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Abstract. A difference BIBD is a balanced incomplete block design on a group, which
is constructed by transferring a regular perfect difference system by a subgroup of its
point set. There is an obvious bijection between these BIBDs and some copies of their
point sets as two sets. In this paper, we investigate the algebraic structure of these
block designs by defining a group-isomorphism between them and their point sets. It
has been done by defining some relations between the independent-graphs of difference
BIBDs and some Cayley graphs of their point sets. It has been shown that some Cayley
graphs are embedded in the independent-graph of difference BIBDs as a spanning sub-
graphs. In order to find these relations, we find out a configuration ordering on these
BIBDs, also we have also obtained some results about the classification of these BIBDs.
This paper deals with difference BIBDs with even numbers of points.
Keywords. Balanced incomplete block design, sub-design, independent graph, Cayley
graph, dihedral groups, configuration ordering.

1. Introduction

Let G be a finite group of order ν (|G| = ν) and k, λ be two integers, where k is
less than ν. A t−(ν, k, λ)-balanced incomplete block design is an ordered pair (G, β)
such that β is a family of k-subsets of G, named blocks, and every t elements of G
do appear in exactly λ blocks. For simplicity of notation, we write (ν, k, λ)-BIBD
(and some times (ν, k, λ)-block design) instead of 2− (ν, k, λ)-balanced incomplete
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block design. it will be called a trivial block design, when k = ν. Suppose that
D is a (ν, k, λ)-BIBD. A sub-design D′ : (ν, k, λ′)-BIBD of D is such that every
block of D′ is a block of D and this is denoted by D′ ≤ D. Two block designs are
isomorphic if there exists a bijection between the point sets such that blocks are
mapped onto blocks. The embedding of a (family of) block designs into others are
studied in [7, 11, 12, 14, 22, 23].Also there are some papers about the embedding of
some block designs into some other mathematical objects like graphs [16], groups
[1], surfaces or some applied mathematical concepts like (security of) coding, the
mutually orthogonal [24], fast name retrieval in databases (named hashing) used
for example in airports [5] or in social media [8]. A simple graph Γ is an ordered
pair (V (Γ), E(Γ)) consisting of a set V (Γ) of vertices and a set E(Γ), disjoint from
V (Γ), of edges, together with an incidence function ρΓ that associates with each
edge of Γ an unordered pair of vertices of Γ. A path Pn is a simple graph with n
vertices whose vertices can be arranged in a linear sequence in such a way that two
vertices are adjacent if they are consecutive in the sequence, and are non adjacent
otherwise. A cycle Cn is a Pn such that the first and the last vertices are adjacent.

The aim of this paper is to bring together two areas in which a family of BIBDs
have the same structure of groups. The first area is some of the block designs,
whereas some graphs depend on them. The second area is the structure of groups
as graphs.

Let B1, B2, . . . , Bc be k-subsets of G. For a finite group G, the difference of two
elements of the group, say x and y, is defined as xy−1. Let ∆β denote the list of all
possible differences between two blocks of β; ∆β = {xy−1|x ∈ B, y ∈ B′, B,B′ ∈ β}.
Let S = {B1, B2, . . . , Bc} be a subset of β. If every element of G does appear exactly
λ times in ∆S, then S is called a (ν, k, λ)-regular perfect difference system. This
naming is in agreement with [21]. In the notation of [17], every element of this list
is called an initial block and we will follow this notation. To shorten notation, we
continue to write (ν, k, λ)-d-system, for a (ν, k, λ)-regular perfect difference system
and only d-system if there is no confusion. When a d-system has only one initial
block, this block is well-known as a difference set. For a treatment of a more general
case we refer the reader to [3, 19]. The methods of constructing a d-system has been
noted by many researchers. The best general reference and the classical work here
is [6, 17].

Let θ and y be two elements of the group G, the transference of y by θ is equal
to θy and is denoted by yθ. The presentation B = [y1 y2 . . . yk] of a block
B is used instead of B = {y1, y2, . . . , yk} to avoid confusion with the set notation
and to mention that a block is different from a usual subset of G. Assume that
A is a subset of G, maybe equals to G. A transference of block B by a set A, is
the set BA := {Bθ|θ ∈ A}, where Bθ = [y1

θ y2
θ . . . yk

θ]. The transferring of a
(ν, k, λ)-difference system by its point set is a well known way to construct a BIBD,
which is called a (ν, k, λ)-difference block design or a (ν, k, λ)-d BIBD or briefly
d-BIBD, when it will cause no confusion. Also we can do this transferring by a
subgroup of G. It is easy to see and it is also well known that there is a bijection
between a d-BIBD and some copies of G as its point set (or some copies of one of its
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subgroups as a set, which is done the transferring of the d-system). The question,
which arises here is: ”Is this bijection a group-isomorphism?” In other words, does
a d-BIBD have an algebraic structure as G (or its subgroup) or some copies of it?
Or this bijection is only a one-to-one function? Our view point sheds some new
light on classification of d-BIBDs, finding the existence of some d-BIBDs and have
a regular creatures, which are in math. In this paper, we investigate this problem
and we can see that d-BIBDs have the same algebraic properties as their point set
(Corollary 3.3). Also, as another result of proving the Lemma 3.1 and Lemma 3.2,
we have the ordering of these designs, which can be applied to some groups. In fact,
the d-BIBD inherited the algebraic structure of the point set. The corollary gains
interest if we realize that it works for a bigger family of BIBDs. So we can see the
extension of this method in Section 4. In the end, our theorems provide a natural
and intrinsic characterization of these BIBDs (Theorem 4.1). These results can be
applied to all d-BIBDs, as some corollaries, which are omitted in this paper. We
can see a near view of these results about the automorphism of d-BIBDs in [19].

2. Notation and Preliminaries

Let D := (G, β) be a (ν, k, λ)-BIBD, b be the size of β and r be the number of
blocks with one point of G appearing in them. It is well known that

b =
ϑ(ϑ− 1)λ

k(k − 1)
,(2.1)

r =
(ϑ− 1)λ

k − 1
.(2.2)

Let B = [y1 y2 . . . yk] be a block in β. As it was said in the introduction, a
difference list of a difference system on G is the list

∆B := {Yi,j := yiyj
−1|1 ≤ i, j ≤ k}.

We want to use the transferring of difference system for building a BIBD on a
non-Abelian group. According to this method, we can use this method for non-
Abelian groups by fixing the direction of the group action from the left (or right)
(For example, for a set B = {x, y, z} ⊆ G, for every θ ∈ G; θB = {θx, θy, θz}) as is
done in [15]. This method will be denoted by LTDS (Left Transferring Difference
System). The right and the left action have the same results up to isomorphism
by a simple isomorphism function. We follow the LTDS on a non-Abelian group.
From now on, all block designs are built by the LTDS unless it is mentioned.

The following theorem is useful about the structure of subgroups of D2n, where
D2n is dihedral group of order 2n, i.e., D2n = 〈a, b|an = b2 = 1; bab = a−1〉.

Theorem 2.1. [9, Theorem 2.3] If N is any proper normal subgroup of D2n, then
D2n

N is a dihedral group.

Theorem 2.2. [9, Theorem 3.1] Every subgroup of D2n is cyclic or dihedral. A
complete listing of the subgroups is as follows:
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1. 〈ad〉, where d|n, with index 2d.

2. 〈ad, aib〉, where d|n and 0 ≤ i ≤ d− 1, with index d.

Every subgroup of D2n occurs exactly once in this listing.

By Theorem 2.2 and [9], for every two dihedral groups, D2n and D2m, either one
is a subgroup of the other or both of them are subgroups of D2w, where w =
lcm(2n, 2m). Assume that Γ and Υ are two graphs with vertex sets V (Γ) and
V (Υ), respectively. The adjoint of Γ and Υ, denoted by Γ ∨ Υ, is a graph with
vertex set V (Γ)∪V (Υ) and edge set E(Γ)∪E(Υ). The Cartesian product of Γ and
Υ denoted by (Γ � Υ) is a graph such that its vertex set is the Cartesian product
of V (Γ) and V (Υ) and any two vertices (u, u′) and (v, v′) are adjacent in Γ�Υ, if
and only if either u = v and u′ is adjacent with v′ in Υ, or u′ = v′ and u is adjacent
with v in Γ. Let G be a group and S be a self-inverse and unit-free subset of it. The
Cayley graph Cay(G,S) is a graph with vertex set G such that two vertices x and
y are connected by an edge if and only if xy−1 ∈ S. It’s well known that Cay(G,S)
is connected if and only if S is a generator of G, see [13].

Theorem 2.3. [4] Let C1 = Cay(G,S1) and C2 = Cay(H,S2) be two Cayley
graphs on groups G and H, respectively. Then the Cartesian product C1 � C2 is
the Cayley graph C = Cay(G×H,S), where S = {(x, 1), (1, y)|x ∈ S1; y ∈ S2} and
G×H is the direct product of the groups G and H.

Let s be an integer and d1, d2 be two integers less than s. A Toeplitz graph
Ts〈d1, d2〉 is a graph with {1, 2, . . . , s} as its vertex set and two integers f and f ′

from {1, 2, . . . , s} are adjacent if and only if |f − f ′| ∈ {d1, d2}.

Theorem 2.4. [18, Theorem 2] Tn〈d1, d2〉 decomposes into exactly gcd(d1, d2) con-
nected and isomorphic components.

Remark 2.1. Now let G be a cyclic group of order n as 〈a〉. Also d1 and d2 are two inte-
gers less than n. A Toeplitz graph TG〈ad1 , ad2〉 is a graph with G as its vertex set and two
elements f and f ′ of G are adjacent if and only if ff ′−1 ∈ {ad1 , ad2} or f−1f ′ ∈ {ad1 , ad2}.
As it is mentioned in [20], this graph is equal to the Cayley graph Cay(G, {ad1 , ad2}). Note
that there can be only one parameter for Toeplitz graphs.

3. The even difference block designs

One of the objectives in this section is to investigate difference block designs
with point sets of even size. Furthermore, for doing this, we need some relations of
these block designs, which can be found by algebraic properties of the point sets.
In this section, we illustrate construction of a block design on dihedral groups by
the LTDS method.

We are going to construct a block design (2n, k, λ)-BIBD on the point set D2n,
by the LTDS method. Let 〈a〉 = {1 = a0, a, a2, . . . , an−1} be a cyclic group of order
n.
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Assume that there is a d-system with c blocks B1, B2, . . . , Bc for a pair {k, λ}.
Transfer these blocks by 〈a〉 from the left. There is a (2n, k, λ)-BIBD by the LTDS.
From now on, all block designs are supposed that are constructed by the LTDS on
a d-system with c blocks. The set BHi will be called a family of blocks related to
Bi, where Bi is an initial block, H is a subgroup of G and 1 ≤ i ≤ c.

Example 3.1. The (10, 3, 2)- block design on D10 with d-system:

B1 = [b ab a2b], B2 = [a a4 b], B3 = [a2 a3 b],

B4 = [a a4 a2b], B5 = [a2 a3 b], B6 = [1 b a2b];

is a set of blocks as follow:

[b ab a2b] → [ab a2b a3b] [a2b a3b a4b] [a3b a4b b] [a4b b ab]
[a a4 b] → [a2 1 ab] [a3 a a2b] [a4 a2 a3b] [1 a3 a4b]
[a2 a3 b] → [a3 a4 ab] [a4 1 a2b] [1 a a3b] [a a2 a4b]
[a a4 a2b] → [a2 1 a3b] [a3 a a4b] [a4 a2 b] [1 a3 ab]
[a2 a3 a2b] → [a3 a4 a3b] [a4 1 a4b] [1 a b] [a a2 ab]
[1 b a2b] → [a ab a3b] [a2 a2b a4b] [a3 a3b b] [a4 a4b ab].

It’s clear that if we multiply b (b ∈ D2n) into families of blocks, then we have
these families with the new names again. So by multiplying b into initial blocks
and transferring them, again we have a block design with the same parameters but
different initial blocks. On the other hand, we know that the union of two block
designs D : (ν, k, λ1) and D′ : (ν, k, λ2) is a block design D̄ : (ν, k, λ1 + λ2). By
the above notations, if the initial blocks of block design D are transferred by D2n,
which is the union of 〈a〉 and 〈a〉b, then there is a block design D̄ with the same
point set and the same block sizes but with a different parameter λ. By these, we
can conclude the following remarks:

Remark 3.1. The difference block design D1 : (2n, k, λ) is isomorphic to a subdesign of
d-BIBD D2 : (2n, k, 2λ).

A difference block design on even points will be called the even block design.

Remark 3.2. Assume that B = [y1 y2 . . . yk] and B′ = [y′1 y′2 . . . y′k] are two
arbitrary blocks of an even block design. Suppose that they do not have any common
elements. By a simple calculation, we can see that Ba and B′a are disjoint, too.

3.1. Even difference block design as a finite group

In this section, we will provide some lemmas that we need for proving the main
result. Also we can present the structure of even d-BIBDs by these theorems. The
initial blocks are denoted by B1, B2, . . . , Bc. In this case, for any initial block,
the order of the points is arbitrary and fixed. Throughout this section, consider
G = D2n as the point set and D = (D2n, β) is a (ν, k, λ)-block design with n ≥ 5.
By Remark 3.1, apply the LTDS method with transferring of d-system by D2n,
unless it is mentioned and also λ is an even number.



106 M. T. Masouleh, A. Iranmanesh and H. Koppelaar

Definition 3.1. Assume that A and B are two sets such that B ⊆ P (A), where
P (A) is the power set of A. The independent graph of B is a graph with vertex set
B and two vertices are connected by an edge if and only if they are disjoint. The
independent graph is denoted by IG(A,B).

Base on design theory, the independent graph of a BIBD is a graph whose vertices
are the blocks of this BIBD and two blocks are adjacent if and only if they are
disjoint as two sets. The independent graph has its blocks as the vertices.

Lemma 3.1. Let Bi be an initial block of design D = (D2n, β), where k < n
3 .

Then the independent graph IG(D2n, Bi
D2n) is Hamiltonian.

Proof. It is sufficient to show that IG(D2n, Bi
D2n) has a spanning sub-graph, which

is Hamiltonian. Let ds := q (1 ≤ s ≤ κ =
(

2
k

)
) if and only if there are x and y in Bi

with xy−1 = aqbε (ε = 0, 1). And define ∆B̄i := {d1, d2, . . . , dκ}. Note that ∆B̄i is
a set of integers modulo n. The proof will be divided into two cases:

Case 1. Assume that there is an integer such that is relatively prime to n and
belongs to {1, 2, . . . , n}\∆Bi. Let d be the minimum integer with this property. So

by our assumption on d, it is clear that the set B = {Bi,h := Bi
ahd

}h=1,2,...,n is a
sequence of blocks such that Bi,h and Bi,h+1 are independent for every h and h+ 1
modulo n. This means that IG(D2n, B) is a cycle Cn, by Remark 2.1. The lemma
is proved for Bi

H with H = 〈a〉. Subtitute 〈a〉 and Bi for b〈a〉 and Bai , respectively.
There will be another cycle, by applying some of the above methods. By Remark
3.2, it is sufficient to find a block from Bi

〈a〉b, which is disjoint from Bi. If Bi
is a subset of 〈a〉 or 〈a〉b, then Bi

b is disjoint from Bi and so we find a common
edge. Assume that Bi contains the elements x ∈ 〈a〉 and y ∈ 〈a〉b. Without
loss of generality, suppose that x = by such that x = asbε and y = ajbδ, where
s, j ∈ {1, 2, . . . , n}, ε, δ ∈ {0, 1} and ε 6= δ. By multiplying b by y for obtaining
x = by, we have as+j−nbε−δ−1 = 1. It shows that s + j ≡ 0 (mod n). If there is
another element of Bi, which is equal to x after transferring by b, then it has to be
equal to y, which is impossible. Now we can consider another case, Bi

ab. Let z be
another element of Bi. By the above discussion, we know that ax 6= ay. If ax = abz
(ax = y), x = bz but z 6= y. If there are pairwise blocks with common element(s),
due to the condition k < n

3 , there is at least one block, which is disjoint from Bi,

say B′. There is j ∈ {1, 2, . . . , n} such that B′ = Bi
ajb (Fig.1). By Remark 3.2,

the set {{Bia
s

, Bi
as+jb}|1 ≤ s ≤ n} is a subset of edges of graph IG(D2n, Bi

D2n).
Clearly, this graph is Hamiltonian and the proof is complete in this case.

Case 2. Assume that there is not any element of the set {1, 2, . . . , n} \ ∆B̄i,
where these integers are relatively prime to n. Let d be the minimum element of
the set {1, 2, . . . , n} \ ∆B̄i and g := gcd(n, d). Remark 2.1 and our choosing in-
teger d, show that the transferring of B by ad, forms a new graph. This graph
includes g isomorphic components, which every component is a spanning sub-graph

of IG(D2n, Bi
D2n). Hence, the sequence {Bi,h := Bi

ahd

| h = 1, 2, . . . , n} forms g
isomorphic components by this transferring. Every component contains a spanning
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Fig. 3.1: The existence of an edge between two components of IG(D2n, B
D2n
i ).

cycle. So it is sufficient to find some edges between these components to obtain
a Hamiltonian cycle. Let d′ be an integer in {1, 2, . . . , n} \ {∆B̄i ∪ {d}}, so there
exists another element d′ due to the condition k < n

3 . Moreover, there is an edge

{Bi, Bia
d′

} because d′ is not in ∆B̄. On the other hand, every component is built
by transferring the blocks by ad and for every vertex of IG(D2n, Bi

D2n), this re-
sult can be applied by Remark 3.2, and hence the components are adjacent with
more than one edge. Since every component contains a spanning cycle, so does
IG(D2n, Bi

D2n).

As a consequence of the above Lemma, we have the following corollary.

Corollary 3.1. Let Bi be an initial block of design D = (D2n, β) and d be as in
the proof of Lemma 3.1 with, k < n

3 :

1. The graph IG(D2n, Bi
D2n) has a spanning sub-graph, which is isomorphic to

Cay(D2n, {ad, a−d, b});

2. There is a bijection between Bi
D2n and D2n.

Lemma 3.2. For a difference block design D, if k < n
3 , there is a cycle with

c vertices as a sub-graph of IG(D2n, β) containing one and only one vertex from
every Bi

D2n , for 1 ≤ i ≤ c.

Proof. Assume that there is a d-system of size c equal to {B1, B2, . . . , Bc} with c
different difference lists ∆B1,∆B2, . . . ,∆Bc, respectively. At first, we have to find
an edge, which has B1 as one of its vertices. Choose an element Bi ( 2 ≤ i ≤ c)
among all initial blocks. We continue the proof into two cases: either B1 ∩ Bi = φ
or B1 ∩ Bi 6= φ. In the first case, there is an edge between these blocks and we
should go to the next step. But by the second case, we need to find a block from
Bi

D2n , which is disjoint from Bi. For doing this, we need defining the new sets.
Put ∆B1,i = ∆B1 ∪∆Bi and ∆B̄1,i := {d | d ∈ {1, 2, . . . , n}; ad ∈ ∆B1,i or a

ib ∈
∆B1,i}. Choose an integer belongs to {1, 2, . . . , n} \ ∆B̄1,i and denote it by d1,i.
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Let B′i := (Bi)
ad1,i

. We can see that either B1 ∩ B2 = φ or B1 ∩ B′i 6= φ. In the
first case, we have the edge that we are looking for that. Suppose that there is at
least one common element between B1 and B′i. Then there are two cases:

1. There is no integer d ∈ ∆B̄1 such that d|d1,i or d1,i|d. So by transferring Bi
by ad1,i , we obtain the intended block.

2. There exists an integer d ∈ ∆B̄1 such that d|d1,i (or d1,i|d). In this case,
by transferring Bi by ad1,i repeatedly, we will achieve some blocks, which are not
disjoint from B1. But |B1| = k and k < n

3 , so we can choose another d from ∆B̄1,i.
It allows us to look for this block (a block disjoint from B1) between the vertices

of other components in IG(D2n, Bi
〈a〉). Note that by transferring Bi by ad1,i for

gcd(d1,i, n) times, if there is not a disjoint block from B1, then we should choose
another d from ∆B̄1,i. Now we find an edge between two blocks from two different

families B1
D2n and Bi

D2n . Continue process for the gained block ( B′i) and the
remaining initial blocks. Go on, until finding a path with c vertices. Denote the
last block of this path by B′j (Pc : B1, B

′
i, . . . , B

′
q, B

′
j). The proof falls into two

cases: either B1 ∩B′j = φ or B1 ∩B′j 6= φ. In the first case, there is a cycle, which
we were searching for. In other case, we need a restoration during the last step,
when we are finding the last block (B′j). We want to find a transference of block
Bj such that is disjoint from B1 and B′q. Consider the value d1,q,j instead of dq,j
to continue. This integer exists because of the condition k < n

3 . By the above

discussion, the transferring Bj by the (d1,q,j)
th

power of a, gives us a block, which
is disjoint from these three blocks. The cycle is completed now and so is the proof
(Figure 2).

Remark 3.2 guarantees that the transferring of the cycle, which is obtained in
Lemma 3.2, forms n isomorphic cycles in graph IG(D2n, β). Let Si be the set
{ad, a−d, b}, which is a subset of D2n as it is mentioned in the proof of Lemma
3.1, for every Bi (1 ≤ i ≤ c). Also, we have seen that the graph Cay(D2n, Si), for
1 ≤ i ≤ c, is isomorphic to a spanning sub-graph of IG(D2n, β) for a difference block
design (D2n, β), with k < n

3 . The following corollary is an immediate consequence
of the previous lemma.

Corollary 3.2. The Cartesian product of
∨
Cay(D2n, Si) and Cc, is isomorphic

to a spanning sub-graph of IG(D2n, β), with k < n
3 .

To embed an even d-BIBD into a finite group we use difference systems and graph
theory to find a relation between an even difference block design and a finite group.
By definition, it is clear that the Cartesian product of two Hamiltonian graphs is
a Hamiltonian graph. So by Corollary 3.2, we have a relation between groups and
difference block designs. By the method of constructing the even d-BIBDs, the size
of d-system, c is equal to b

2n . So by Corollary 3.1, Lemma 3.2 and Theorem 2.3, we
have the following theorem.

Theorem 3.1. Assume that there is a difference block design D : (2n, k, λ)-BIBD,
with k < n

3 and an even number λ, such that its d-system is transferred by D2n.
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Let c = (2n−1)λ
k(k−1) . Then there is a bijection between the group D2n ×Zc and the block

design D.

The bijection of previous theorem is:

Φ : β −→ D2n × Zc
B 7−→ (ajbε, i)

where B is the transference of Bi by ajbε (j ∈ {1, 2, . . . , n}). There is not any action
defined between the elements of β. The action between any pair of blocks of β, say
B and B′, will be defined as follows:

B �B′ = Φ(Φ−1(B) Φ−1(B′)).

Corollary 3.3. Under the above assumption, f := Φ−1 is an isomorphism from
D2n × Zc onto β.

We know that symmetric BIBDs are isomorphic to their point sets. Also, by def-
inition, in these symmetric difference block designs c = 1 and this isomorphism is
comparable with the above corollary.

Now suppose that λ is an odd number and equal to 2L + 1, where L is a pos-
itive integer. We saw in the proof of Lemma 3.1 that there are two cycles due to
transference by 〈a〉 and 〈a〉b, which are connected by n edges. For odd λ’s, the
transference can only be the group 〈a〉 (〈a〉b), by the LTDS method. By Theorem

2.4, IG(D2n, Bi
〈a〉) (IG(D2n, Bi

〈a〉b)) is a cycle or a union of isomorphic cycles. We
now apply the above argument again, with D2n or d copies of Dg replaced by C2n

or d copies of Cg, respectively, where d is as mentioned in proof of Lemma 3.1.

Corollary 3.4. Suppose that there is a difference block design D : (2n, k, λ)-BIBD
with k < n

3 , where λ is an even or an odd integer such that its d-system is transferred

by 〈a〉 of order n. Let c = (2n−1)λ
k(k−1) . Then there is an isomorphism between the group

〈a〉 ×Zc and the difference block design D.

Remark 3.3. Assume that there is a difference block design D : (2n, k, λ)-BIBD with
k < n

3
such that the d-system is transferred by H, where H is a subgroup of D2n. Let

c = 2n(2n−1)λ
k(k−1)|H| . Then there is a bijection between group H × Zc and the difference block

design D.

Remark 3.4. Let H be a subgroup of D2n of order n, which is not cyclic and suppose
that 4|n. By Theorem 2.1, D2n

〈b〉
∼= 〈a〉 and 〈b〉 ∼= Z2. Hence doing the LTDS method with

transferring by H, is a block design isomorphic to a difference block design on the point
set D2n, which is achieved by transferring via Dn.

3.2. Configurations and the ordering

In this section, we will see that the Hamiltonian cycle, which is achieved in the
proofs of Lemmas 3.1 and 3.2, gives us the ordering of even designs.
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Fig. 3.2: Configuration A1.

Definition 3.2. A ν-configuration is a collection of b lines (or subsets) having the
property that every t-element subset is contained in at most λ lines. And a (ν, l)-
configuration is a configuration of p points on l lines.

Definition 3.3. Let D = (V, β) be a BIBD with |β| = b. Let C be configuration
on l blocks. A Configuration ordering (or a C-ordering) for D is a list of the blocks
of D, B0, B1, . . . , Bb−1, with the property that Bi, Bi+1, . . . , Bi+l−1 ≡ C holds for
all 0 ≤ i ≤ b − l. If Bi, Bi+1, . . . , BI+l−1 ≡ C holds for all 0 ≤ i ≤ b − 1, with
subscript addition performed modulo b, then the ordering is called C − cyclic.

Let A1 be a configuration as is mentioned in [10](part 4.1.1) and is shown in Figure
1.

Theorem 3.2. [2] The existence of an A1-cyclic ordering is equivalent to existence
of a Hamiltonian cyclic in the independent graph of the block design.

It is known that the Cartesian product of two Hamiltonian graphs is Hamiltonian.
So by these two lemmas (3.1 and 3.2) and Theorems 3.2, we have the following
theorem:

Theorem 3.3. Every even block design with k < ν
6 , has the A1-ordering.

Remark 3.5. According to the Corollary 3.3, there is the A1-ordering on the point sets
of even block designs with k < ν

6
, by Theorem 3.3.

3.3. Even difference sub-designs and subgroups

We have seen that some copies of dihedral groups are embedded into an even d-
BIBD with k < n

3 . To find the relation between these BIBDs, we construct d-BIBDs
by the LTDS method and find an isomorphism between these BIBDs and dihedral
groups. Throughout this section, suppose that k < n

3 and H is a subgroup of group
G.
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Fig. 3.3: The regular relations between cycles.

Definition 3.4. Let G be a group and H be a subgroup of G. A design-group
DH(G, k, λ) is an even difference block design D with parameters k and λ with
point set G Also β = {BiH |1 ≤ i ≤ c}, where H is a subgroup of G. A design-group
DK(G, k, λ′) is a subdesign-group of DH(G, k, λ) if K is a subgroup of H and even
difference block design (G, k, λ′)K is a sub-design of (G, k, λ)H as an even difference
block design.

We can look at a design-group, both as a group and as a block design, simultane-
ously. Let D1 := DD2n(D2n, k, λ1), D2 := DH(D2n, k, λ2) and B be an arbitrary
block of D2 and H = 〈a〉. Note that the order of a is n. Therefore, the blocks of
D2 are blocks of D1 too. Because of the transference of its d-system by 〈a〉, it only
has c O(a)(= cn) blocks in D1. For every yj ∈ Bi, {yjH} is a cosset of H and is
closed under the product of H in itself. On the other hand, because of the same
c’s, for D1 and D2, the number of initial blocks is equal to c, but the number of θ’s
is different. By calculating the number c for both of them, if k > 3, then according
to equation (1), we obtain

c =
2n(2n− 1)λ1

k(k − 1)2n
, c =

2n(2n− 1)λ2

k(k − 1)n
.

So we have λ1

2 = λ2 and we can have Remark 3.1 as bellow by the new view of even
block designs:

Proposition 3.1. Let DD2n(D2n, k, λ) be an even design-group with even λ and
H = 〈a〉, then DH(D2n, k,

λ
2 ) is a subdesign-group of DD2n(D2n, k, λ).

In fact, by changing the set ofH (the set, which the transferring of the LTDS method
is done by that), we can control the possible values of λ. The last proposition shows



112 M. T. Masouleh, A. Iranmanesh and H. Koppelaar

us that for the point set D2n, if the d-system is transferred by the maximal subgroup
〈a〉, then we have a block design again. Now, what can we say about other subgroups
of a point set?

Theorem 3.4. Let D1 and D2 be two difference block designs as DH1(D2n, k, λ1)
and DH2(D2n, k, λ2), respectively with the same difference systems such that λ2 ≤
λ1 and k is odd.The even design-group D1 can be embedded into the even design-
group D2 if and only if H1 can be embedded into H2 as a subgroup.

Proof. By Theorem 2.2, it is sufficient to check two types of subgroups; 〈ad〉 and
〈ad, aib〉 (d|n and i = 0, 1, . . . , d − 1 ). Let D be a design-group DD2n(D2n, k, λ)
such that λ1 ≤ λ. We will prove the theorem for difference designs D and D1,so it
is true for every pair of designs. Let B be an initial block of D. The proof naturally
falls into the following two cases:

Case 1: Let θ ∈ 〈ad〉. This case is illustrated before in Proposition 3.1, for

d = 1. The block B of D1 is an element of B〈a〉. So B〈a
d〉 is a subset of BD2n .

Every difference block design has an independent graph. By the proof of Lemma
3.1, to obtain a new difference block design, the deletion of blocks from β has to

follow a rule: Choose all Bi
ad and Bi

adb such that Bi is an initial block and there
is a subgroup of G of order d. So if D1 is a sub-design of D, then it means that H1

can be embedded into D2n as a subgroup. Conversely, if H1 < D2n, then by the
above facts about the choosing of blocks and existence of the independent graph,
D1 < D as a difference block design.

Case 2: Let θ ∈ 〈ad, aib〉. For every initial block B, the set B〈a
d〉 is a subset

of B〈a〉, which was studied in Case 1, and all remaining blocks in this set are in
common with B〈a〉b. Again by Lemma 3.1, B〈a〉b and B〈a〉 are disjoint, for odd
k only. All blocks of B〈a〉b are in common between two design-groups and others
were studied in the previous case. The proof of the converse is similar to the above
procedure.

4. The second method and main result

Sometimes there is no way to construct a BIBD on a point set with a special
parameter. In these situations, there is a well known method: Assume that we
want to have a BIBD on (n + 1) points. By this method, at first we construct a
BIBD on group G with n elements and then we add an extra point, named ∞ such
that x∞ = ∞, for every x ∈ G. So for having a difference BIBD, it is sufficient
to add block(s) to the difference system such that the achieved system has the
parameters, which we want. In this paper, this method will be called the LTDSE
method ( the LTDS method with an Extra element). There are numbers of general
examples of the LTDSE method in [17]. From now on, a d-BIBD which is based
on the LTDS method will be called a type 1 BIBD and a d-BIBD, which is based
on the LTDSE method will be called a type 2 BIBD. Note that the initial blocks
of a type 2 BIBD are partitioned into two classes: a class of blocks including the
extra variety (∞), which is of the size r ({B′1, B′2, . . . , B′q}) and the other class
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includes the remaining blocks ({B1, B2, . . . , Bp}). All facts about the transference
of d-system {B1, B2, . . . , Bp} in Lemma 3.1 and Corollary 3.1, are applied for the
first class of blocks of type 2 BIBDs.

Every type 1 BIBD on even points is comparable to a type 1 BIBD on D2n, and
every type 2 BIBD on odd points is comparable to a type 2 BIBD on even points
with an extra variety. For having this generalization on the point sets, at the end
replace the integers by elements of dihedral group as below:

2i− 1(1 ≤ i ≤ n) 7−→ ai 2i(1 ≤ i ≤ n) 7−→ aib.

Assume that D is a d-BIBD. A natural question that arises here is ”How can we find
out whether 4it is a type 1 BIBD or a type 2 BIBD?” From the previous sections,
we know that replacing a subgroup of G, say H in the LTDSE, leads us to a d-BIBD
on mn + 1 points with λ less than the λ of the d-BIBD, which is constructed by
transferring its difference system by G. We have seen the relations between even
d-BIBDs with point sets of similar size. But what can we say about two even d-
BIBDs with point sets of different sizes? What can we say about d-BIBDs in a
general case?

Suppose that we can not see and detect the extra variety ∞ in blocks. Let
∆β be the list of all differences from the blocks of β and |∆β| = ψλ + R (where
0 ≤ R < λ). It is clear that R

(k
2)

is the number of initial blocks, which are including

the adjoined variety. First, we need some notations and observations:

Fact 1. By a review of the concept of the LTDS and the LTDSE methods, it is easy
to see that ψ is the size of the set, which transfers a d-system to obtain the
d-BIBD and ψ|b. So we obtain the size of H, a subgroup of the point set that
transfers d-system.

Fact 2. By doing the LTDS method and the LTDSE method, any element of ∆β is
repeated symmetrically ψλ times for type 1 BIBD, and at least (ψλ+1) times
for type 2 BIBD, By the definition of differences. Therefore the d-BIBD is of
type 1 if R = 0 and otherwise, it is a type 2 BIBD.

Fact 3. Assume that Bi is a block of β and Bi
(H) := {B ∈ β|∆Bi = ∆B}. If R = 0,

then |Bi(H)| = ψ; otherwise, delete the blocks of Bi
(H), which includes the

element ν.

Fact 4. Assume that d, d′ ∈ ∆Bi. To find the elements, which transfer Bi to build
Bi

(H), define B(d, d′) := {(x, y, z, )|xy−1 = d, yz−1 = d′; d 6= d′}. Then H is
equal to the set {x′x−1, y′y−1, z′z−1| ∀(x, y, z), (x′, y′, z′) ∈ Bi}. From now
on, all block designs are even difference block designs or a type 2 BIBD on an
odd number of points.

According to Fact 4, we have a subgroup of the point set H, for every block design
D, which is the transferrer for that d-BIBD; have a look at Theorem 2.2.
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Theorem 4.1. Let D1 : (ν1, k, λ1) and D2 : (ν2, k, λ2) be two difference block

designs based on the LTDS or the LTDSE method. Let ci = b |δβi|
λi
c be the number

of initial block(s) of the difference system of Di and pi, qi are the numbers of initial
blocks without ∞ and including ∞ in Di, respectively as introduced in beginning of
this section, for i = 1, 2.

1. Suppose that |∆β1| − b |∆β1|
λ1
c = 0 or |∆β2| − b |∆β2|

λ2
c = 0 and b |∆β2|

λ2
c is a

multplied of b |∆β1|
λ1
c. If cp1 ≤ cp2 , then D1 ≤ D2, otherwise D1 ≤ d c2c1 e copies

of D2.

2. Suppose that |∆βi| − b |∆βi|
λi
c 6= 0 and b |∆β2|

λ2
c is a multplied of b |∆β1|

λ1
c. If

cp1 ≤ cp2 and cq1 ≤ cq2 , then D1 ≤ D2, otherwise D1 ≤ d c2c1 e copies of D2.

Proof. Let |∆βi| = ψiλi +Ri such that 0 ≤ Ri < λi and ci = bi
ψi

, where i ∈ {1, 2}.
We follow the proof in two steps. We first compare an arbitrary family of each

design according to their Hi (B
(Hi)
i , for a block Bi of a design) and then compare

the number of these families, which is equal to ci. The numbers ν and µ can be odd
or even. As we have mentioned above, we illustrate difference block designs on even
points for type 1 BIBDs and on odd points for type 2 BIBDs. Let ν = 2n+ j and
µ = 2m + j′, where j, j′ ∈ {0, 1}. The numbers 2n and 2m, where m,n ∈ N , are
called the even parts of the ν and µ, respectively. Assume that w = gcd(2n, 2m)
and ν ≤ µ. So D2n and D2m are subgroups of Dw. If ν = µ and the designs are
type 1 BIBDs, then Theorem 3.4 lipids the relation between them. If Ri 6= 0 (for
difference block design on 2L + 1 points for a natural number L), then the initial
blocks are of two types, as we have seen: the blocks including the adjoined variety
βq := {B′1, . . . , B′q} and the blocks without the adjoined variety βp := {B1, . . . , Bp}.
For that q initial blocks, suppose that the new set of blocks is achieved by deleting
the adjoined variety: β′′q := {B′′1 , . . . , B′′q } such that B′′j = B′j \ {∞}, where j ∈
{1, . . . , q}. Note that maybe we do not see the adjoined variety as ∞, so there is
an element out of the D2L in blocks and also it is equal to 2L+ 1, where 2L is the
even part of the size of the point set. Also from now on, during the proof, i belongs
to {1, 2}. According to the proof of Lemma 3.1, we are allowed to delete the blocks
of every family by jumping d steps, as it is mentioned there, unless the remaining
blocks can not form a difference block design. This rule is the base of our work.

Step 1: Choose a block from each of the difference designs. Note, when we
choose a block from βi, it is an initial block (the representative of its family). In
the next choice, we can choose another initial block by choosing every block, which
doesn’t have the same list of differences to the first block. As the first choice,
assume that Bi is an initial block of Di. By Theorem 3.4, if D1 and D2 are type
1 BIBDs, then B1 ⊆ B2 if and only if H1 ≤ H2. If m, n are odd and ψ1, ψ2 have
the same parity, then both of the Hi’s are either cyclic groups or dihedral groups,
by Theorem 2.2. Therefore, B1 ⊆ B2 if and only if ψ1 ≤ ψ2. We need to know the
relations between H1 and H2. There is an algorithm to know that Hi is a cyclic
subgroup or a dihedral subgroup of Dω. By the above Facts, Hi is known. There
are some cases:
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1. H ≤ 〈a〉 such that O(a) = w;

2. H ≤ 〈a〉b such that O(a) = w and Ord(b) = 2.

3. Otherwise, H is a dihedral group (|H| is even) such that |Hi|
2 | Ord(a).

Note that 〈a〉b and 〈a〉 are isomorphic sets and one is a cosset of another in Dw.

1’. If both of the Hi’s are of the form of case 1 (or 2), then B
(H)
1 < B

(H)
2 if and

only if ψ1|ψ2.

2’. If H1 is of the form of case 1 or 2 and H2 is of the form 3, then B
(H)
1 < B

(H)
2

if and only if ψ1| ψ2

2 (it yields H1 ≤ H2).

3’. If both of the H1 and H2 are of the form 3, then B
(H)
1 < B

(H)
2 if and only if

ψ1|ψ2.

Now we are ready to illustrate the second step:

Step 2: Assume that B1
(H1) is a subgroup of B2

(H2) up to isomorphism. If
c1 ≤ c2, then D1 ≤ D2. Otherwise, D1 needs d c2c1 e copies of D2 to be embedded
into, because D1

∼= H1 × Zc1 and D2
∼= H2 × Zc2 . Also if H1 ≤ H2, then it has to

have the case Zc1 ≤ Zc2 , base on group theory (and Zc1 ⊆ Zc2). But due to the
condition c2 < c1, it is impossible unless there are d c2c1 e copies of D2.

We study the case R1 = R2 = 0 in steps 1 and 2. If R1 = 0 and R2 6= 0, we
apply the same manner as steps 1 and 2 on βp1 of D1 and βp2 of D2. If R1, R2 6= 0,
then we apply the same arguments in steps 1 and 2 on βp1 of D1 and βP2

of D2

after that we do that on β′′q1 of D1 and β′′q2 of D2.

5. Conclusion

As the first step, we find the algebraic structure of difference block design on a
dihedral group (D2n with arbitrary n) as its point set. We did that by finding
the relation between its independent-graph and the Cayley graph of dihedral group
with S, which is introduce during the proof of lemmas (Corollary 3.4). Due to
our method to find this relation, we can prove that there exists a configuration
ordering on these difference block designs (Theorem 3.3). Though the method of
finding initial blocks can be from [17] or a lot of other references. At the end,
we investigate these block designs, when they have an extra point. We present a
method to recognize, when they are with an extra point or with the odd points.
And finally, we can classify the big family of difference block designs, by presenting
the Theorem 4.1.
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