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Abstract. We establish coincidence point theorem for �-non-decreasing mappings satis-
fying weak ψ − ϕ contraction on partially ordered metric spaces. With the help of our
result, we indicate the formulation of a coupled coincidence point theorem of a general-
ized compatible pair of mappings F, G : X2 → X. We also deduce certain coupled fixed
point results without mixed monotone property of F. We also give an example and an
application to integral equation to support our results presented here. Our results gen-
eralize, extend, modify, improve, sharpen, enrich and complement several well-known
results of the existing literature.
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1. Introduction and Preliminaries

In the sequel, we denote by X a non-empty set. Given a natural number n ∈N,
let Xn be the nth Cartesian product X ×X × ...×X (n times). We employ mappings
T, � : X→ X and F : Xn → X. For simplicity, if x ∈ X, we denote T(x) by Tx.

In [14], Guo and Lakshmikantham introduced the following notion of coupled
fixed point for single-valued mappings:

Definition 1.1. Let F : X2 → X be a given mapping. An element (x, y) ∈ X2 is
called a coupled fixed point of F if

F(x, y) = x and F(y, x) = y.
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Following this paper, in 2006, Bhaskar and Lakshmikantham [4] introduced
the notion of mixed monotone mappings for single-valued mappings and estab-
lished some coupled fixed point theorems for a mapping with the mixed monotone
property in the setting of partially ordered metric spaces.

In [4], Bhaskar and Lakshmikantham introduced the following:

Definition 1.2. Let (X, �) be a partially ordered set. Suppose F : X2 → X is a given
mapping. We say that F has the mixed monotone property if for all x, y ∈ X, we
have

x1, x2 ∈ X, x1 � x2 =⇒ F(x1, y) � F(x2, y),

and
y1, y2 ∈ X, y1 � y2 =⇒ F(x, y1) � F(x, y2).

After that, Lakshmikantham and Ciric [20] extended the notion of mixed mono-
tone property to mixed �−monotone property and established coupled coincidence
point results using a pair of commutative mappings, which generalized the results
of Bhaskar and Lakshmikantham [4].

In [20], Lakshmikantham and Ciric introduced the following:

Definition 1.3. Let F : X2 → X and � : X→ X be given mappings. An element (x,
y) ∈ X2 is called a coupled coincidence point of the mappings F and � if

F(x, y) = �x and F(y, x) = �y.

Definition 1.4. Let F : X2 → X and � : X→ X be given mappings. An element (x,
y) ∈ X2 is called a common coupled fixed point of the mappings F and � if

x = F(x, y) = �x and y = F(y, x) = �y.

Definition 1.5. The mappings F : X2 → X and � : X→ X are said to be commuta-
tive if

�F(x, y) = F(�x, �y), for all (x, y) ∈ X2.

Definition 1.6. Let (X, �) be a partially ordered set. Suppose F : X2 → X and
� : X→ X are given mappings. We say that F has the mixed �-monotone property
if for all x, y ∈ X, we have

x1, x2 ∈ X, �x1 � �x2 =⇒ F(x1, y) � F(x2, y),

and
y1, y2 ∈ X, �y1 � �y2 =⇒ F(x, y1) � F(x, y2).

If � is the identity mapping on X, then F satisfies the mixed monotone property.
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Later, Choudhury and Kundu [6] introduced the notion of compatibility in the
context of coupled coincidence point and used this notion to improve the results
of Lakshmikantham and Ciric [20].

Definition 1.7. [6] The mappings F : X2 → X and � : X → X are said to be
compatible if

lim
n→∞ d(�F(xn, yn), F(�xn, �yn)) = 0,

lim
n→∞ d(�F(yn, xn), F(�yn, �xn)) = 0,

whenever {xn} and {yn} are sequences in X such that

lim
n→∞F(xn, yn) = lim

n→∞ �xn = x,

lim
n→∞F(yn, xn) = lim

n→∞ �yn = y, for some x, y ∈ X.

A great deal of these studies investigate contractions on partially ordered metric
spaces because of their applicability to initial value problems defined by differential
or integral equations.

Hussain et al. [16] introduced a new concept of generalized compatibility of
a pair of mappings F, G : X2 → X defined on a product space and proved some
coupled coincidence point results. Hussain et al. [16] also deduce some coupled
fixed point results without the mixed monotone property.

In [16], Hussain et al. introduced the following:

Definition 1.8. Suppose that F, G : X2 → X are two mappings. F is said to be
G-increasing with respect to � if for all x, y, u, v ∈ X,with G(x, y) � G(u, v) we have
F(x, y) � F(u, v).

Example 1.1. Let X = (0, +∞) be endowed with the natural ordering of real numbers ≤ .
Define mappings F, G : X2 → X by F(x, y) = ln(x + y) and G(x, y) = x + y for all (x, y) ∈ X2.
Note that F is G-increasing with respect to ≤ .

Example 1.2. Let X = N endowed with the partial order defined by x, y ∈ X2, x � y if and
only if y divides x. Define the mappings F, G : X2 → X by F(x, y) = x2y2 and G(x, y) = xy for
all (x, y) ∈ X2. Then F is G-increasing with respect to � .

Definition 1.9. Suppose that F, G : X2 → X are two mappings. An element (x,
y) ∈ X2 is called a coupled coincidence point of mappings F and G if

F(x, y) = G(x, y) and F(y, x) = G(y, x).



626 B. Deshpande and A. Handa

Example 1.3. Let F, G : R2 → R be defined by F(x, y) = xy and G(x, y) = 2
3 (x + y) for all (x,

y) ∈ X2. Note that (0, 0), (1, 2) and (2, 1) are coupled coincidence points of F and G.

Definition 1.10. Let (X, �) be a partially ordered set, F : X2 → X and � : X→ X are
two mappings. We say that F is �-increasing with respect to � if for any x, y ∈ X,

�x1 � �x2 implies F(x1, y) � F(x2, y),

and
�y1 � �y2 implies F(x, y1) � F(x, y2).

Definition 1.11. Let (X, �) be a partially ordered set, F : X2 → X be a mapping.
We say that F is increasing with respect to � if for any x, y ∈ X,

x1 � x2 implies F(x1, y) � F(x2, y),

and
y1 � y2 implies F(x, y1) � F(x, y2).

Definition 1.12. Let F, G : X2 → X are two mappings. We say that the pair {F, G}
is generalized compatible if

lim
n→∞ d(F(G(xn, yn), G(yn, xn)), G(F(xn, yn), F(yn, xn))) = 0,

lim
n→∞ d(F(G(yn, xn), G(xn, yn)), G(F(yn, xn), F(xn, yn))) = 0,

whenever (xn) and (yn) are sequences in X such that

lim
n→∞G(xn, yn) = lim

n→∞F(xn, yn) = x,

lim
n→∞G(yn, xn) = lim

n→∞F(yn, xn) = y, for some x, y ∈ X.

Obviously, a commuting pair is a generalized compatible but not conversely in
general.

Erhan et al. [10], remarked that the results established in Hussain et al. [16] can
be derived from the coincidence point results in the literature.

In [10], Erhan et al. recalled the following basic definitions:

Definition 1.13. ([1], [11]) A coincidence point of two mappings T, � : X→ X is a
point x ∈ X such that Tx = �x.

Definition 1.14. [10] A partially ordered metric space (X, d,�) is a metric space (X,
d) provided with a partial order � .
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Definition 1.15. ([4], [16]) A partially ordered metric space (X, d, �) is said to be
non-decreasing-regular (respectively, non-increasing-regular) if for every sequence
{xn} ⊆ X such that {xn} → x and xn � xn+1 (respectively, xn � xn+1) for all n, we have
that xn � x (respectively, xn � x) for all n. (X, d, �) is said to be regular if it is both
non-decreasing-regular and non-increasing-regular.

Definition 1.16. [11] Let(X,�) be a partially ordered set and let T, � : X→ X be two
mappings. We say that T is (�, �)-non-decreasing if Tx � Ty for all x, y ∈ X such
that �x � �y. If � is the identity mapping on X, we say that T is �-non-decreasing.

Definition 1.17. [11] If T is (�, �)-non-decreasing and �x = �y, then Tx = Ty. It
follows that

�x = �y⇒
{
�x � �y,
�y � �x

}
⇒

{
Tx � Ty,
Ty � Tx

}
⇒ Tx = Ty.

Definition 1.18. [24] Let (X, �) be a partially ordered set and endow the product
space X2 with the following partial order:

(1.1) (u, v) 
 (x, y)⇔ x � u and y � v, for all (u, v), (x, y) ∈ X2.

Definition 1.19. ([6], [15], [22], [24]) Let (X, d, �) be a partially ordered metric
space. Two mappings T, � : X→ X are said to be O-compatible if

lim
n→∞ d(�Txn, T�xn) = 0,

provided that {xn} is a sequence in X such that {�xn} is �-monotone, that is, it is
either non-increasing or non-decreasing with respect to � and

lim
n→∞Txn = lim

n→∞ �xn ∈ X.

Our basic references are ([2], [3], [5], [7], [8], [9], [12], [17], [18], [19], [21], [26],
[27], [28], [29], [30], [31]).

Recently Samet et al. [30] claimed that most of the coupled fixed point theorems
for single-valued mappings on partially ordered metric spaces are consequences
of the well-known fixed point theorems.

In this paper, we establish coincidence point theorem for �-non-decreasing
mappings satisfying weak ψ − ϕ contraction on partially ordered metric spaces.
With the help of our result, we indicate the formulation of a coupled coincidence
theorem of generalized compatible pair of mappings F, G : X2 → X. We also
deduce certain coupled fixed point results without mixed monotone property of
F. We also give an example and an application to integral equation to support our
results presented here. We generalize, extend, modify, improve, sharpen, enrich
and complement the results of Bhaskar and Lakshmikantham [4], Gordji et al. [13],
Lakshmikantham and Ciric [20] and several well-known results of the existing
literature.
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2. Main results

Lemma 2.1. Let (X, d) be a metric space. Suppose Y = X2 and define δ : Y × Y → [0,
+∞), for all (x, y), (u, v) ∈ Y, by

δ((x, y), (u, v)) = max
{
d(x, u), d(y, v)

}
.

Then δ is metric on Y and (X, d) is complete if and only if (Y, δ) is complete.

LetΨ denote the set of all functions ψ : [0, +∞)→ [0, +∞) satisfying

(iψ) ψ is continuous and non-decreasing,
(iiψ) ψ(t) = 0⇔ t = 0,
(iiiψ) lim sups→0+

s
ψ(s) < ∞.

Let Φ denote the set of all functions ϕ : [0, +∞)→ [0, +∞) satisfying

(iϕ) ϕ is lower semi-continuous and non-increasing,
(iiϕ) ϕ(t) = 0⇔ t = 0,
(iiiϕ) for any sequence {tn} with limn→∞ tn = 0, there exists k ∈ (0, 1)
and n0 ∈N, such that ϕ(tn) ≥ ktn for each n ≥ n0.

Let Θ denote the set of all functions θ : [0, +∞)→ [0, +∞) satisfying

(iθ) θ is continuous and non-decreasing,
(iiθ) θ(t) = 0⇔ t = 0.

Theorem 2.1. Let (X, d, �) be a partially ordered metric space and let T, � : X → X be
two mappings such that the following properties are fulfilled:

(i) T(X) ⊆ �(X),
(ii) T is (�, �)-non-decreasing,

(iii) there exists x0 ∈ X such that �x0 � Tx0,

(iv) there exist ϕ ∈ Φ, ψ ∈ Ψ and θ ∈ Θ such that

ψ
(
d(T(x), T(y))

) ≤ ψ (
M(x, y)

) − ϕ (
ψ

(
M(x, y)

))
+ θ

(
N(x, y)

)
,

where

M(x, y) = max
{

d(�x, �y), d(�x, Tx),
d(�y, Ty), d(�x, Ty)+d(�y, Tx)

2

}
,

and
N(x, y) = min

{
d(�x, �y), d(�y, Tx)

}
.

for all x, y ∈ X such that �x � �y.Also assume that, at least, one of the following conditions
holds.

(a) (X, d) is complete, T and � are continuous and the pair (T, �) is O-compatible,
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(b) (X, d) is complete, T and � are continuous and commuting,
(c) (�(X), d) is complete and (X, d, �) is non-decreasing-regular,
(d) (X, d) is complete, �(X) is closed and (X, d, �) is non-decreasing-regular,
(e) (X, d) is complete, � is continuous and the pair (T, �) is O-compatible and (X, d, �)

is non-decreasing-regular.
Then T and � have, at least, a coincidence point.

Proof. We divide the proof into four steps.
Step 1. We claim that there exists a sequence {xn} ⊆ X such that {�xn} is �-non-

decreasing and �xn+1 = Txn, for all n ≥ 0. Starting from x0 ∈ X given in (iii) and
taking into account that Tx0 ∈ T(X) ⊆ �(X), there exists x1 ∈ X such that Tx0 = �x1.
Then �x0 � Tx0 = �x1. Since T is (�, �)-non-decreasing, Tx0 � Tx1. Now Tx1 ∈
T(X) ⊆ �(X), so there exists x2 ∈ X such that Tx1 = �x2. Then �x1 = Tx0 � Tx1 = �x2.
Since T is (�, �)-non-decreasing, Tx1 � Tx2. Repeating this argument, there exists a
sequence {xn}n≥0 such that {�xn} is �-non-decreasing, �xn+1 = Txn � Txn+1 = �xn+2
and

�xn+1 = Txn, for all n ≥ 0.

Step 2. We claim that {d(�xn, �xn+1)} → 0. Suppose first that �xn0 = �xn0+1 for
some n0 implies that �xn0 = Txn0 . This proves that xn0 is a coincidence point of
T and �. Also, the sequence {�xn} is constant for n ≥ n0. Indeed, let n0 = k, then
�xk = �xk+1. Now, by contractive condition (iv) and (iψ), we obtain

ψ
(
d(�xk+1, �xk+2)

)
= ψ (d(Txk, Txk+1))

≤ ψ (M(xk, xk+1)) − ϕ (
ψ (M(xk, xk+1))

)
+ θ (N(xk, xk+1)) ,

where

M(xk, xk+1)

= max
{

d(�xk, �xk+1), d(�xk, Txk),
d(�xk+1, Txk+1),

d(�xk , Txk+1)+d(�xk+1 , Txk)
2

}

= max
{

d(�xk, �xk+1), d(�xk, �xk+1), d(�xk+1, �xk+2),
d(�xk , �xk+2)+d(�xk+1, �xk+1)

2

}

= max
{

d(�xk+1, �xk+2),
d(�xk, �xk+2)

2

}

= d(�xk+1, �xk+2),

and

N(xk, xk+1)
= min

{
d(�xk, �xk+1), d(�xk+1, Txk)

}
= 0.
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Thus, by (iiθ), we get

ψ
(
d(�xk+1, �xk+2)

) ≤ ψ (
d(�xk+1, �xk+2)

) − ϕ (
ψ

(
d(�xk+1, �xk+2)

))
.

It follows, by (iiϕ) and (iiψ), that �xk+1 = �xk+2. Thus the sequence {�xn} is constant
(starting from some n0). Suppose that for each n ∈ N, d(�xn, �xn+1) > 0. It is clear
that N(xn, xn+1) = 0 for all n ∈ N. Now, by contractive condition (iv), (iψ) and (iiθ),
we have

ψ
(
d(�xn+1, �xn+2)

)
= ψ (d(Txn, Txn+1))
≤ ψ (M(xn, xn+1)) − ϕ (

ψ (M(xn, xn+1))
)
+ θ (N(xn, xn+1))

≤ ψ (M(xn, xn+1)) − ϕ (
ψ (M(xn, xn+1))

)
.

Thus

(2.1) ψ
(
d(�xn+1, �xn+2)

) ≤ ψ (M(xn, xn+1)) − ϕ (
ψ (M(xn, xn+1))

)
,

which by the fact that ϕ ≥ 0 implies

ψ
(
d(�xn+1, �xn+2)

)
< ψ (M(xn, xn+1)) .

Since ψ is non-decreasing, therefore we obtain

(2.2) d(�xn+1, �xn+2) ≤M(xn, xn+1).

Again

M(xn, xn+1)

= max
{

d(�xn, �xn+1), d(�xn, Txn),
d(�xn+1, Txn+1), d(�xn, Txn+1)+d(�xn+1, Txn)

2

}

= max
{

d(�xn, �xn+1), d(�xn, �xn+1),
d(�xn+1, �xn+2), d(�xn, �xn+2)+d(�xn+1, �xn+1)

2

}

≤ max
{

d(�xn, �xn+1), d(�xn+1, �xn+2),
d(�xn , �xn+1)+d(�xn+1 , �xn+2)

2

}

≤ max
{
d(�xn, �xn+1), d(�xn+1, �xn+2)

}
.

If d(�xn+1, �xn+2) ≥ d(�xn, �xn+1) for some n. Then

(2.3) M(xn, xn+1) ≤ d(�xn+1, �xn+2).

From (2.2) and (2.3), we get

M(xn, xn+1) = d(�xn+1, �xn+2).

Thus, by (2.1), we have

ψ
(
d(�xn+1, �xn+2)

) ≤ ψ (
d(�xn+1, �xn+2)

) − ϕ (
ψ

(
d(�xn+1, �xn+2)

))
,



Coincidence Point Results... 631

which is only possible when d(�xn+1, �xn+2) = 0, it is a contradiction. Hence, d(�xn,
�xn+1) ≥ d(�xn+1, �xn+2) for all n. Then

(2.4) M(xn, xn+1) ≤ d(�xn, �xn+1).

Notice that

(2.5) M(xn, xn+1) ≥ d(�xn, �xn+1).

From (2.4) and (2.5), we get

M(xn, xn+1) = d(�xn, �xn+1).

This shows that the sequence {d(�xn, �xn+1)}∞n=0 is a non-increasing sequence. Thus
there exists δ ≥ 0 such that

(2.6) lim
n→∞ δn = lim

n→∞ d(�xn, �xn+1) = δ.

Then

(2.7) lim
n→∞M(xn, xn+1) = δ.

We shall prove that δ = 0. Assume to the contrary that δ > 0. Now, by contractive
condition (iv) and (iψ), we have

ψ
(
d(�xn+1, �xn+2)

)
= ψ (d(Txn, Txn+1))
≤ ψ (M(xn, xn+1)) − ϕ (

ψ (M(xn, xn+1))
)
+ θ (N(xn, xn+1)) ,

which implies, by (iiθ), that

ψ
(
d(�xn+1, �xn+2)

) ≤ ψ (M(xn, xn+1)) − ϕ (
ψ (M(xn, xn+1))

)
.

Letting n→∞ in the above inequality, by using (iψ), (iϕ), (2.6) and (2.7), we get

ψ (δ) ≤ ψ (δ) − ϕ (
ψ (δ)

)
,

which, by (iiϕ) and (iiψ), implies

δ = lim
n→∞ d(�xn, �xn+1) = 0.

Step 3. We claim that {�xn}∞n=0 is a Cauchy sequence in X. Since

lim
n→∞M(xn, xn+1) = 0,

and ψ is continuous. Then, by (iiiϕ), there exist k ∈ (0, 1) and n0 ∈N, such that

ϕ
(
ψ (M(xn, xn+1))

) ≥ kψ (M(xn, xn+1)) ,
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for all n ≥ n0. For any natural number n ≥ n0, we have

ψ
(
d(�xn+1, �xn+2))

)
= ψ (d(Txn, Txn+1)))

≤ ψ (M(xn, xn+1)) − ϕ (
ψ (M(xn, xn+1))

)
+ θ (N(xn, xn+1))

≤ (1 − k)ψ (M(xn, xn+1))

≤ (1 − k)ψ
(
d(�xn, �xn+1)

)
.

Thus, for all n ≥ n0, we have

(2.8) ψ
(
d(�xn+1, �xn+2))

) ≤ (1 − k)ψ
(
d(�xn, �xn+1)

)
.

Denote
an = ψ

(
d(�xn, �xn+1)

)
, for all n ≥ 0.

From (2.8), we have
an+1 ≤ (1 − k)an, for all n ≥ n0.

Then, we have

(2.9)
∞∑

n=0

an ≤
n0∑

n=0

an +

∞∑
n=n0+1

(1 − k)n−n0 an0 < ∞.

On the other hand, by (iiiψ), we have

(2.10) lim sup
n→∞

d(�xn, �xn+1)
ψ

(
d(�xn, �xn+1)

) < ∞.
Thus, by (2.9) and (2.10), we have dsumd(�xn, �xn+1) < ∞. It means that {�xn}∞n=0 is
a Cauchy sequence in X.

Step 4. We claim that T and � have a coincidence point distinguishing between
cases (a) − (e).

Suppose now that (a) holds, that is, (X, d) is complete, T and � are continuous
and the pair (T, �) is O-compatible. Since (X, d) is complete, therefore there exists
z ∈ X such that {�xn} → z. Now Txn = �xn+1 for all n, we also have that {Txn} → z.
As T and � are continuous, then {T�xn} → Tz and {��xn} → �z. Taking into account
that the pair (T, �) is O-compatible, we deduce that limn→∞ d(�Txn, T�xn) = 0. In
such a case, we conclude that

d(�z, Tz) = lim
n→∞ d(��xn+1, T�xn) = lim

n→∞ d(�Txn, T�xn) = 0,

that is, z is a coincidence point of T and �.
Suppose now that (b) holds, that is, (X, d) is complete, T and � are continuous

and commuting. It is obvious because (b) implies (a).
Suppose now that (c) holds, that is, (�(X), d) is complete and (X, d, �) is non-

decreasing-regular. As {�xn} is a Cauchy sequence in the complete space (�(X), d),
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so there exists y ∈ �(X) such that {�xn} → y. Let z ∈ X be any point such that y = �z.
In this case {�xn} → �z. Indeed, as (X, d, �) is non-decreasing-regular and {�xn}
is �-non-decreasing and converging to �z, we deduce that �xn � �z for all n ≥ 0.
Applying the contractive condition (iv) and (iψ),

ψ
(
d(�xn+1, Tz)

)
(2.11)

= ψ (d(Txn, Tz))
≤ ψ (M(xn, z)) − ϕ (

ψ (M(xn, z))
)
+ θ (N(xn, z)) ,

where

M(xn, z) = max
{

d(�xn, �z), d(�xn, Txn),
d(�z, Tz), d(�xn, Tz)+d(�z, Txn)

2

}

= max
{

d(�xn, �z), d(�xn, �xn+1),
d(�z, Tz), d(�xn, Tz)+d(�z, �xn+1)

2

}
,

and

N(xn, z) = min
{
d(�xn, �z), d(�z, Txn)

}
= min

{
d(�xn, �z), d(�z, �xn+1)

}
.

Letting n→∞ in (2.11), by using (iψ), (iϕ) and (iiθ), we get

ψ
(
d(�z, Tz)

) ≤ ψ (
d(�z, Tz)

) − ϕ (
ψ

(
d(�z, Tz)

))
,

which, by (iiϕ) and (iiψ), implies d(�z, Tz) = 0, that is, z is a coincidence point of T
and �.

Suppose now that (d) holds, that is, (X, d) is complete, �(X) is closed and (X,
d, �) is non-decreasing-regular. It follows from the fact that a closed subset of a
complete metric space is also complete. Then, (�(X), d) is complete and (X, d, �) is
non-decreasing-regular. Thus (c) is applicable.

Suppose now that (e) holds, that is, (X, d) is complete, � is continuous, the pair
(T, �) is O-compatible and (X, d, �) is non-decreasing-regular. As (X, d) is complete,
so there exists z ∈ X such that {�xn} → z. Since Txn = �xn+1 for all n, we also have
that {Txn} → z. As � is continuous, then {��xn} → �z. Furthermore, since the pair
(T, �) is O-compatible, we deduce that limn→∞ d(��xn+1, T�xn) = limn→∞ d(�Txn,
T�xn) = 0. As {��xn} → �z the previous property means that {T�xn} → �z.

Indeed, as (X, d,�) is non-decreasing-regular and {�xn} is �-non-decreasing and
converging to z, we deduce that �xn � z for all n ≥ 0. Applying the contractive
condition (iv) and (iψ),

ψ
(
d(T�xn, Tz)

)
(2.12)

≤ ψ
(
M(�xn, z)

) − ϕ (
ψ

(
M(�xn, z)

))
+ θ

(
N(�xn, z)

)
,

where

M(�xn, z) = max
{

d(��xn, �z), d(��xn, T�xn),
d(�z, Tz), d(��xn, Tz)+d(�z, T�xn)

2

}
,
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and
N(xn, z) = min

{
d(��xn, �z), d(�z, T�xn)

}
.

Letting n→∞ in (2.12), by using (iψ), (iϕ) and (iiθ), we get

ψ
(
d(�z, Tz)

) ≤ ψ (
d(�z, Tz)

) − ϕ (
ψ

(
d(�z, Tz)

))
,

which, by (iiϕ) and (iiψ), implies d(�z, Tz) = 0, that is, z is a coincidence point of T
and �.

Next, we deduce the two dimensional version of Theorem 2.1. Given the
partially ordered metric space (X, d, �), let us consider the partially ordered metric
space (X2, δ, 
), where δ was defined in Lemma 2.1 and 
 was introduced in (1.1).
We define the mappings TF, TG : X2 → X2, for all (x, y) ∈ X2, by,

TF(x, y) = (F(x, y), F(y, x)) and TG(x, y) = (G(x, y), G(y, x)).

Under these conditions, the following properties hold:

Lemma 2.2. Let (X, d, �) be a partially ordered metric space and let F, G : X2 → X be
two mappings. Then

(1) (X, d) is complete if and only if (X2, δ) is complete.
(2) If (X, d, �) is regular, then (X2, δ, 
) is also regular.
(3) If F is d-continuous, then TF is δ-continuous.
(4) If F is G-increasing with respect to �, then TF is (TG, 
)-non-decreasing.
(5) If there exist two elements x0, y0 ∈ X with G(x0, y0) � F(x0, y0) and G(y0,

x0) � F(y0, x0), then there exists a point (x0, y0) ∈ X2 such that TG(x0, y0) 
 TF(x0, y0).
(6) for any x, y ∈ X, there exist u, v ∈ X such that F(x, y) = G(u, v) and F(y, x) = G(v,

u), then TF(X2) ⊆ TG(X2).
(7) Assume there exist ϕ ∈ Φ, ψ ∈ Ψ and θ ∈ Θ such that

ψ
(
d(F(x, y), F(u, v))

)
(2.13)

≤ ψ
(
M(x, y, u, v)

) − ϕ (
ψ

(
M(x, y, u, v)

))
+ θ

(
N(x, y, u, v)

)
,

where

M(x, y, u, v) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(G(x, y), G(u, v)), d(G(x, y), F(x, y)),
d(G(u, v), F(u, v)), d(G(y, x), G(v, u)),
d(G(y, x), F(y, x)), d(G(v, u), F(v, u)),

d(G(x, y), F(u, v))+d(G(u, v), F(x, y))
2 ,

d(G(y, x), F(v, u))+d(G(v, u), F(y, x))
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

and

N(x, y, u, v) = min
{

d(G(x, y), G(u, v)), d(G(u, v), F(x, y)),
d(G(y, x), G(v, u)), d(G(v, u), F(y, x))

}
,
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for all x, y, u, v ∈ X, where G(x, y) � G(u, v) and G(y, x) � G(v, u), then

ψ
(
δ(TF(x, y), TF(u, v))

)
≤ ψ

(
Mδ((x, y), (u, v))

) − ϕ (
ψ

(
Mδ((x, y), (u, v))

))
+θ

(
Nδ((x, y), (u, v))

)
,

where

Mδ((x, y), (u, v)) = max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ(TG(x, y), TG(u, v)),
δ(TG(x, y), TF(x, y)),
δ(TG(u, v), TF(u, v)),

δ(TG(x, y), TF(u, v))+δ(TG(u, v), TF(x, y))
2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

and

Nδ((x, y), (u, v)) = min
{
δ(TG(x, y), TG(u, v)), δ(TG(u, v), TF(x, y))

}
.

(8) If the pair {F, G} is generalized compatible, then the mappings TF and TG are
O-compatible in (X2, δ, 
).

(9) A point (x, y) ∈ X2 is a coupled coincidence point of F and G if and only if it is a
coincidence point of TF and TG.

Proof. Item (1) follows from Lemma 2.1and items (2), (3), (5), (6) and (9) are obvious.
(4) Assume that F is G−increasing with respect to � and let (x, y), (u, v) ∈ X2 be

such that TG(x, y) 
 TG(u, v). Then G(x, y) � G(u, v) and G(y, x) � G(v, u). Since F is
G−increasing with respect to �, we deduce that F(x, y) � F(u, v) and F(y, x) � F(v,
u). Therefore TF(x, y) 
 TF(u, v) and this means that TF is (TG, 
)-non-decreasing.

(7) Suppose that there exist ϕ ∈ Φ, ψ ∈ Ψ and θ ∈ Θ such that

ψ
(
d(F(x, y), F(u, v))

)
≤ ψ

(
M(x, y, u, v)

) − ϕ (
ψ

(
M(x, y, u, v)

))
+ θ

(
N(x, y, u, v)

)
,

for all x, y, u, v ∈ X, where G(x, y) � G(u, v) and G(y, x) � G(v, u) and let (x, y),
(u, v) ∈ X2 be such that TG(x, y) 
 TG(u, v). Therefore G(x, y) � G(u, v) and G(y,
x) � G(v, u). Using (2.13), we have

ψ
(
d(F(x, y), F(u, v))

)
(2.14)

≤ ψ
(
M(x, y, u, v)

) − ϕ (
ψ

(
M(x, y, u, v)

))
+ θ

(
N(x, y, u, v)

)
.

Furthermore taking into account that G(y, x) � G(v, u) and G(x, y) � G(u, v), the
contractive condition (2.13) also guarantees that

ψ
(
d(F(y, x), F(v, u))

)
(2.15)

≤ ψ
(
M(x, y, u, v)

) − ϕ (
ψ

(
M(x, y, u, v)

))
+ θ

(
N(x, y, u, v)

)
.

Combining (2.14) and (2.15), we get

max
{
ψ

(
d(F(x, y), F(u, v))

)
, ψ

(
d(F(y, x), F(v, u))

)}
≤ ψ

(
M(x, y, u, v)

) − ϕ (
ψ

(
M(x, y, u, v)

))
+ θ

(
N(x, y, u, v)

)
.
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Since ψ is non-decreasing, therefore

ψ
(
max

{
d(F(x, y), F(u, v)), d(F(y, x), F(v, u))

})
(2.16)

≤ ψ
(
M(x, y, u, v)

) − ϕ (
ψ

(
M(x, y, u, v)

))
+ θ

(
N(x, y, u, v)

)
.

Thus, it follows from (2.16) that

ψ
(
δ(TF(x, y), TF(u, v))

)
= ψ

(
δ
(
(F(x, y), F(y, x)), (F(u, v), F(v, u))

))
= ψ

(
max

{
d(F(x, y), F(u, v)), d(F(y, x), F(v, u))

})
≤ ψ

(
M(x, y, u, v)

) − ϕ (
ψ

(
M(x, y, u, v)

))
+ θ

(
N(x, y, u, v)

)
≤ ψ

(
Mδ((x, y), (u, v))

) − ϕ (
ψ

(
Mδ((x, y), (u, v))

))
+θ

(
Nδ((x, y), (u, v))

)
.

(8) Let {(xn, yn)} ⊆ X2 be any sequence such that TF(xn, yn) δ→ (x, y) and TG(xn,

yn)
δ→ (x, y) (notice that we do not need to suppose that {TG(xn, yn)} is 
-monotone).

Therefore,

(
F(xn, yn), F(yn, xn)

) δ→ (x, y)

⇒
[
F(xn, yn)

d→ x and F(yn, xn)
d→ y

]
,

and

(
G(xn, yn), G(yn, xn)

) δ→ (x, y)

⇒
[
G(xn, yn) d→ x and G(yn, xn) d→ y

]
.

Therefore

lim
n→∞F(xn, yn) = lim

n→∞G(xn, yn) = x ∈ X,

lim
n→∞F(yn, xn) = lim

n→∞G(yn, xn) = y ∈ X.

Since the pair {F, G} is generalized compatible, we deduce that

lim
n→∞ d(F(G(xn, yn), G(yn, xn)), G(F(xn, yn), F(yn, xn))) = 0,

lim
n→∞ d(F(G(yn, xn), G(xn, yn)), G(F(yn, xn), F(xn, yn))) = 0.
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In particular,

lim
n→∞ δ(TGTF(xn, yn), TFTG(xn, yn))

= lim
n→∞ δ(TG(F(xn, yn), F(yn, xn)), TF(G(xn, yn), G(yn, xn)))

= lim
n→∞ δ

(
(G(F(xn, yn), F(yn, xn)), G(F(yn, xn), F(xn, yn))),
(F(G(xn, yn), G(yn, xn)), F(G(yn, xn), G(xn, yn)))

)

= lim
n→∞max

{
d(G(F(xn, yn), F(yn, xn)), F(G(xn, yn), G(yn, xn))),
d(G(F(yn, xn), F(xn, yn)), F(G(yn, xn), G(xn, yn)))

}

= 0.

Hence, the mappings TF and TG are O-compatible in (X2, δ, 
).

Theorem 2.2. Let (X, �) be a partially ordered set such that there exists a complete metric
d on X. Assume F, G : X2 → X be two generalized compatible mappings such that F is
G−increasing with respect to �, G is continuous and has the mixed monotone property,
and there exist two elements x0, y0 ∈ X with

G(x0, y0) � F(x0, y0) and G(y0, x0) � F(y0, x0).

Suppose that there exist ϕ ∈ Φ, ψ ∈ Ψ and θ ∈ Θ satisfying (2.13) and for any x, y ∈ X,
there exist u, v ∈ X such that

(2.17) F(x, y) = G(u, v) and F(y, x) = G(v, u).

Also suppose that either
(a) F is continuous or
(b) (X, d, �) is regular.
Then F and G have a coupled coincidence point.

Proof. It is only necessary to apply Theorem 2.1 to the mappings T = TF and � = TG

in the partially ordered metric space (X2, δ, 
) taking into account all items of
Lemma 2.2.

Corollary 2.1. Let (X,�) be a partially ordered set such that there exists a complete metric
d on X. Assume F, G : X2 → X be two commuting mappings such that F is G-increasing
with respect to �, G is continuous and there exist two elements x0, y0 ∈ X with

G(x0, y0) � F(x0, y0) and G(y0, x0) � F(y0, x0).

Suppose that (2.13) and (2.17) hold and either
(a) F is continuous or
(b) (X, d, �) is regular.
Then F and G have a coupled coincidence point.



638 B. Deshpande and A. Handa

Now we deduce the results without mixed �-monotone property of F.

Corollary 2.2. Let (X,�) be a partially ordered set such that there exists a complete metric
d on X. Assume F : X2 → X and � : X→ X be two mappings such that F is �-increasing
with respect to � and there exist ϕ ∈ Φ, ψ ∈ Ψ and θ ∈ Θ such that

ψ
(
d(F(x, y), F(u, v))

)
(2.18)

≤ ψ
(
M�(x, y, u, v)

)
− ϕ

(
ψ

(
M�(x, y, u, v)

))
+ θ

(
N�(x, y, u, v)

)
,

where

M�(x, y, u, v) = max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d(�x, �u), d(�x, F(x, y)), d(�u, F(u, v)),
d(�y, �v), d(�y, F(y, x)), d(�v, F(v, u)),

d(�x, F(u, v))+d(�u, F(x, y))
2 ,

d(�y, F(v, u))+d(�v, F(y, x))
2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

and

N�(x, y, u, v) = min
{

d(�x, �u), d(�u, F(x, y))
d(�y, �v), d(�v, F(y, x))

}
,

for all x, y, u, v ∈ X, where �(x) � �(u) and �(y) � �(v). Suppose that F(X2) ⊆ �(X), �
is continuous and monotone increasing with respect to � and the pair {F, �} is compatible.
Also suppose that either

(a) F is continuous or

(b) (X, d, �) is regular.

If there exist two elements x0, y0 ∈ X with

�x0 � F(x0, y0) and �y0 � F(y0, x0).

Then F and � have a coupled coincidence point.

Corollary 2.3. Let (X,�) be a partially ordered set such that there exists a complete metric
d on X. Assume F : X2 → X and � : X→ X be two mappings such that F is �-increasing
with respect to � and there exist ϕ ∈ Φ, ψ ∈ Ψ and θ ∈ Θ satisfying (2.18). Suppose that
F(X2) ⊆ �(X), � is continuous, monotone increasing with respect to � and the pair {F, �}
is commuting. Also suppose that either

(a) F is continuous or

(b) (X, d, �) is regular.

If there exist two elements x0, y0 ∈ X with

�x0 � F(x0, y0) and �y0 � F(y0, x0).

Then F and � have a coupled coincidence point.
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Now, we deduce the result without mixed monotone property of F.

Corollary 2.4. Let (X,�) be a partially ordered set such that there exists a complete metric
d on X. Assume F : X2 → X be an increasing mapping with respect to � and there exist
ϕ ∈ Φ, ψ ∈ Ψ and θ ∈ Θ such that

ψ
(
d(F(x, y), F(u, v))

)
(2.19)

≤ ψ
(
m(x, y, u, v)

) − ϕ (
ψ

(
m(x, y, u, v)

))
+ θ

(
n(x, y, u, v)

)
,

where

m(x, y, u, v) = max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d(x, u), d(x, F(x, y)), d(u, F(u, v)),
d(y, v), d(y, F(y, x)), d(v, F(v, u)),

d(x, F(u, v))+d(u, F(x, y))
2 ,

d(y, F(v, u))+d(v, F(y, x))
2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

and

n(x, y, u, v) = min
{

d(x, u), d(u, F(x, y)),
d(y, v), d(v, F(y, x))

}
,

for all x, y, u, v ∈ X, where x � u and y � v. Also suppose that either

(a) F is continuous or

(b) (X, d, �) is regular.

If there exist two elements x0, y0 ∈ X with

x0 � F(x0, y0) and y0 � F(y0, x0).

Then F has a coupled fixed point.

Example 2.1. Suppose that X = [0, 1], equipped with the usual metric d : X × X→ [0, +∞)
and with the natural ordering of real numbers ≤ . Let F, G : X2 → X be defined as

F(x, y) =

{
x2−y2

3 , if x ≥ y,
0, if x < y,

G(x, y) =

{
x2 − y2, if x ≥ y,

0, if x < y.

Define ψ : [0, +∞)→ [0, +∞) by

ψ(t) =
t
2
, for all t ≥ 0,

and ϕ : [0, +∞)→ [0, +∞) by

ϕ(t) =
t
3
, for all t ≥ 0,

and θ : [0, +∞)→ [0, +∞) by

θ(t) =
t
4
, for all t ≥ 0.
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First, we shall show that the mappings F and G satisfy the condition (2.13). Let x, y, u, v ∈ X
such that G(x, y) ≤ G(u, v) and G(y, x) ≥ G(v, u),we have

d(F(x, y), F(u, v))

=

∣∣∣∣∣∣
x2 − y2

3
− u2 − v2

3

∣∣∣∣∣∣
=

1
3

∣∣∣G(x, y) − G(u, v)
∣∣∣

=
1
3

d(G(x, y), G(u, v))

≤ 1
3

M(x, y, u, v)

≤ ψ
(
M(x, y, u, v)

) − ϕ (
ψ

(
M(x, y, u, v)

))
+ θ

(
N(x, y, u, v)

)
.

Thus the contractive condition (2.13) is satisfied for all x, y, u, v ∈ X. In addition, like in [16],
all the other conditions of Theorem 2.2 are satisfied and z = (0, 0) is a coupled coincidence
point of F and G.

3. Application to integral equations

As an application of the results established in section 2 of our paper, we study
the existence of the solution to a Fredholm nonlinear integral equation. We shall
consider the following integral equation

(3.1) x(p) =

b∫
a

(
K1(p, q) + K2(p, q)

) [
f (q, x(q)) + �(q, x(q))

]
dq + h(p),

for all p ∈ I = [a, b].

Let Υ denote the set of all functions γ : [0, +∞)→ [0, +∞) satisfying

(iγ) γ is non-decreasing,
(iiγ) γ(p) ≤ p.

Condition 3.1. We assume that the functions K1, K2, f , � fulfill the following conditions:

(i) K1(p, q) ≥ 0 and K2(p, q) ≤ 0 for all p, q ∈ I,

(ii) There exists positive numbers λ, μ and γ ∈ Υ such that for all x, y ∈R with x � y,
the following conditions hold:

0 ≤ f (q, x) − f (q, y) ≤ λγ(x − y),(3.2)
−μγ(x − y) ≤ �(q, x) − �(q, y) ≤ 0,(3.3)
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(iii)

(3.4) max{λ, μ} sup
p∈I

b∫
a

[K1(p, q) − K2(p, q)]dq ≤ 1
6
.

Example 3.1. Let P = {a = x0, x1, x2, ..., xr−1, xr, ..., xn = b} be any partition of the interval
I = [a, b] whose rth sub-interval is Ir = [xr−1, xr], its length is δr = xr − xr−1 , where r = 1, 2, ...,
n and ‖P‖ = max1≤r≤n δr.

The functions K1, K2, f , �, h are defined as follows:

K1(p, q) =

⎧⎪⎪⎨⎪⎪⎩
e−σ(p−q)

24(1−e−σT) , 0 ≤ q < p ≤ T,
e−σ(p−q+T)

24(1−e−σT) , 0 ≤ p < q ≤ T,

K2(p, q) =

⎧⎪⎪⎨⎪⎪⎩
eσ(p−q)

24(1−eσT) , 0 ≤ q < p ≤ T,
eσ(p−q+T)

24(1−eσT) , 0 ≤ p < q ≤ T,

where σ = max{λ, μ}, λ, μ are positive numbers and T = |I| = b − a. Define f (q, x) = δx and
�(q, x) = −δx, where δ denote the length of the sub-interval of I in which q lies and also
h(p) = p and γ(p) = p forall p ∈ I. Then the functions K1, K2, f , �, h and γ satisfying condition
3.1.

Definition 3.1. [21]. A pair (α, β) ∈ X2 with X = C(I, R), where C(I, R) denote the
set of all continuous functions from I toR, is called a coupled lower-upper solution
of (3.1) if, for all p ∈ I,

α(p) ≤
b∫

a

K1(p, q)
[
f (q, α(q)) + �(q, β(q))

]
dq

+

b∫
a

K2(p, q)
[
f (q, β(q)) + �(q, α(q))

]
dq + h(p),

and

β(p) ≥
b∫

a

K1(p, q)
[
f (q, β(q)) + �(q, α(q))

]
dq

+

b∫
a

K2(p, q)
[
f (q, α(q)) + �(q, β(q))

]
dq + h(p).

Theorem 3.1. Consider the integral equation (3.1) with K1, K2 ∈ C(I × I, R), f , � ∈
C(I ×R, R) and h ∈ C(I, R). Suppose that there exists a coupled lower-upper solution (α,
β) of (3.1) and Condition 3.1 is satisfied. Then the integral equation (3.1) has a solution in
C(I, R).
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Proof. Consider X = C(I,R), the natural partial order relation, that is, for x, y ∈ C(I,
R),

x � y⇐⇒ x(p) ≤ y(p), for all p ∈ I.

It is well known that X is a complete metric space with respect to the sup metric

d(x, y) = sup
p∈I

∣∣∣x(p) − y(p)
∣∣∣ .

Now define on X2 the following partial order: for (x, y), (u, v) ∈ X2,

(x, y) � (u, v)⇐⇒ x(p) ≤ u(p) and y(p) ≥ v(p), for all p ∈ I.

Obviously, for any (x, y) ∈ X2, the functions max{x, y} and min{x, y} are the upper
and lower bounds of x and y respectively. Therefore for every (x, y), (u, v) ∈ X2,
there exists the element

(
max{x, u}, min{y, v}) which is comparable to (x, y) and

(u, v). Define ψ : [0, +∞)→ [0, +∞) by

ψ(t) =
t
2
, for all t ≥ 0,

and ϕ : [0, +∞)→ [0, +∞) by

ϕ(t) =
t
3
, for all t ≥ 0,

and θ : [0, +∞)→ [0, +∞) by

θ(t) =
t
4
, for all t ≥ 0.

Define now the mapping F : X2 → X by

F(x, y)(p) =

b∫
a

K1(p, q)
[
f (q, x(q)) + �(q, y(q))

]
dq

+

b∫
a

K2(p, q)
[
f (q, y(q)) + �(q, x(q))

]
dq + h(p),

for all p ∈ I. We can prove, like in [16], that F is increasing. Now for x, y, u, v ∈ X
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with x � u and y � v, by using (3.2) and (3.3), we have

F(x, y)(p) − F(u, v)(p)

=

b∫
a

K1(p, q)
[
f (q, x(q)) + �(q, y(q))

]
dq

+

b∫
a

K2(p, q)
[
f (q, y(q)) + �(q, x(q))

]
dq

−
b∫

a

K1(p, q)
[
f (q, u(q)) + �(q, v(q))

]
dq

−
b∫

a

K2(p, q)
[
f (q, v(q)) + �(q, u(q))

]
dq

=

b∫
a

K1(p, q)
[
f (q, x(q)) − f (q, u(q)) + �(q, y(q)) − �(q, v(q))

]
dq

+

b∫
a

K2(p, q)
[
f (q, y(q)) − f (q, v(q)) + �(q, x(q)) − �(q, u(q))

]
dq

=

b∫
a

K1(p, q)
[
( f (q, x(q)) − f (q, u(q))) − (�(q, v(q)) − �(q, y(q)))

]
dq

−
b∫

a

K2(p, q)
[
( f (q, v(q)) − f (q, y(q))) − (�(q, x(q)) − �(q, u(q)))

]
dq

≤
b∫

a

K1(p, q)
[
λγ

(
x(q) − u(q

)
) + μγ

(
v(q) − y(q)

)]
dq

−
b∫

a

K2(p, q)
[
λγ

(
v(q) − y(q)

)
+ μγ

(
x(q) − u(q)

)]
dq.
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Thus

F(x, y)(p)− F(u, v)(p)(3.5)

≤
b∫

a

K1(p, q)
[
λγ

(
x(q) − u(q

)
) + μγ

(
v(q) − y(q)

)]
dq

−
b∫

a

K2(p, q)
[
λγ

(
v(q) − y(q)

)
+ μγ

(
x(q) − u(q)

)]
dq.

Since the function γ is non-decreasing, x � u and y � v, we have

γ
(
x(q) − u(q

)
) ≤ γ

⎛⎜⎜⎜⎜⎝sup
q∈I

∣∣∣x(q) − u(q)
∣∣∣
⎞⎟⎟⎟⎟⎠ = γ(d(x, u)),

γ
(
v(q) − y(q)

) ≤ γ

⎛⎜⎜⎜⎜⎝sup
q∈I

∣∣∣v(q) − y(q)
∣∣∣
⎞⎟⎟⎟⎟⎠ = γ(d(y, v)).

Hence by (3.5), in view of the fact that K2(p, q) ≤ 0, we obtain
∣∣∣F(x, y)(p)− F(u, v)(p)

∣∣∣
≤

b∫
a

K1(p, q)
[
λγ(d(x, u)) + μγ(d(y, v))

]
dq

−
b∫

a

K2(p, q)
[
λγ(d(y, v)) + μγ(d(x, u))

]
dq

≤
b∫

a

K1(p, q)
[
max{λ, μ}γ(d(x, u)) +max{λ, μ}γ(d(y, v))

]
dq

−
b∫

a

K2(p, q)
[
max{λ, μ}γ(d(y, v)) +max{λ, μ}γ(d(x, u))

]
dq,

as all the quantities on the right hand side of (3.5) are non-negative. Now, taking
the supremum with respect to p, by using (3.4), we get

d(F(x, y), F(u, v))

≤ max{λ, μ} sup
p∈I

b∫
a

(
K1(p, q) − K2(p, q)

)
dq.

[
γ(d(x, u)) + γ(d(y, v))

]

≤ γ(d(x, u)) + γ(d(y, v))
6

.
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Thus

(3.6)
1
2

d(F(x, y), F(u, v)) ≤ γ(d(x, u)) + γ(d(y, v))
12

.

Now, since γ is non-decreasing, we have

γ(d(x, u)) ≤ γ
(
d(x, u) + d(y, v)

)
,

γ(d(y, v)) ≤ γ
(
d(x, u) + d(y, v)

)
,

which implies, by (iiγ), that

γ(d(x, u)) + γ(d(y, v))
2

≤ γ
(
d(x, u) + d(y, v)

)
≤ d(x, u) + d(y, v).

Hence

(3.7)
γ(d(x, u)) + γ(d(y, v))

12
≤ 1

6
d(x, u) +

1
6

d(y, v).

Thus by (3.6) and (3.7), we have

ψ
(
d(F(x, y), F(u, v))

)
=

1
2

d(F(x, y), F(u, v))

≤ 1
6

d(x, u) +
1
6

d(y, v)

≤ 1
3

m(x, y, u, v)

≤ ψ
(
m(x, y, u, v)

) − ϕ (
ψ

(
m(x, y, u, v)

))
≤ ψ

(
m(x, y, u, v)

) − ϕ (
ψ

(
m(x, y, u, v)

))
+ θ

(
n(x, y, u, v)

)
,

which is the contractive condition (2.19) in Corollary 2.4. Now, let (α, β) ∈ X2 be a
coupled upper-lower solution of (3.1), then we have α(p) ≤ F(α, β)(p) and β(p) ≥ F(
β, α)(p), for all p ∈ I, which shows that all hypothesis of Corollary 2.4 are satisfied.
This proves that F has a coupled fixed point (x, y) ∈ X2 which is the solution in
X = C(I,R) of the integral equation (3.1).

Remark 3.1. Using the same techniques that can be found in ([17]-[19], [24], [29], [30]), it is
possible to deduce, from Theorem 2.1, tripled, quadruple and in general, multidimensional
coincidence point theorems.
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