj := birij , r := bibjrij , sj := bisij , r0 := rjy
j , s0 := sjy

j ,

ri0 := rijy
j , r00 := rijy

iyj, si0 := sijy
j, sij := aimsmj , rij := aimrmj .

Then β is parallel with respect to α if and only if bi|j = 0 or equivalently rij =
sij = 0.

Let F = αφ(s), s = β/α, be an (α, β)-metric on a manifold M , where α =
√

aij(x)yiyj is a Riemannian and β = bi(x)y
i is a 1-form on M . Assume that F is

conformally related to a Finsler metric F̄ on M , that is, there is a scalar function
κ = κ(x) on M such that F̄ = eκ(x)F . It is easy to see that F̄ = ᾱφ(β̄/ᾱ) is also
an (α, β)-metric, where ᾱ = eκ(x)α and β̄ = eκ(x)β. Put ᾱ =

√

āij(x)yiyj and
β̄ = b̄i(x)y

i. Let us define

b := ‖βx‖α =
√

aijbibj, b̄ := ‖β̄x‖ᾱ =
√

āij b̄ib̄j .

Thus
b = b̄.(2.1)

Let (M,F ) be a Finsler manifold. A global vector field G is induced by F on
TM0, which in a standard coordinate (xi, yi) for TM0 is given by G = yi ∂

∂xi −
2Gi ∂

∂yi , where Gi = Gi(x, y) are given by

Gi =
1

4
gil

[ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

]

.

The vector field G is called the associated spray to (M,F ). F is called a Berwald
metric if Gi = 1

2Γ
i
jk(x)y

jyk is quadratic in y ∈ TxM for any x ∈ M . Then (M,F )
is called a Berwald manifold. The important described characteristic of a Berwald
manifold is that all its tangent spaces are linearly isometric to a common Minkowski
space [18].

In order to prove Theorem 1.1, we need the following.
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Lemma 2.1. Let F = αφ(s), s = β/α, be an (α, β)-metric on a manifold M ,
where α =

√

aij(x)yiyj is a Riemannian and β = bi(x)y
i is a 1-form on M .

Suppose that F is conformally related to a Finsler metric F̄ on M , i.e., F̄ = eκ(x)F ,
where κ = κ(x) is scalar function on M . Then the following hold

r̄ij =
eκ

2
(2rij + 2faij − bjκi − biκj) ,(2.2)

s̄ij =
eκ

2
(2sij − bjκi + biκj) ,(2.3)

where κi := ∂κ/∂xi and f := κtb
t.

Proof. Let F = αφ(s), s = β/α, be an (α, β)-metric which is conformally related
to a Finsler metric F̄ on M , that is, there is a scalar function κ = κ(x) on M such
that F̄ = eκ(x)F . If we write ᾱ =

√

āij(x)yiyj and β̄ = b̄i(x)y
i, then the following

hold
āij = e2κaij , b̄i = eκbi.(2.4)

Therefore, we get
āij = e−2κaij , b̄i = e−κbi.

Let Gi and Ḡi be the spray coefficients of F and F̄ , respectively. By using the
Rapcsák’s identity, the following relationship between Gi and Ḡi holds

Ḡi = Gi +
F̄;mym

2F̄
yi +

F̄

2
ḡil

{

F̄;k,ly
k − F̄;l

}

,(2.5)

where “; ” and “, ” denote the horizontal and vertical derivation with respect to the
Berwald connection of F . Since F;m = 0, then the following hold

F̄;m = κmeκF, F̄;m,l = κmeκF,l, ḡij = e2κgij , ḡij = e−2κgij .(2.6)

By putting (2.6) in (2.5), we get

Ḡi = Gi + κ0y
i − 1

2
F 2κi,(2.7)

where κ0 := κiy
i and κi := gimκm. Let us put

Gi
j :=

∂Gi

∂yj
, Gi

jk :=
∂Gi

j

∂yk
.

Then taking twice vertical derivation of (2.7) yields

Ḡi
jk = Gi

jk + κjδ
i
k + κkδ

i
j − gjkκ

i.(2.8)

By (2.4) and (2.8), we get the following

b̄i||j = eκ(bi|j − bjκi + faij),(2.9)

where “|” and “||” denote the covariant derivatives with respect to α and ᾱ, respec-
tively. By (2.9), we get (2.2) and (2.3).
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In order to prove Theorem 1.1, we need to the following.

Lemma 2.2. Let F = 4

√

aijkl(x)yiyjykyl be a quartic metric on an n-dimensional
manifold M . Then the following hold:

(1) If n = 2, then by choosing suitable quadratic form α =
√

aij(x)yiyj and one
form β = bi(x)y

i, F is always written in the form

F = 4

√

c1α4 + c2α2β2,

where c1 and c2 are real constants and α2 may be degenerate.

(2) If n ≥ 3 and F is a function of a non-degenerate quadratic form α =
√

aij(x)yiyj

and a one-form β = βi(x)y
i which is homogeneous in α and β of degree one,

then it is written in the following form

F = 4

√

c1α4 + c2α2β2 + c3β4,

where c1, c2 and c3 are real constants.

Proof. The proof is very tedious, computational and straightforward. By the same
argument used by Matsumoto-Numata for the cubic Finsler metrics in [13], one can
get the proof. Here, we omit the process of proof.

In [9], Kim-Park claimed that using the homogeneousness of a Finsler metric, one
can consider the general form of m-th root metric (m ≥ 3) admitting (α, β)-metric
and obtain the following

F = 3

√

c1α2β + c2β3,

F = 4

√

c1α4 + c2α2β2 + c3β4,

...

F = m
√

Σs
0cm−2rα2rβm−2r, s ≤ m

2
,

where ci are constants. They studied quartic metric F = 4

√

c1α4 + c2α2β2 + c3β4

and proved the following.

Lemma 2.3. ([9]) Let F = 4

√

c1α4 + c2α2β2 + c3β4 be a non-Riemannian quartic

metric on a manifold M , where α =
√

aij(x)yiyj is a Riemannian metric, β =
bi(x)y

i is a non-zero 1-form on M and ci (1 ≤ i ≤ 3) are non-zero constants. Then
F is a Berwald metric if and only if β is parallel with respect to α.

Proof of Theorem 1.1: By Lemma 2.1, we have

b̄i||j = eκ(bi|j − κibj + aijκmbm),(2.10)
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where “|” and “||” denote the covariant derivatives with respect to α and ᾱ, respec-
tively. By assumption, F̄ is a Berwald metric. Then by Lemma 2.3, (2.10) reduces
to following

bi|j − κibj + brκraij = 0.(2.11)

Multiplying (2.11) with bi and aij yield, respectively

bjbi|j = b2κi − brκrbi,(2.12)

brκr = − 1

n− 1
aijbi|j .(2.13)

Putting (2.13) in (2.12) yields

κi =
1

b2

[

brbi|r −
1

n− 1
arsbr|sbi

]

.(2.14)

It is remarkable that since κi is a gradient vector, then

κi|j − κj|i = 0.

(2.11) can be written as

rij =
1

2
(κibj + κjbi)− brκraij ,(2.15)

sij =
1

2
(κibj − κjbi).(2.16)

(2.15) and (2.16) give respectively

brκr = − 1

n− 1
arsrrs,(2.17)

sj =
1

2

(

κrb
rbj − b2κj

)

.(2.18)

Putting (2.17) and (2.18) in (2.15) and (2.16) yield, respectively

rij =
rss

n− 1

(

aij −
1

b2
bibj

)

− 1

b2

(

bisj + bjsi

)

,(2.19)

sij =
1

b2

(

bisj − bjsi

)

.(2.20)

Now (2.14) can be written as

κi =
1

b2

(

brrir − si −
1

n− 1
arsrrsbi

)

.(2.21)

and (2.19) gives

brrir = −si.(2.22)
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By putting (2.22) in (2.21), we get

κi = − 1

b2

(

2si +
1

n− 1
rssbi

)

.(2.23)

This completes the proof.

Let F := αφ(s), s = β/α, be an (α, β)-metric on a manifold M , where open
α =

√

aij(x)yiyj is a Riemannian metric and β = bi(x)y
i is a 1-form on M . Then

β is called Killing with respect to α if and only if rij = 0.

Corollary 2.1. Let F = 4

√

c1α4 + c2α2β2 + c3β4 be a non-Riemanian quartic
(α, β)-metric on an n-dimensional manifold M , where ci are nonzero constants
and β is a Killing 1-form. Then F is a conformally Berwald metric if and only if
it is a Berwald metric.

Proof. By Theorem 1.1, β satisfies (1.1) and (1.2). Contracting (1.1) with bi implies
that

ri + si = 0.(2.24)

Let β be a Killing 1-form with respect to α, i.e., rij = 0. Then (2.24) yields si = 0.
Putting it in (1.2) implies that sij = 0. Thus β is parallel with respect to α. By
Lemma 2.3, F reduces to a Berwald metric. In this case, by (1.3) one can verify
that the conformal change reduces to a homothetic change.

3. Proof of Theorem 1.2

In this section, we are going to find the necessary and sufficient condition under
which a cubic (α, β)-metric is conformally Berwald. For this aim, we remark that
the (α, β)-metric F = αm+1β−m is called m-Kropina metric. In [13], Matsumoto-
Numata studied the class of cubic metrics and proved the following.

Lemma 3.1. (Matsumoto-Numata [13]) Let F = 3

√

aijk(x)yiyjyk be a cubic met-
ric on an n-dimensional manifold M . Then the following hold:

(i) If n = 2, then by choosing suitable quadratic form α =
√

aij(x)yiyj and one
form β = bi(x)y

i, F is a (− 1
3 )-Kropina metric

F = 3

√

α2β,(3.1)

where α2 may be degenerate.

(ii) If n ≥ 3 and F is a function of a non-degenerate quadratic form α =
√

aij(x)yiyj

and a one-form β = bi(x)y
i and it is homogeneous in α and β of degree one,

then it is written in the following form

F = 3

√

c1α2β + c2β3,(3.2)

where c1 and c2 are constants.
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Also, in [9], Kim-Park studied cubic (α, β)-metrics and proved the following.

Lemma 3.2. (Kim-Park [9]) Let F = 3

√

c1α2β + c2β3 be a cubic (α, β)-metric on

a manifold M , where α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)y
i is

a 1-form on M . Then F is a Berwald metric if and only if there exists functions
fi = fi(x) on M satisfy following

bi|j = 3(c1 + c2b
2)bifj + (c1 + 3c2b

2)bjfi − bkf
k(c1aij + 3c2bibj),(3.3)

where c1, c2 and c3 are constants and b2 = bib
i. In this case, fi are given by

following

fj =
1

6c1

∂

∂xi

[

log(b2)

c1 + c2b2

]

.(3.4)

Now, we can consider the case (i) in Theorem 1.2 and prove the following.

Lemma 3.3. Let (M,F ) be an n-dimensional Finsler manifold. Then the cubic

(α, β)-metric F = 3

√

c1α2β + c2β3 is conformally Berwald if and only if β satisfies
following

sij =
1

b2
(bisj − bjsi) ,(3.5)

rij =
1

b2
(bjri + birj)− (c1aij + 3c2bibj)f̄rb

r − aijkrb
r,(3.6)

and the conformal factor κ = κ(x) satisfies

κj =
2

b2
(rj − ubj)− 2(2c1 + 3c2b

2)f̄j ,(3.7)

where

f̄j =
1

3b2(c1 + c2b2)
(sj + rj), u :=

1

2
(2c1f̄r − κr)b

r.

Proof. Let F = 3

√

c1α2β + c2β3 be a cubic metric on a manifold M which is con-
formally related to the Berwald metric F̄ , namely, F̄ = eκF , where κ = κ(x) is

a scalar function on M . Thus F̄ = 3

√

c1ᾱ2β̄ + c2β̄3 is also a cubic (α, β)-metric,
where ᾱ = eκ(x)α and β̄ = eκ(x)β. Put ᾱ =

√

āij(x)yiyj and β̄ = b̄i(x)y
i. Then by

Lemma 3.2, there exist functions f̄i = f̄i(x) on M such that β̄ satisfies following

b̄i||j = 3(c1 + c2b̄
2)b̄if̄j + (c1 + 3c2b̄

2)b̄j f̄i − b̄mf̄m(c1āij + 3c2b̄ib̄j),(3.8)

where “||” denotes the covariant derivatives with respect to ᾱ and f̄i are given by
following

f̄i =
1

6c1

∂

∂xi

[

log(b̄2)

c1 + c2b̄2

]

=
1

6c1

∂

∂xi

[

log(b2)

c1 + c2b2

]

.
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Here, f̄m := āmkf̄k. On the other hand, by Lemma 2.1 the following holds

b̄i||j = eκ(bi|j − κibj + bmκmaij),(3.9)

where “|” denotes the covariant derivatives with respect to α. By (2.1), (2.4), (3.8)
and (3.9), we get

bi|j − κibj + bmκmaij = 3(c1 + c2b
2)bif̄j + (c1 + 3c2b

2)bj f̄i

−bmf̄m(c1aij + 3c2bibj).(3.10)

(3.10) implies that

rij =
1

2
(κibj + κjbi) + (2c1 + 3c2b

2)(bif̄j + bj f̄i)− bmf̄m(c1aij + 3c2bibj)

−bmκmaij(3.11)

and

sij =
1

2
(κibj − κjbi) + c1(bif̄j − bj f̄i).(3.12)

Multiplying (3.12) with bi yields

sj =
(

c1f̄j −
κj

2

)

b2 − bj

(

c1f̄i −
κi

2

)

bi.(3.13)

By (3.12) and (3.13), we get

sij =
1

b2

(

bisj − bjsi

)

.(3.14)

Let us put

u :=
br

2

(

2c1f̄r − κr

)

.

Then contracting (3.11) with bi gives

rj = ubj +
(

(2c1 + 3c2b
2)f̄j +

κj

2

)

b2.(3.15)

By (3.15), we obtain

κj = 2

[

rj − ubj
b2

− (2c1 + 3c2b
2)f̄j

]

.(3.16)

Considering (3.15), the relation (3.11) can be written as follows

rij =
1

b2

(

bjri + birj

)

− brf̄r(c1aij + 3c2bibj)− aijb
rkr.(3.17)

Comparing (3.13) and (3.15) yield

f̄j =
1

3b2(c1 + c2b2)

(

sj + rj

)

.(3.18)
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Conversely, we make the conformally changed F̄ from F by the conformal change
F̄ = eκ(x)F . Suppose that the metric F satisfies (3.5) and (3.6), and the conformal
factor κ satisfies (3.7). Then (3.5), (3.6) and (3.7) lead to

bi|j − κibj + bmκmaij = rij + sij − κibj + κmbmaij

= 3dbif̄j + (c1 + 3c2b
2)bj f̄i − bmf̄m(c1aij + 3c2bibj),(3.19)

where d := c1 + c2b
2. By (3.10) and (3.19), F̄ is a Berwald metric. It follows that

F is a conformally Berwald metric.

In [11], Matsumoto studied Kropina metrics and characterized m-Kropina met-
rics of Berwald-type as follows.

Lemma 3.4. (Matsumoto [11]) Let F = αm+1β−m be the m-Kropina metric on
a manifold M . Then F is a Berwald metric if and only if there exists a covariant
vector field fi = fi(x) such that the following holds

bi|j = m(aijbkf
k − bjfi) + bifj,

where fk = alkfl.

Using Lemma 3.4, we prove the following.

Lemma 3.5. Let (M,F ) be an n-dimensional Finsler manifold M . Then the cubic

(α, β)-metric F = 3

√

α2β is conformally Berwald if and only if β satisfies following

sij =
1

b2

(

bisj − bjsi

)

,(3.20)

rij =
1

b2

(

bjri + birj

)

−
(

brκr +
1

3
br f̄r

)

aij −
2h

b2
bibj ,(3.21)

and the conformal factor κ satisfies

κj =
2

b2
(rj − hbj)−

4

3
f̄j,(3.22)

where

h :=
1

6
(2f̄r − 3κr)b

r, f̄j =
1

b2
(sj + rj).

Proof. Let F = 3

√

α2β be a cubic metric on a manifold M which is conformally
related to the Berwald metric F̄ , namely, F̄ = eκF , where κ = κ(x) is a scalar

function on M . Thus F̄ = 3

√

ᾱ2β̄ is also a cubic (α, β)-metric, where ᾱ = eκ(x)α

and β̄ = eκ(x)β. Put ᾱ =
√

āij(x)yiyj and β̄ = b̄i(x)y
i. By Lemma 3.4, F = 3

√

α2β
is a Berwald metric if and only if there exists fi satisfying

b̄i||j = −1

3
āij b̄r f̄

r +
1

3
b̄j f̄i + b̄if̄j,(3.23)
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where “||” denotes the covariant derivatives with respect to ᾱ and f̄k := ālkf̄l. By
Lemma 2.1, the following hold

b̄i||j = eκ(bi|j − κibj + brκraij), āij = e2κaij , b̄i = eκbi.(3.24)

where “|” denotes the covariant derivatives with respect to α. By (3.23) and (3.24),
we get

bi|j − κibj + brκraij = −1

3
aijb

rf̄r +
1

3
bj f̄i + bif̄j(3.25)

which is equivalent to

rij =
1

2

(

κibj + κjbi

)

− 1

3

(

aij f̄rb
r − 2(bj f̄i + bif̄j)

)

− aijκrb
r,(3.26)

sij =
1

2

(

κibj − κjbi

)

+
1

3

(

bif̄j − bj f̄i

)

.(3.27)

Multiplying (3.27) with bi yields

sj = b2
( f̄j
3

− κj

2

)

−
( f̄i
3

− κi

2

)

bibj.(3.28)

Consequently, eliminating fi from (3.27) we obtain

sij =
1

b2

(

bisj − bjsi

)

.(3.29)

Let us put

h :=
1

6

(

2f̄r − 3κr

)

br.

Then multiplying (3.26) with bi yields

rj = hbj +
b2

6

(

4f̄j + 3κj

)

.(3.30)

(3.30) implies that

κj =
2

b2
(rj − hbj)−

4

3
f̄j.(3.31)

By (3.30) and (3.28), we get

f̄j =
1

b2

(

sj + rj

)

.(3.32)

Multiply (3.30) with bi and construct (bjri + birj)/b
2. By considering (3.26), we

get the following

rij =
1

b2

(

bjri + birj

)

−
(

brκr +
1

3
br f̄r

)

aij −
2h

b2
bibj .(3.33)
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Conversely, we make the conformally changed F̄ from F by the conformal change
F̄ = eκ(x)F . Suppose that the metric F satisfies (3.20) and (3.21), and the confor-
mal factor κ satisfies (3.22). Then (3.20), (3.21) and (3.22) lead to

bi|j − κibj +bmκmaij = rij + sij − κibj + bmκmaij

= bi

(sj
b2

+
rj
b2

)

− bj

( si
b2

+
ri
b2

)

− 2
ri
b2
bj −

2h

b2
bibj −

1

3
br f̄raij − κibj

= −1

3
aijb

rf̄r +
1

3
bj f̄i + bif̄j .(3.34)

By (3.25) and (3.34), F̄ is a Berwald metric and then F is a conformally Berwald
metric.

Proof of Theorem 1.2: By Lemmas 3.3 and 3.5, we get the proof.

4. Some Conformal Invariants

In the theory of conformal changes of Riemannian metrics, the Weyl invariant
tensor plays important roles. Let (M,g) be a Riemannian manifold of dimension
n ≥ 4. In local coordinate system, the Weyl tensor is written as follows

Wijkl = Rijkl−
1

n− 2

{

gilRjk+gjkRil−gikRjl−gjlRik

}

− S

(n− 1)(n− 2)

{

gikgjl−gilgjk

}

.

where Rijkl is the Riemann tensor of Riemannian metric g, Rij = Rk
ikj is the Ricci

tensor and S = gijRij = Rj
j is the scalar curvature of g. In dimensions 2 and 3, the

Weyl curvature tensor vanishes identically. If the Weyl tensor vanishes in dimension
4, then the metric is locally conformally flat: there exists a local coordinate system
in which the metric tensor is proportional to a constant tensor. This fact was a key
component of Nordström’s theory of gravitation, which was a precursor of general
relativity. The Weyl tensor is invariant under conformal changes: if g̃ = ef(x)g for
some positive scalar function f = f(x) then W̃ = W . For this reason, the Weyl
tensor is also called the conformal tensor. It follows that a necessary condition
for a Riemannian manifold to be conformally flat is that the Weyl tensor vanish.
The existence of this conformal invariant is quite remarkable since there is no known
generalization of the Weyl conformal curvature tensor to Finsler geometry [7]. Then
the following natural question arises:

Is there any conformal invariant in Finsler Geometry?

Let M be an n-dimensional C∞ manifold and TM =
⋃

x∈M TxM the tangent
bundle. Let (M,F ) be a Finsler manifold. The following quadratic form gy on TxM
is called fundamental tensor

gy(u, v) =
1

2

∂2

∂s∂t

[

F 2(y + su+ tv)
]

|s=t=0, u, v ∈ TxM.
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Let F = F (x, y) be a Finsler metric on an n-dimensional manifold M . The dis-
tortion τ = τ(x, y) on TM associated with the Busemann-Hausdorff volume form
dVBH = σF (x)ω

1 ∧ · · · ∧ ωn is defined by

τ(x, y) = ln

√

det
(

gij(x, y)
)

σF (x)
.

Now, let F̄ = eκF be two conformal Finsler metrics on an n-dimensional manifold
M , where κ = κ(x) is a scalar function on M . It is easy to verify that

ḡij(x, y) = e2κgij(x, y), det(ḡij) = e2nκ det(gij), σF̄ = enκσF .

Thus, we conclude the following.

Lemma 4.1. Let F̄ = eκF be two conformal Finsler metrics on a manifold M .
Then τ̄ = τ .

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,
define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[

gy+tw(u, v)
]

|t=0,

where u, v, w ∈ TxM . The family C := {Cy}y∈TM0
is called the Cartan torsion.

Thus C = 0 if and only if F is Riemannian. Using the notion of Cartan torsion,
one can define Iy : TxM → R by Iy(u) =

∑n
i=1 g

ij(y)Cy(u, ∂i, ∂j), where {∂i} is a
basis for TxM at x ∈ M . The family I := {Iy}y∈TM0

is called the mean Cartan
torsion. Thus, Iy(u) := Ii(y)u

i, where Ii := gjkCijk.

At any point x ∈ M , Shen defined the norms of C and I in [18] as follows

||C|| = sup
y,u∈TxM0

F (y)|Cy(u, u, u)|
[gy(u, u)]

3

2

= sup
y,u∈IxM

|Cy(u, u, u)|
[gy(u, u)]

3

2

,(4.1)

||I|| = sup
y,u∈TxM0

F (y)|Iy(u)|
[gy(u, u)]

3

2

= sup
y,u∈IxM

|Iy(u)|
[gy(u, u)]

3

2

,(4.2)

where IxM is the indicatrix of F at x ∈ M .

For a vector y ∈ TxM0, define the Matsumoto torsionMy : TxM×TxM×TxM →
R by

My(u, v, w) := Cy(u, v, w)−
1

n+ 1

{

Iy(u)hy(v, w)+Iy(v)hy(u,w)+Iy(w)hy(u, v)
}

.

Then F is said to be C-reducible if My = 0.

Lemma 4.2. (Matsumoto-Hōjō Lemma) A Finsler metric F on a manifold M of
dimension n ≥ 3 is a Randers metric if and only if its Matsumoto torsion vanish.
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For a non-zero vector y ∈ TxM0, define the torsionAy : TxM×TxM×TxM → R

by

Ay(u, v, w) := Cy(u, v, w) −
P

n+ 1

{

Iy(u)hy(v, w) + Iy(v)hy(u,w) + Iy(w)hy(u, v)
}

− Q

||I||2 Iy(u)Iy(v)Iy(w),(4.3)

where P = P (x, y) and Q = Q(x, y) are scalar functions on TM and ||I||2 = IiIi.
A Finsler metric F on an n-dimensional manifold M is called semi-C-reducible if
Ay = 0. In [14], Matsumoto-Shibata proved that every (α, β)-metric is semi-C-
reducible.

Theorem 4.1. ([14]) Let F = αφ(s), s = β/α, be a non-Riemannian (α, β)-metric
on a manifold M of dimension n ≥ 3. Then F is semi-C-reducible.

Let us define

||M|| = sup
y,u∈TxM0

F (y)|My(u, u, u)|
[gy(u, u)]

3

2

= sup
y,u∈IxM

|My(u, u, u)|
[gy(u, u)]

3

2

,(4.4)

||A|| = sup
y,u∈TxM0

F (y)|Ay(u, u, u)|
[gy(u, u)]

3

2

= sup
y,u∈IxM

|Ay(u, u, u)|
[gy(u, u)]

3

2

.(4.5)

Then, we get the following.

Theorem 4.2. Let (M,F ) be an n-dimensional Finsler manifold. Then the fol-
lowing are conformally invariant:

(i) C := F 2||C||2;

(ii) M := F 2||M||2;

(iii) A := F 2||A||2.

Proof. We have C̄ijk = e2κCijk . Then C̄ijk = e−4κCijk which yields

||C̄||2 = e2κ||C||2.(4.6)

Then C = C(x, y) is a conformally invariant.

In local coordinates, the Matsumoto torsion is given by following

Mijk := Cijk − 1

n+ 1

{

Iihjk + Ijhik + Ikhij

}

,

where hij := FFyiyj is the angular metric. Since

hij = e2κh̄ij , Ii = Īi,
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then

M̄ijk = e2κMijk

which implies that

M̄ ijk = e−4κM ijk.

Then

||M̄||2 = e2κ||M||2.
Thus M = M(x, y) is a conformally invariant.

Finally, in local coordinates Ay is written as follows

Aijk := Cijk − P

1 + n

{

hijIk + hjkIi + hkiIj

}

− Q

‖I‖2 IiIjIk.

We get Āijk := e2κAijk . Then ||Ā||2 = e2κ||A||2. Then, A = A(x, y) is a confor-
mally invariant.
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