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RANDOM COEFFICIENT BIVARIATE INAR(1) PROCESS

Predrag M. Popović

Abstract. A bivariate autoregressive model for time series of counts is presented. The
model is composed of survival and innovation components. The dependence between
series is achieved through innovation parts. The autoregression is modelled with the
survival component which is based on the binomial thinning operator. The coefficients
that figure here are random variables. Statistical properties of the model are presented.
The existence, stationarity and ergodicity of the model is proved. We focus on the model
where the innovation components follow bivariate Poisson distribution. We suggest
conditional maximum likelihood and the method of moments for parameters estimation.
Both methods are tested on simulated data sets.
Keywords: Bivariate model; Integer valued autoregressive model; Thinning operator

1. Introduction

Time series of counts can be met in many fields of science. For example, in biology
the number of some species represents such a series, or in finance the traded
volume of some security, etc. Thus, modelling them is a challenging task that
draws attention of many researchers. Many of the models are based on the thinning
operator and have ARMA-like structure. The thinning operator is introduced to
support discreetness of data since the standard Box-Jenkins ARMA models have
many shortages with modelling integer valued times series. Different marginal
distributions and different thinning operators are used to capture the specificity of
observed data. The first integer valued autoregressive model (INAR) for univariate
case was presented by [1]. This model is based on the binomial thinning operator
with Poisson marginal distribution. Some discussion on univariate models can be
found in [17], [7], [8].

When there are serial and cross correlations between some events, multivariate
models are needed. These kinds of events occur in many fields. For example, [14]
investigated dependence in trading two securities, [3] presented a model for the
number of guest nights in hotels and cottages, [11] observed the number of patients
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infected by different diseases, [9] modelled the number of committed crimes, etc.
The multivariate models were introduced in [4] and [6]. The latest contribution to
developing multivariate INAR models can be found in [10], [12], [13], [5] and [16],
while multivariate models with random coefficients were developed in [15] and [9].
All these models are composed of a survival and an innovation component. The
survival component is the autoregressive part of these models while the innovation
component is designed to support arrival of new members of the process. While
in [15] and [9] survival components are dependent in [10] and [12], dependence is
achieved through the innovation component.

The model presented in this paper (BVDINAR(1)) comprises random coeffi-
cients but with dependent innovation components. Also, the survival component
of the presented model is truncated. For this reason, the model represents some sort
of generalization of the model presented in [10] and an extension of the univariate
models with truncated survival component discussed in [18] and [2]. BVDINAR(1)
model is suitable for dependent processes where autocorrelation is not present
from time to time. To motivate the model we consider real data examples where
we observe two correlated series of light criminal activities. The series are monthly
counts of activities categorized as larceny and criminal mischief. Besides the fact
that these two series are autocorrelated and dependent, their frequency is often
influenced by some external factors, such as the number of policemen in the area
or time of the year. So, the absence of the autocorrelation from time to time might
be expected. Lag one cross-correlation is not always expected with these series, but
dependency between innovation processes is quite realistic since the same factors
push people to commit these two criminal acts.

The paper is organized in the following way. Section 2. introduces the gen-
eral form of the model, discusses stationarity and proves existence of the model.
Section 3. gives us joint distribution, conditional and unconditional expectation
and variance. A special case of the model where the innovation components fol-
lows binomial Poisson distribution is discussed in Section 4. Section 5. presents the
application of the model to real data. In the end, some concluding remarks are
given.

2. General specifications of the model

In this section we define BVDINAR(1) model for nonnegative integer valued
time series {X1,t,X2,t}t∈Z. Focusing on the general form of the model we prove its
existence. Also, we state some properties of the thinning operator which figures in
the model.

For construction of BVDINAR(1) model we will not specify marginal distribu-
tion of these processes. The processes are composed of two components, survival
and innovation, and we just assume that the innovation parts follow some bivariate
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distribution. The model is defined in the following way:

X1,t =

{
α1 ◦ X1,t−1 + ε1,t, w.p. p1,
ε1,t, w.p. 1 − p1,

(2.1)

X2,t =

{
α2 ◦ X2,t−1 + ε2,t w.p. p2,
ε2,t, w.p. 1 − p2,

(2.2)

where α1, α2 ∈ (0, 1) and p1, p2 ∈ [0, 1]. The thinning operator that figures here is
defined as α1 ◦ X1,t =

∑X1,t

i=1 Bi where {Bi} is a sequence of independent identically
distributed Bernoulli(α1) random variables. Binomial thinnings α1◦X1,t andα2◦X2,t
are mutually independent. The random variables ε1,t and ε2,t are in general mutu-
ally dependent since they follow binomial distribution, but they are independent
of (X1,s,X2,s) for s < t.

Similarly as in [2] and [18] we introduce random variables α1t and α2t such that
P(α1t = α1) = 1 − P(α1t = 0) = p1 and P(α2t = α2) = P(α2t = 0) = p2. Equations (2.1)
and (2.2) can be written as

X1,t = α1t ◦ X1,t−1 + ε1,t

X2,t = α2t ◦ X2,t−1 + ε2,t

The processes defined in this way are integer valued autoregressive processes of
order one with random coefficients. Also, the above equation can be written in a

matrix form by introducing matrix At =

[
α1t 0
0 α2t

]
and vectors Zt = (X1,t,X2,t)′

and et = (ε1,t, ε2,t)′. So we get the model as

Zt = At ◦ Zt−1 + et.(2.3)

where At◦ is defined as matrix multiplication but applies thinning operation instead
of multiplication. The process defined with Equation (2.3) is Markov process of or-

der one. Notice that At is a random matrix and EAt = A where A =
[
α1p1 0

0 α2p2

]
.

It can be easily shown that eigenvalues of matrix A are inside the unit circle. Fol-
lowing the definition of the thinning operator Lemma 2.1 holds.

Lemma 2.1. Thinning operator properties:

1. E(At ◦ Z) = AEZ

2. E((At ◦ Z)(At ◦ Z)
′
) = AE(ZZ

′
)A +

[
α2

1p1(1 − p1)EX2 0
0 α2

2p2(1 − p2)EY2

]

+

[
α1p1(1 − α1)EX 0

0 α2p2(1 − α2)EY

]

3. At ◦ (At−1 ◦ Z) = AtAt−1 ◦ Z
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where Z = (X,Y)
′
is a two dimensional random vector.

Theorem 2.1. There exist a unique strictly stationary ergodic solution to equation (2.3).

Proof. Applying equation (2.3) k-times and following properties 3 from Lemma(2.1),
we can define process Zt as

Zt =

k−1∏
i=0

At−i ◦ Zt−k +

k∑
i=1

i−1∏
j=0

At− j ◦ et−i + et.

Denote with Yt = Zt −∑k
i=1

∏i−1
j=0 At− j ◦ et−i − et. Then

E
(
YtY

′
t

)
= E

⎛⎜⎜⎜⎜⎜⎝
k−1∏
i=0

At−i ◦ Zt−k

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

k−1∏
i=0

At−i ◦ Zt−k

⎞⎟⎟⎟⎟⎟⎠
′

=(2.4)

= E((Akt ◦ Zt−k) (Akt ◦ Zt−k)
′
)

where matrix Akt is obtained after multiplications of matrices At k-times and has

the form Akt =

[
α1kt 0
0 α2kt

]
. Elements are random variables distributed as α1kt :(

αk
1 0

pk
1 1 − pk

1

)
and α2kt :

(
αk

2 0
pk

2 1 − pk
2

)
. Following property 2 from Lemma (2.1)

equation (2.4) becomes

E(YtY
′
t) =

[
(α1p1)k 0

0 (α2p2)k

]
E(ZtZ

′
t)
[

(α1p1)k 0
0 (α2p2)k

]
+

+

[
α2k

1 pk
1(1 − pk

1)EX2
1,t 0

0 α2k
2 pk

2(1 − pk
2)EX2

2,t

]
+

+

[
(α1p1)k(1 − αk

1)EX1,t 0
0 (α2p2)k(1 − αk

2)EX2,t

]

Thus E(YtY
′
t) tends to zero matrix as k tends to infinity which proves the existence

of the solution. We can conclude that the solution to equation (2.3) in mean square
sense is of the form

Zt =

k∑
i=1

i−1∏
j=0

At− j ◦ et−i − et.(2.5)

Let us prove the uniqueness of the solution. Suppose that there exists another
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solution Z∗t . Since Z∗t is also a solution to the equation, then E(Zt) = E(Z∗t). Then

E((Zt − Z∗t)(Zt − Z∗t)
′
) = E(At ◦ (Zt−1 − Z∗t−1)(At ◦ (Zt−1 − Z∗t−1))

′
) =

= AE((Zt−1 − Z∗t−1)(Zt−1 − Z∗t−1)
′
)A +

+

[
α2

1p1(1 − p1)E(X1,t−1 − X∗1,t−1)
2 0

0 α2
2p2(1 − p2)E(X2,t−1 − X∗2,t−1)

2

]
+

+

[
α1p1(1 − α1)E(X1,t−1 − X∗1,t−1) 0

0 α2p2(1 − α2)E(X2,t−1 − X∗2,t−1)

]
.

From this matrix equality we have, componentwise:

E(X1,t − X∗1,t) = α2
1p2

1E(X1,t−1 − X∗1,t−1)
2 + α2

1p1(1 − p1)E(X1,t−1 − X∗1,t−1)
2

+ α1p1(1 − α1)E(X1,t−1 − X∗1,t−1) ≤
≤ α1p2

1E(X1,t−1 − X∗1,t−1)
2 + α1p1(1 − p1)E(X1,t−1 − X∗1,t−1)

2

= α1p1E(X1,t−1 − X∗1,t−1)
2

and

E(X1,t − X∗1,t)(X2,t − X∗2,t) = α1α2E(X1,t−1 − X∗1,t−1)(X2,t−1 − X∗2,t−1)

which implies the uniqueness of the solution Zt.
The solution (2.5) has the same functional form for each t and therefore it must be

stationary. This implies stationarity of Zt. Further, as ei and e j are independent for
i � j and random matrices Ai and A j are independent for i � j, {et,At} is a sequence
of independent identically distributed random vectors and thus ergodic. As σ-field
Gt generated by (Zt,Zt−1, ...) is a subset of σ fieldFt generated by (et,At, et−1,At−1, ...)
for any t, we have that Zt is also ergodic.

Remark: For some special cases this model reduces to some known models.

• For parameters p1 = 1 and p2 = 1 the process reduces to the bivariate process
discussed in [10].

• If we suppose independencies between processes ε1,t and ε2,t, processes (2.1)
and (2.2) are two univariate integer valued processes discussed in [2].

3. Properties of the Model

Following the definition of BVDINAR(1) model we continue the research by de-
riving properties of the model. In this section we discuss marginal as well as joint
probability distribution of the model. Also, we investigate the conditional prob-
ability distribution function and conditional and unconditional moments. The
conditional moments are derived for k-steps ahead and some discussion on their
asymptotic properties is given.
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We investigate the distribution of the process through the probability generating
function. First, we state marginal distribution for process X1,t which is given with

ΦX1,t (s) = p1Φα1◦X1,t−1Φε1,t (s) + (1 − p1)Φε1,t(s) = ... =

= pt
1ΦX1,0 (1 − αt

1(1 − s))Φε1,1 + (1 − p1)
t−1∑
i=0

pi
1Φε1,t−i(s) =

= (pt
1ΦX1,0 (1 − αt

1(1 − s)) + (1 − pt
1))Φε1,t(s) −→ Φε1,t (s)

as t tends to infinity, and similarly for X2,t

ΦX2,t (s) = (pt
2ΦX2,0 (1 − αt

2(1 − s)) + (1 − pt
2))Φε2,t (s) −→ Φε2,t (s)

The probability generating function of our bivariate model is given with the fol-
lowing equation.

ΦX1,t ,X2,t (s1, s2) = pt
1p

t
2ΦX1,0 ,X2,0 (1 − αt

1(1 − s1), 1 − αt
2(1 − s2)) ·

·
t−1∏
i=0

Φε1,t−i,ε2,t−i(1 − αi
1(1 − s1), 1 − αi

2(1 − s2)) +

+

t∑
i=1

(p1p2)i−1
[
p1(1 − p2)ΦX1,t−i(1 − αi

1(1 − s1)) +

+ (1 − p1)p2ΦX2,t−i (1 − αi
2(1 − s2)) + (1 − p1)(1 − p2)

]
·

·
i∏

j=1

Φε1,t− j+1,ε2,t− j+i(1 − αi−1
1 (1 − s1), 1 − αi−1

2 (1 − s2)).

Since the model is constructed by assuming the bivariate distribution of the inno-
vation processes, let us denote with με1 and με2 expected values of two innovation
processes respectively with σε1 and σε2 their variances. The covariance between the
innovation processes denote with φ. Then we have

E(Xi,t) =
μεi

1 − αipi

Var(Xi,t) =
αipi(1 − αi)(1 − αipi)μεi + α

2
i pi(1 − pi)μ2

εi
+ (1 − αipi)2σ2

εi

(1 − α2
i pi)(1 − αipi)

.

Covariance of each process is given with

Cov(Xi,t+k,Xi,t) = αk
i p

k
i Var(Xi,t)(3.1)

so covariance tends to zero as k −→ ∞. Covariances between these two processes
is equal to

Cov(X1,t,X2,t) =
Cov(ε1,t, ε2,t)
1 − α1α2p1p2

.
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Thus, the covariance of the processes is proportional to the covariance of the inno-
vation processes. We also derive k-steps cross-covariance which is

Cov(Xi,t+k,Xj,t) = αk
i p

k
i Cov(Xi,t,Xj,t).(3.2)

so we can conclude from equations (3.1) and (3.2) that covariances tend to zero as
k tends to infinity.

Following the definition of the processes X1,t and X2,t we derive k-steps condi-
tional expectation as

E(Xi,t+k|X1,t,X2,t) = αipiE(Xi,t+k−1|X1,t,X2,t) + μεi = ... =

= (αipi)kXit + μεi

1 − (αipi)k

1 − αipi
.

From the above equation we have that conditional expectation tends to uncondi-
tional as k tends to infinity. Before we derive k-steps conditional variance of the
processes, we focus on conditional statistical measures of the thinning component.
The following lemma gives some properties of the thinning operator.

Lemma 3.1. For the binomial thinning operator and processes defined with (2.1) and (2.2)
the following equations hold:

1. E(αi ◦ Xi,t+k|X1,t,X2,t) = piE(αi ◦ Xi,t+k−1|X1,t,X2,t) + E(αi ◦ εi,t+k)

2. E((αi ◦ Xi,t+k)2|X1,t,X2,t) = piE((α2
i ◦ Xi,t+k−1)2|X1,t,X2,t)+

2αipiE(α2
i ◦ Xi,t+k−1|X1,t,X2,t)E(εi,t+k) + E(αi ◦ εi,t+k)2

3. Var(αi ◦ Xi,t+k|X1,t,X2,t) = pk
i Var(αk+1

i ◦ Xi,t|X1,t,X2,t)+

(1 − pi)
∑k

j=1 pj
i (E(α j+1

i ◦ X1,t+k− j|X1,t,X2,t))2 +
∑k−1

j=0 pj
i Var(α j+1

i ◦ εi,t+k− j)

Proof. The first two properties follow directly from the definition of the processes.
They imply that Var(αi◦Xi,t+k|X1,t,X2,t) = piVar(α2

i ◦Xi,t+k−1|X1,t,X2,t)+pi(1−pi)(E(α2
i ◦

Xi,t+k−1|X1,t,X2,t))2 + Var(αi ◦ εi,t+k). Applying this conditional variance k-time we
obtain property 3.

Conclusions of Lemma (3.1) are building blocks for k-steps conditional variance
which is given as

Var(Xi,t+k|X1,t,X2,t) = piVar(αi ◦ Xi,t+k−1|X1,t,X2,t)+

+ pi(1 − pi)(E(αi ◦ Xi,t+k−1|X1,t,X2,t))2 + Var(εi,t+k) = · · · = αk
i p

k
i (1 − αk

i )Xi,t+

+

⎛⎜⎜⎜⎜⎝(1 − pi)(αk
i p

k
i Xi,t +

1 − αk
i p

k
i

1 − αipi
μεi )

2α2
i pi + σ

2
εi
− μεi

⎞⎟⎟⎟⎟⎠ + 1 − α2k
i pk

i

1 − α2
i pi
+ μεi

1 − αk
i p

k
i

1 − αipi
.

Once again we can notice that conditional variance tends to unconditional as k
tends to infinity.
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4. The model with Poisson marginal distribution

In this section we introduce an assumption about the distribution of the innovation
processes. For the specified bivariate distribution, in subsection 4.1., we derive
unconditional and k-steps ahead conditional expectation and variance. Estimation
of the parameters is discussed in detail. Two methods for parameter estimation are
suggested in subsection 4.2., conditional maximum likelihood and the method of
moments. The former method is derived in subsection 4.2.1. where the conditional
probability mass function of the model can also be found. The latter method is
investigated in subsection 4.2.2. There is also a detailed discussion about asymptotic
properties of the estimates. Finally, in subsection 4.3. both methods are tested on
simulated data sets.

4.1. Model

Innovation processes ε1,t and ε2,t follow bivariate Poisson distribution with param-
eters (λ1, λ2, φ) where the probability distribution function is

P(ε1,t = u, ε2,t = v) = e−(λ1+λ2−φ) (λ1 − φ)u

u!
(λ2 − φ)v

v!
·(4.1)

·
k∑

i=0

(
u
i

)(
v
i

)
i!
(

φ

(λ1 − φ)(λ2 − φ)

)i

,

k = min(u, v). While parameter λi determines the mean value and variance for
processes ε1,t and ε2,t, a correlation between these two processes is determined
with parameter φ. Marginal distribution of innovation processes is Poisson with
parameterλ1 andλ2 respectively. If we assume thatφ = 0 bivariate process reduces
to two independent univariate processes.

The mean and variance of processes X1,t and X2,t are

EXi,t =
λi

1 − αipi
(4.2)

Var(Xi,t) =
(1 − α2

i pi)(1 − αipi)λi + α2
i pi(1 − pi)λ2

i

(1 − α2
i pi)(1 − αipi)2

(4.3)

k-steps covariance and cross-covariance are given by equations (3.1) and (3.2) and
they do not depend on marginal distributions, while

Cov(X1,t,X2,t) =
φ

1 − α1α2p1p2
.(4.4)

Further, conditional expectation and conditional variance are given by the follow-
ing equations, respectively

E(Xi,t+k|X1,t,X2,t) = (αipi)kXi,t + λi
1 − (αipi)k

1 − αipi
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Var(Xi,t+k|X1,t,X2,t) = (αipi)k(1 − αk
i )Xi,t + α

2
i pi(1 − pi) ·

·
(
(αipi)kXi,t + λi

1 − (αipi)k

1 − αipi

)2 1 − α2k
i pk

i

1 − α2
i pi
+ λi

1 − (αipi)k

1 − αipi

4.2. Parameter Estimation

Our model is defined with seven parameters. In this subsection we state two
methods for their estimation, conditional maximum likelihood (CML) and the
method of moments (MM).

4.2.1. Conditional Maximum Likelihood

The conditional probability function of (X1,t,X2,t) conditioned on (X1,t−1,X2,t−1) is
a weighted sum of conditional probabilities of components that define processes
X1,t, X2,t.

P(X1,t+1 = x,X2,t+1 = y|X1,t = u,X2,t = v) =
= p1p2P(α1 ◦ X1,t + ε1,t+1 = x, α2 ◦ X2,t + ε2,t+1 = y|X1,t = u,X2,t = v) +
+ (1 − p1)p2P(ε1,t+1 = x, α2 ◦ X2,t + ε2,t+1 = y|X1,t = u,X2,t = v) +
+ p1(1 − p2)P(α1 ◦ X1,t + ε1,t+1 = x, ε2,t+1 = y|X1,t = u,X2,t = v) +
+ (1 − p1)(1 − p2)P(ε1,t+1 = x, ε2,t+1 = y|X1,t = u,X2,t = v)

Following independency of (ε1,n, ε2,n) from (X1,m,X2,m) for n > m and the fact that
thinning α1 ◦ X1,t, when X1,t = u is known, is a binomial random variable with
parameters (α1, u) and it is independent of X2,t (and similarly for α2 ◦ X2,t) we
obtain the following equations.

P(α1 ◦ X1,t + ε1,t+1 = x, α2 ◦ X2,t + ε2,t+1 = y|X1,t = u,X2,t = v) =

=

x∑
m=s1

y∑
n=s2

P(Bin(α1, u) = x −m)P(Bin(α2, v) = y − n) ·

·P(ε1,t+1 = m, ε2,t+1 = n)

where s1 = max(x − u, 0) and s2 = max(y − v, 0),

P(ε1,t+1 = x, α2 ◦ X2,t + ε2,t+1 = y|X1,t = u,X2,t = v) =

=

y∑
n=s2

P(Bin(α2, v) = y − n)P(ε1,t+1 = x, ε2,t+1 = n)

and

P(α1 ◦ X1,t + ε1,t+1 = x, ε2,t+1 = y|X1,t = u,X2,t = v) =

=

x∑
m=s1

P(Bin(α1, u) = x −m)P(ε1,t+1 = m, ε2,t+1 = y)
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Probability distribution function for innovation processes is given by equation (4.1).

To estimate the parameters we need to maximize the conditional log-likelihood
function of the form

L =
n−1∑
i=1

ln P(X1,i+1,X2,i+1|X1,i,X2,i,θ)

where θ is the vector of parameters. Due to the complexity of the function L, the
minimization procedure is obtained numerically.

4.2.2. Method of moments

Suppose we have a random sample (X1, j,X2, j) j=1,n. Let us introduce new parameters
u1 = α1p1 and u2 = α2p2. This parameter is estimated by equation (3.1) so

ûi =
γXiXi (1)
γXi (0)

.

Now from equation (4.2) we have

λ̂i = (1 − ûi)Xi

where Xi is the sample mean, γXi (0) is the sample variance and γXiXi(1) is the sample
auto-covariance for lag 1 for series {Xi,t}. Further, from equation (4.3) we estimate
parameter αi as

α̂i =
λ̂i(1 − ûi) − û2

i λ̂
2
i − (1 − ûi)2γXi (0)

ûi(1 − ûi)λ̂i − ûiλ̂2
i − ûi(1 − ûi)2γXi (0)

.

We estimate parameter pi as p̂i =
ûi
α̂i

.

Finally, parameter φ is estimated from equation (4.4) as

φ̂ =
γX1X2 (0)
1 − û1û2

.

Denote with mn a vector of moments used for the estimation of the parameters
(n in the index stands for the sample size), where mj, j = 1, 3 are the sample
mean, variance and the auto-covariance function for series X1,t, mj, j = 4, 6 the
corresponding functions for series X2,t and m7 the sample cross-correlation function.
Consequently, mj = 1/n

∑n
i=1 mj(X1,i,X2,i), j = 1, 7. The vector of the parameters is

θ = (λ1, λ2, α1, α2, p1, q2, φ). If we expand in a linear Taylor series the set of solved
moment equations around the true values of parameter θ0, we obtain the linear
approximation

0 ≈ [mn(θ0)] +Gn(θ0)(θ̂ − θ0)
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from which we have
√

n(θ̂ − θ0) ≈ −[Gn(θ0)]−1√n[mn(θ0)].(4.5)

Since moment functions are all continues, according to Central Limit Theorem,√
n[mn(θ0)] is normally distributed with mean 0 as n tends to infinity. Further,

all functions in the moment equations are functionally independent, thus Gn(θ0)
converges to a nonsingular matrix of constants. All this implies normal distribution
of the right side of equation (4.5) with mean 0 and asymptotic covariance matrix
Φ.

The asymptotic covariance matrix for the estimated parameters is obtained as

Φ = 1
n

(
G
′
n(θ)F−1Gn(θ)

)−1
. Matrix F = [Fjk] is a 7 × 7 matrix the elements of which

are Fjk =
1
n

∑n
i=1[(mj(X1,i.X2,i) −mj)(mk(X1,i,X2,i) − mk)], G = [Gij] is 7 × 7 matrix the

elements of which are partial derivatives of moment functions used to estimate the
parameters.

Gij =
∂mi

∂θ j

The elements of the matrix are given in Appendix.

4.3. Simulation results

In the previous two subsections we stated the methods for estimation of unknown
parameters. To demonstrate the efficiency of these methods we preform tests on
a simulated data sets. The data sets contains 100 samples of length 50, 100, 500
and 1000. We perform two tests with different parameters: a) α1 = 0.6, α2 = 0.55,
p = 0.55, q = 0.4, λ1 = 5, λ2 = 3, φ = 1; b) α1 = 0.3, α2 = 0.2, p = 0.65, q = 0.6,
λ1 = 5, λ2 = 3, φ = 1. Results are presented in Table 4.1 and Table 4.2. Table
4.1 and Table 4.2 contain the estimated values as well as the standard deviation of
these estimates. The first column of both tables states the number of Monte Carlo
replications. For the parameter estimation procedure we use R software.

We can notice that both methods converge to real values with an increase in the
sample length. The CML method provides good results even for samples of length
100, while there are some deviations for samples of length 50, but the results are
still not too away from true values. The MM method is quite unprecise for small
samples. When parameters αi take higher values, the performance of the method
is slightly better but it still needs more than 100 elements per sample to achieve
precise results. For samples of length 1000 MM the results are quite good. Due to
the complexity of the model, computation times for samples of length 1000 for MM
and CML are incomparable. Computation time for the first method is measured in
seconds and for the second in hours.
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Table 4.1: Estimated parameters with Method of moments (standard deviation are
given underneath)

α1 α2 p1 p2 λ1 λ2 φ
50 0.5986 0.4473 0.4963 0.488 5.0695 3.0345 1.1524

0.178 0.3332 0.2456 0.3652 0.9019 0.6349 1.092
100 0.5971 0.4879 0.4941 0.4683 5.1058 2.9775 1.0263

0.1106 0.2658 0.1545 0.618 0.5776 0.4359 0.8233
500 0.593 0.5059 0.5473 0.4523 4.9423 2.9246 1.1887

0.0407 0.1044 0.0624 0.1366 0.2946 0.1953 0.4252
1000 0.5956 0.5193 0.5498 0.4288 4.9314 2.9277 1.1826

0.0298 0.0615 0.0504 0.0927 0.2302 0.1391 0.3177
50 0.3794 0.3447 0.4679 0.3286 5.2949 3.2607 1.267

0.2888 0.3592 0.351 0.3866 0.7692 0.5501 0.767
100 0.3692 0.3005 0.4865 0.3616 5.2166 3.1819 1.1993

0.2419 0.3178 0.2975 0.3814 0.6407 0.3967 0.5342
500 0.3392 0.2368 0.5562 0.4844 5.0773 3.1136 1.1667

0.0705 0.1879 0.141 0.3265 0.3022 0.1827 0.2404
1000 0.324 0.2078 0.5925 0.5932 5.0449 3.117 1.1451

0.0437 0.1158 0.0893 0.2906 0.2023 0.1351 0.1661

Table 4.2: Estimated parameters with Maximum likelihood method (standard de-
viation are given underneath)

α1 α2 p1 p2 λ1 λ2 φ
50 0.6013 0.5081 0.5396 0.472 4.955 2.9713 1.0303

0.1269 0.3027 0.1646 0.3119 0.6323 0.4463 1.1042
100 0.5973 0.5645 0.5304 0.4204 4.9394 2.9868 1.0471

0.0687 0.2132 0.1052 0.2324 0.4437 0.3459 0.6186
500 0.598 0.5529 0.548 0.3874 4.9278 2.9858 1.082

0.0271 0.0809 0.0418 0.0866 0.1784 0.1305 0.2845
1000 0.5982 0.5504 0.5514 0.3925 4.9352 2.9826 1.069

0.021 0.0502 0.0306 0.0608 0.1342 0.0995 0.2049
50 0.3426 0.2086 0.6218 0.7023 5.0648 3.1589 1.1625

0.1566 0.2317 0.274 0.304 0.547 0.3648 0.5412
100 0.3342 0.1943 0.5986 0.7001 5.0943 3.1565 1.1116

0.125 0.1754 0.248 0.2898 0.4813 0.3032 0.4312
500 0.327 0.2046 0.6251 0.6208 5.0766 3.1254 1.0842

0.0478 0.1557 0.1096 0.3057 0.2361 0.1714 0.1818
1000 0.3099 0.207 0.6474 0.6189 5.0629 3.1269 1.066

0.0385 0.0841 0.0762 0.2755 0.1622 0.1205 0.1438
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5. Real data example

In order to demonstrate the practical aspect of the introduced model in this section
we analyze some series of counts from real life. We will discuss the results and
statistical properties of the observed series. The idea is to show that BVDINAR(1)
model is adequate for time series of counts with certain features and not only for
the observed two series. The obtained results will be compared with some other
INAR models.

We analyze data downloaded fromhttp://www.forecastingprinciples.com/
index.php?option=com_content&view=article&id=47&Itemid=250where we fo-
cus on monthly counts of larceny (LAR) and criminal mischiefs (CMIS) in Pitts-
burgh from January 1990 till December 2001. These two acts can be classified as
light criminal activities. LAR can be described as a nonviolent theft, while CMIS
represents injures, damages, or destruction of any property of another or pub-
lic property without consent. So the same social environment brings forth these
two crime acts. On the other side, there is no evident lag 1 cross-correlations be-
tween these two series although they are correlated. The mean values for LAR
and CMIS are 1.18 and 1.43, while the variances are 1.37 and 1.95, respectively.
The correlation coefficient for the series is 0.31. There is some overdispersion with
both series, but as it is not big, Poisson distribution should not be discard. There
are 144 observations. Data series, autocorrelation functions and cross-correlation
functions are given in Figure 5.1. Data series have very similar patterns, which
supports the assumption that they are dependent. We can notice the presence of
lag 1 autocorrelation in both series. Also, there is little or no cross-correlation.

Goodness of fit criteria that we use are the Akaike information criterion (AIC),
the Bayesian information criterion (BIC) and the root mean square error (RMS).
While the first two measure the quality of the assumed distribution for the series,
the third one suggests one step ahead forecasting power. BVDINAR(1) model is
compared with two similar models but with constant coefficients BVPOIBINAR(1)
and BVNBIBINAR(1) both introduced in [10] and with BVFPIB model presented
in [12] which suggests lag 1 cross-correlation between series. All these models
assume dependencies between innovation processes where innovation processes
are generated by bivariate Poisson distribution with BVPOIBINAR(1) and BVFPIB
and by bivariate negative binomial with BVNBIBINAR(1). There is no intention to
prove that one model is the best overall but only to show that in some examples with
specific features one model is better than the other. The results are summarized
in Table 5.1. To estimate the parameters of the models we use the ML method
because of two reasons. First, we want to take into consideration the probability
distribution of the processes and, second, the sample is not large enough to achieve
MM precise estimates.

From Table 5.1 we can notice that the models based on bivariate Poisson dis-
tribution are more adequate then the one based on the bivariate negative binomial
with respect to all three criteria. BVDINAR(1) model gives the best scores. There
are some improvements with respect to BVPOIBINAR(1) model, although their BIC
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values are almost the same, which stems from the fact that BVDINAR(1) has two
more parameters then BVPOIBINAR(1). Inclusion of lag 1 cross-correlation into
the model worsens the results, which is shown by BVFPIB model. Its results are
similar to the other two Poisson distribution-based models, but a bit worse. When
we are talking about the values of the estimated parameters for BVDINAR(1), we
can notice that low, but still present, autocorrelation with series LAR is captured
with a low value of parameter p1. According to the estimated parameters, the
expected values for the processes are 1.192 and 1.426 and the variances 1.437 and
1.482 for LAR and CMIS, respectively, which is quite close to the true values. Also,
φ different from zero implies that innovation processes and thus LAR and CMIS
are dependent.

Table 5.1: Parameter estimates, AIC, BIC, RMS for larceny and criminal mischief
(values in the brackets are standard errors of the estimates).

Model CML estimates AIC BIC RMS RMS
LAR CMIS

BVDINAR(1)

α̂1 = 0.977(0.273), p̂1 = 0.183(0.094)

854.6 875.38 1.139 1.360α̂2 = 0.323(0.188), p̂2 = 0.537(0.35)
λ̂1 = 0.979(0.106), λ̂2 = 1.179(0.125)

φ̂ = 0.286(0.094)

BVPOIBINAR(1)
α̂1 = 0.135(0.074), λ̂1 = 1.036(0.121)

860.8 875.66 1.142 1.367α̂2 = 0.121(0.065), λ̂2 = 1.261(0.13)
φ̂ = 0.337(0.093)

BVNBIBINAR(1)
α̂1 = 0.089(0.057), λ̂1 = 1.558(0.222)

905.43 920.28 1.24 1.61α̂2 = 0.002(0.0715), λ̂2 = 2.253(0.367)
β̂ = 0.918(0.067)

BVFPIB

α̂11 = 0.271(0.109), α̂12 = 0.002(0.079)

881.11 901.19 1.161 1.369α̂21 = 0.113(0.089), α̂22 = 0.159(0.089)
λ̂1 = 1.094(0.129), λ̂2 = 1.165(0.121)

φ̂ = 0.404(0.105)
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Fig. 5.1: Larceny series and Criminal mischief series
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6. Conclusion

In this article we presented a bivariate INAR model with dependent innovation
components while the survival component of the model is defined with random
coefficients. This model extends the univariate INAR model with a random coef-
ficient to the bivariate case. Also, it introduces the random coefficient concept for
bivariate models with dependent innovation processes. The existence and station-
arity of the model are proved. We focus on a special case of the model when the
innovation processes follow binomial Poisson distribution. Besides the statistical
measures of the model, we also discussed conditional maximum likelihood and
the method of moments for the parameters estimation. We found out that the first
method provides more precise estimates whereas the second one is welcome for
big data sets due to the much shorter computation time. In the end, we discussed
the application of the model to real data. We gave some comments on the features
of the observed time series of counts and suggested for which series the model is
appropriate.

Further development of the model might consider an introduction of some
other thinning operators and some other bivariate distributions for the innovation
processes.

7. Appendix

The elements of matrix G are

G11 =
1

1−α1p1

G13 =
p1λ1

(1−α1p1)2 G15 =
α1λ1

(1−α1p1)2

G12 = G14 = G16 = G17 = 0

G21 =
1

1−α1p1
+

2α2
1p1(1−p1)λ1

(1−α2
1p1)(1−α1p1)2

G23 =
p1λ1

(1−α1p1)2 +
α1p1(1−p1)λ2

1(2−α1p1(1+α2
1p1))

(1−α2
1p1)2(1−α1p1)2

G25 =
α1λ1

(1−α1p1)2 +
α2

1λ
2
1(1−2p1+α1p2

1(1+α1−α2
1))

(1−α2
1p1)2(1−α1p1)2

G22 = G24 = G26 = G27 = 0

G31 =
α1p1

1−α1p1
+

2α3
1p2

1(1−p1)λ1

(1−α2
1p1)(1−α1p1)

G33 =
p1λ1

(1−α1p1)2 +
α2

1p2
1(1−p1)(3−α1p1(2+α1))λ2

1

(1−α2
1p1)2(1−α1p1)2

G35 =
α1λ1

(1−α1p1)2 +
α3

1p1λ2
1(2−(3+α1+α2

1)p1+2α1(1+α1)p2
1−α3

1p3
1)

(1−α2
1p1)2(1−α1p1)2

G32 = G34 = G36 = G37 = 0
G42 =

1
1−α2p2

G44 =
p2λ2

(1−α2p2)2
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G46 =
α2λ2

(1−α2p2)2

G41 = G43 = G45 = G47 = 0

G52 =
1

1−α2p2
+

2α2
2p2(1−p2)λ2

(1−α2
2p2)(1−α2p2)2

G54 =
p2λ2

(1−α2p2)2 +
α2p2(1−p2)λ2

2(2−α2p2(1+α2
2p2))

(1−α2
2p2)2(1−α2p2)2

G56 =
α2λ2

(1−α2p2)2 +
α2

2λ
2
2(1−2p2+α2p2

2(1+α2−α2
2))

(1−α2
2p2)2(1−α2p2)2

G51 = G53 = G55 = G57 = 0

G62 =
α2p2

1−α2p2
+

2α3
2p2

2(1−p2)λ2

(1−α2
2p2)(1−α2p2)

G64 =
p2λ2

(1−α2p2)2 +
α2

2p2
2(1−p2)(3−α2p2(2+α2))λ2

2

(1−α2
2p2)2(1−α2p2)2

G66 =
α2λ2

(1−α2p2)2 +
α3

2p2λ2
2(2−(3+α2+α2

2)p2+2α2(1+α2)p2
2−α3

2p3
2)

(1−α2
2p2)2(1−α2p2)2

G61 = G63 = G65 = G67 = 0
G71 = G72 = 0

G73 =
p1φ

1−α1α2p1p2
+

α1α2p2
1p2φ

(1−α1α2p1p2)2

G74 =
α2

1p2
1p2φ

(1−α1α2p1p2)2

G75 =
α1φ

1−α1α2p1p2
+

α2
1α2p1p2φ

(1−α1α2p1p2)2

G76 =
α2

1α2p2
1φ

(1−α1α2p1p2)2

G77 =
α1p1

1−α1α2p1p2
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