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Abstract. We compare the Dirac operator on transitive Riemannian Lie algebroid
equipped by spin or complex spin structure with the one defined on to its base manifold.
Consequently we derive upper eigenvalue bounds of Dirac operator on base manifold of
spin Lie algebroid twisted with the spinor bundle of kernel bundle.
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1. Introduction

Let D be a first-order differential operator acting on a vector bundle S over a
Riemannian manifold M . If D2 = ∆, where ∆ is the Laplacian of S, then D is
called a Dirac operator on S. In high-energy physics, this requirement is often
relaxed: only the second-order part of D2 must equal the Laplacian [4].

A Lie algebroid is a triple (E, [·, ·], ρ) consisting of a vector bundle E over a
manifold M , together with a Lie bracket [·, ·] on its space of sections Γ(E) and a
morphism of vector bundles ρ : E → TM called the anchor map, where TM is
the tangent bundle of M . The anchor map and the bracket satisfy the Leibniz rule
[X, fY ] = ρ(X)f · Y + f [X,Y ], where X,Y ∈ Γ(E), f ∈ C∞(M) and ρ(X)f is the
derivative of f along the vector field ρ(X). It follows that ρ([X,Y ]) = [ρ(X), ρ(Y )]
for all X,Y ∈ Γ(E) (for more details, see [6] ).

In [1], Bär gives upper eigenvalue bounds for the Dirac operator of a closed
Riemannian spin manifoldM isometrically immersed in a Riemannian spin manifold
Q admitting Killing spinors. He provides a “submanifold theory” of Dirac operators
and describes the relations between the Dirac operator of the ambient space and
the Dirac operator of the submanifold twisted by the spinor bundle of the normal
bundle. When the ambient space Q admits a Killing spinor Ψ with real Killing
constant α (that is, a spinor field Ψ satisfying the equation ∇XΨ = αX ·Ψ for all
vector fields X), he shows that there exists at least k eigenvalues of DΣN

M , where
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k is the dimension of the space ΣαQ of Killing spinors with constant α unless
dim(M) and codim(M) are both odd, and k = [ 12dim(ΣαQ)] otherwise, satisfying
the equation

λ2 ≤ n2α2 +
n2

4vol(M)

∫

|H |2,

where n := dim(M), and H is the mean curvature vector field [1]. Moreover, almost
the same result is obtained when α is purely imaginary.

Recently, Balcerzak-Pierzchalski study the Dirac operators on Lie algebroids
[2]. They considered the Lie algebroids equipped with a structure of a Clifford
module and obtained the Witzenböck formulas for the square of Dirac operators.
In this paper, we have considered transitive Lie algebroids on closed spin manifolds.
Transitivity property causes that Lie algebroids to be decomposed as L⊕E of vector
bundles, where L = ker ρ, E = λ(TM) and λ is a bundle diffeomorphism between
TM and E[3]. Further, we suppose the Lie algebroids admit a spin structure. First,
we compare the spinor connection of the spin Lie algebroid with the one defined on
the base manifold. Then, we obtain the relation between Dirac operators on a Lie
algebroid and its base manifold similar to the ideas and methods employed in [1] (see
the relation (5.1)). Finally, we derive upper eigenvalue bounds of Dirac operators
on Lie algebroids based on calculation of Rilegh-Ritz quotient (see Theorem 6.1 and
6.2).

2. Preliminaries

Let M be a smooth manifold. A Lie algebroid on M is a vector bundle (A, π,M)
together with a Lie bracket product on ΓA and a vector bundle map ρ : A −→ TM
called the anchor map of A, such that the following conditions satisfy[6];

1. The induced map ρ : ΓA −→ TM is a homeomorphism of vector bundles.

2. For all X,Y ∈ ΓA and f ∈ C∞(M),

[X, fY ] = f [X,Y ] + (ρ(X)(f))Y.

A Lie algebroid ρ : A −→ TM is called transitive if ρ is surjective. For a transi-
tive Lie algebroid, L = ker ρ is a bundle of Lie algebroid. In fact, the Lie algebroid
On ΓA can be restricted to ΓL and its restriction on L is tensorial, consequently,
we have a Lie algebra structure on each fibre of L. So, on a transitive Lie algebroid
ρ : A −→ TM we find the short exact sequence of the following vector bundles

0 −→ L −→ A −→ TM −→ 0.

Suppose ρ : A −→ TM is transitive Lie algebroid, then a vector bundle map
λ : TM −→ A such that ρ ◦ λ = 1TM , is a splitting of ρ : A −→ TM , i.e., we can
decompose to L ⊕ E of vector bundles, where E = λ(TM) (and vice versa). It is
easy to check that λ is a bundle diffeomorphism between TM and E. Fix a splitting
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λ : TM −→ A of ρ. The map λ defines a linear connection on L, and is called an
adjoint connection(see [3] ).

For each splitting λ the 2-differential form Ωλ ∈ A2(M,L) is defined by

Ωλ(U, V ) = [λ(U), λ(V )]− [λ([U, V ]).

The 2-form Ωλ is related to the curvature tensor of ∇λ is given by

Rλ(U, V )(s) = [2Ωλ(U, V ), s].

We can define a Lie bracket on the transitive Lie algebroid sections

[λ(U) + S1), λ(V ) + S2] = [λ(U), λ(V )] +∇λ
US2 −∇λ

V S1 + [S1, S2] + Ω(U, V ).

For all U ∈ X (M), let us put λ(U) = U .

By splitting A = L⊕λ(TM), the Riemannian metric g on transitive Lie algebroid
induces a metric on M as follows

∀U, V ∈M 〈U, V 〉M = 〈U, V 〉A.

Now, we define Ωa : X (M)× ΓL −→ X (M) by

∀U, V ∈ X (M), s ∈ ΓL, 〈Ωa(U, s), V 〉M = 〈Ω(U, V ), s〉A.

3. Spinor Modules

This section is devoted to spinor modules which inspired from [1]. We want to
compare the Dirac operators on a Riemannian spin Lie algebroid and its spin base
manifold. For this end, we have to compare spinor bundles on Lie algebroid with the
spinor bundle of the base manifold. The starting point is decomposing transitive
Lie algebroid A to A = L⊕λ(TM), where L = ker ρ and λ : TM −→ A is splitting.
Hence we need to recognize spinor modules on clifford algebra of an Euclidean space
with the two factor.

If dimE = n and dimF=m are even integers, then Cl(E) has precisely one
irreducible module that is spinor module ΣE. Denote the clifford multiplication
by γE : Cl(E) −→ End(ΣE). When restricted to the even subalgebra Cl0(E) the
spinor module decomposes in to even and odd half-spinors ΣE = Σ+E⊕Σ−E. The
complex volume element ωC = i

n

2 γC(e1 · · · en) acts as +1 on Σ+E and as −1 on
Σ−E.

If n is odd, then there are exactly two irreducible modules, Σ0E and Σ1E. In

this case the dimension of these modules are 2
n−1
2 . Clifford multiplication will now

be denoted by γE,j : Cl(E) −→ End(ΣjE).

Similarly to the half spinor spaces in even dimensions, the two modules Σ0E
and Σ1E can be distinguished by the action of the complex volume element ωC =

i
n+1
2 γC(e1 · · · en), on ΣjE acts as (−1)j , j = 0, 1. One can pass from Σ0E to Σ1E

by taking the same underlying vector space Σ0E = Σ1E and there exists a vector
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space isomorphism Φ : Σ0E −→ Σ1E such that Φ ◦ γE,0(x) = −γE,1(x) ◦ Φ for all
x ∈ E. Now let E and F be two oriented Euclidean vector spaces. Assume that
dimE = n and dimF = k.

Now we construct the spinor module of E ⊕ F from those of E and F .

Case 1. n and k are even. Let us put Σ := ΣE ⊗ ΣF , γ : E ⊕ F −→ End(Σ),
γ(x)(σ ⊗ τ) = (γE(x)σ) ⊗ τ and

γ(y)(σ ⊗ τ) = (−1)degσσ ⊗ (γF (y)τ),(3.1)

where x ∈ E, y ∈ F, σ ∈ ΣE, τ ∈ ΣF . Thus

deg σ =

{

0 if n or k iseven.
1 o.w.

and we have γ(X + Y ) · γ(X + Y )(σ ⊗ τ) = −(X + Y )2 · (σ ⊗ τ);

As γ is a Clifford map, it extends to a homomorphism Cl(E ⊕ F ) −→ End(Σ).

Therefore (Σ, γ) is a module on Cl(E ⊕ F ) of dimension 2
n

2 · 2
k

2 = 2
n+k

2 . Then Σ
is isomorphic to Σ(E ⊕ F ). Hence,

Σ+(E ⊕ F ) = (Σ+E ⊗ Σ+F )⊕ (Σ−E ⊗ Σ−F ),

Σ−(E ⊕ F ) = (Σ+E ⊗ Σ−F )⊕ (Σ−E ⊗ Σ+F ).

Case 2. n and k are even and odd, respectively. In this case, dimension E ⊕ F is
odd and

Σj = ΣE ⊗ ΣjF, γj : E ⊕ F −→ End(Σj), j = 0, 1.

As in the case 1, we make Σ0 and Σ1 in to CL(E ⊕ F )-modules. Easily one can
check that the complex volume element of CL(E ⊕ F ) acts on Σj as (−1)j . Hence
(Σj , γj) is isomorphic to (Σj(E ⊕ F ), γE⊕F,j).

Case 3. n odd k are even. This case is symmetric to the second case. Let us
put Σ := ΣE ⊗ ΣF , γ : E ⊕ F −→ End(Σ), γ(x)(σ ⊗ τ) = (−1)degσ(γE(x)σ) ⊗ τ ,
γ(y)(σ⊗ τ) = σ ⊗ (γF (y)τ). Then x ∈ E, y ∈ F, σ ∈ ΣE, τ ∈ ΣF . Hence (Σj , γj) is
isomorphic to (Σj(E ⊕ F ), γE⊕F,j).

Case 4. n and k are odd. In this case, let us put Σ+ := Σ0E ⊗ Σ0F , Σ− :=
Σ1E ⊗ Σ1F and Σ := Σ+ ⊕ Σ−. There there exits a vector space isomorphism
Φ : Σ0F −→ Σ1F such that φ ◦ γF,0(Y ) = −γF,1(Y ) ◦φ for all Y ∈ F . With respect
to splitting Σ = Σ+ ⊕ Σ−, let us define

γ(x) :=

(

0, γE,0(x)⊗ Φ−1

−γE,0(x) ⊗ Φ, 0

)

γ(y) :=

(

0, Id⊗ Φ−1 ◦ γF,1(y)
−Id⊗ Φ ◦ γF,0(y), 0

)

.(3.2)
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Thus γ(X+Y )◦γ(X+Y ) = −(X+Y )2 ·Id, and hence γ extends to a representation
of CL(E ⊕ F ) on Σ. Therefore there is an isomorphism from (Σ(E ⊕ F ), γE⊕F ) to
(Σ, γ).

4. Spinor Connections

Let ∇̂ be the Levi-Civita connection of the Riemannian transitive Lie algebroid
(A, g) and let λ : TM −→ A be a splitting for each a ∈ A, s ∈ ΓL,U ∈ X (M),
which we denote by

∇A
Ua := ∇̂Ua

∇L
Us := (∇̂Us)

L.

The superscript L is the projection to L. Denote ∇L,∇A the Levi-Civita connection
which is defined as follows

∇A
UV = ∇

M

U V +Ω(U, V )

∇A
Us = −Ωa(U, V ) +∇L

Us,

where ∇M is the Levi-Civita connection on M . In this case if the Riemannian
metric is compatible with A we have ∇L = ∇λ.

Let E −→ M be an oriented Riemannian vector bundle and let Pso(E) be
bundle of oriented orthonormal frames. Every Riemannian covariant derivative ∇
corresponds to a 1-form connection ω on Pso(E)(see[5]). Let e = (e1, · · · , en) be
a local section on open set O ⊆ M . The local connection form ωe = e∗(ω) :
TO −→ so(n) is given by the formula ωe =

∑

i<j ωijEij where ωij = 〈∇ei, ej〉 and
Eij ∈ so(n) are the standard basis matrices of Lie algebra so(n). Let (U1, · · · , Un) be
a local positively oriented orthonormal tangent frame ofM and let (s1, · · · , sk) be a
local positively oriented orthonormal frame of L. Then h := (U1, · · · , Un, s1, · · · , sk)
is a local section of Pso(A). Now we can write the following matrix forms

Ω(U, ·) = (〈Ω(U,Ui), sj〉)ij ,

∇A
U − (∇M

U ⊕∇L
U ) =

(

0, −(〈Ω(U,Ui, sj〉)ji
(〈Ω(U,Ui, sj〉)ij , 0

)

.(4.1)

Let A be a spin Lie algebroid and M a spin manifold so the bundle L has a
spin structure see [5]. If Θ : Spin(n+ k) −→ SO(n+ k) is the spin representation
and ωA, ωM and ωL are the induced connection 1-forms on the corresponding spin
bundles. By (4.1), we have

Θ∗(ω
A(dh · U)− (ωM ⊕ ωL)(dh · U)) =

(

0, −(〈Ω(U,Ui, sj〉)ji
(〈Ω(U,Ui, sj〉)ij , 0

)

.

Using a standard formula for Θ∗ and the above equation, we get

ωA(dh · U)− (ωM ⊕ ωL)(dh · U) =
1

2

n
∑

i=1

k
∑

j=1

〈Ω(U,Ui), sj〉 · ei · fj ,(4.2)
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where e1, · · · , en and f1, · · · , fk are the standard basis of Rn and R
k, respectively. If

ΣA, ΣM , and ΣL are the spinor bundles of A,M and L, then from the consideration
in previous we know that:

ΣA =

{

ΣM ⊗ ΣL, if n or k iseven.
ΣM ⊗ ΣL⊕ ΣM ⊗ ΣL, o.w.

Let ∇ΣA, ∇ΣM , and ∇ΣL be the induced connections on spinor bundles ΣA, ΣM ,
and ΣL, respectively. Define the product connection ∇ΣM⊗ΣL on ΣA by

∇ΣM⊗ΣL =

{

∇ΣM ⊗ Id⊕ Id⊗∇ΣL, if n or k iseven.
∇ΣM ⊗ Id⊕ Id⊗∇ΣL ⊕∇ΣM ⊗ Id⊕ Id⊗∇ΣL, o.w.

Equation (3.1) yields

∇ΣA
U −∇ΣM⊗ΣL =

1

2

n
∑

i=1

k
∑

j=1

〈Ω(U,Ui), sj〉γA(Ui · sj)

=
1

2

n
∑

i=1

γA(Ui · Ω(U,Ui)).(4.3)

Consider ωk = i
k+1
2 γA(s1 · · · sk) and put ω⊥ = ωk when k is even and ω⊥ = −iωk

when k is odd.

5. Dirac Operators

Define the Dirac operator DΣL
M : ΣM ⊗ ΣL −→ ΣM ⊗ ΣL on M twisted with the

spinor bundle ΣL by

DΣL
M ψ :=

∑

Ui ·M (∇ΣM
U ⊗ Id⊕ Id⊗∇ΣL

U )ψ

where U ·M ψ = U · ω⊥ · ψ and

D̃ΣL
M :=

{

DΣL
M if n or k iseven,

DΣL
M ⊕−DΣL

M , o.w.

Also define

D̃ :=
n
∑

i=1

γA(U i)∇
ΣM⊗ΣL
Ui

D̂ :=

n
∑

i=1

γA(U i)∇
ΣA
Ui
.

The three last operators act on sections of ΣA.



Dirac Operators on Lie Algebroids 989

Using equation (4.3), we get

D̂ − D̃ =
1

2

n
∑

i,j=1

γA(Ūj · Ūi · Ω(Ūj · Ūi))

=

n
∑

1≤i<j≤n

γA(Ūj · Ūi · Ω(Ūj · Ūi)),(5.1)

because of Ω(U,U) = 0 and for i < j we have Ui · Uj = −Uj · Ui.

In order to find the relation between D̃ and D̃ΣL
M , for different dimensions, we

have to consider various cases. In case 1 and case 2 we have

D̃ =
n
∑

i=1

γA(Ūi)∇
ΣM⊗ΣL
Ui

=

n
∑

i=1

(γM (Ūi)⊗ Id)∇ΣM⊗ΣL
Ui

= DΣL
M = D̃ΣL

M .

In case 3 we get from equation (2) on ΣM ⊗ Σ+L

D̃ = DΣL
M = D̃Σ

ML

and on ΣM ⊗ Σ−L we obtain

D̃ = −DΣL
M = −D̃Σ

ML.

Finally in case 4 have we get from equation (3.2)

D̃ = i

(

0, DΣL
M

−DΣL
M , 0

)

In all cases we see that D̃ is formally self-adjoint because DΣ
ML is and

D̃2 = (DΣ
ML)

2.

6. Upper Bound for Eigenvalues

Let (A, g) be a spin Lie algebroid and (M, gM ) a spin manifold. The spinor ψ is
called a Killing spinor with Killing constant α if it satisfies ∇ΣA

a ψ = α · γA(a)ψ for
all a ∈ ΓA. Obviously the set of Killing spinors with Killing constant forms a vector
space of dimension ν(A,α). Let µ(A, n, α) be the smallest integer greater than or
equal to ν(A,α)/2. If dimension n and k are both odd we then put µ(A, n, α) :=
ν(A,α), in this case.
Define |Ω|2 :=

∑n
i,j=1 |γA(Uj · Ui · Ω(Uj , Ui))|

2.
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Theorem 6.1. Let A be a Riemannian spin Lie algebroid on M and M be a
closed Riemannian spin manifold. Suppose that the bundle L carry the induced spin
structure and α ∈ R. Then there are at least µ = µ(A, n, α) eigenvalues λ1, · · · , λµ
of the Dirac operator on DΣL

M such that

|λk| ≤ n|α|+
1

2
‖Ω‖L∞(M)

Proof. Now, let ψ be a Killing spinor on A with Killing constant α ∈ R.
Such Killing spinors have constant length and we may assume that |ψ| = 1. We
compute the Rayleigh quotient of D̃ΣL

M using the previous notation. Then, we get
the following

(

(D̃ΣL
M )2ψ, ψ

)

L2(M)

(ψ, ψ)L2(M)

=

(

D̃2ψ, ψ
)

L2(M)

vol(M)

=

(

D̃ψ, D̃ψ
)

L2(M)

vol(M)

=

∥

∥

∥
D̂ψ − 1

2

∑n
i,j=1 γA(Uj · Ui · Ω(Uj , Ui))ψ

∥

∥

∥

2

L2(M)

vol(M)

=
1

vol(M)
{‖D̂ψ‖2

L(M)

−
1

2
(D̂ψ,

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj, Ui))ψ)L2(M)

−
1

2
(

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj, Ui))ψ, D̂ψ)L2(M)

+
1

4
‖

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj, Ui))ψ‖
2
L2(M)}.

Also, we have

D̂ψ =
n
∑

i=1

γA(Ui)∇
ΣL
Ui
ψ

=

n
∑

i=1

γA(Ui)αγA(Ui)ψ

= −nαψ.

Note also that

(a · ψ, ϕ) + (ψ, a · ϕ) = 0, for each a ∈ A.
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Thus, we get

frac
(

(D̃ΣL
M )2ψ, ψ

)

L2(M)
(ψ, ψ)L2(M) =

1

vol(M)
{n2α2vol(M)

+
nα

2
(ψ,

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ)L2(M)

+
nα

2
(

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ, ψ)L2(M)

+
1

4
‖

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ‖
2
L2(M)}

= n2α2 + nα(ψ,

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ)L2(M)

+
1

4vol(M)
‖

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj, Ui))ψ‖
2
L2(M)

By considering the following inequality,

|α(ψ,

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ)L2(M)| ≤ |α| ·

∫

M

|ψ|2|Ω|

≤ |α| · ‖ψ‖2L2(M) · ‖Ω‖L∞(M).

the min-max principle implies the assertion.

Theorem 6.2. Let A be a Riemannian spin Lie algebroid on M and M be a
closed Riemannian spin manifold. Suppose that the bundle L carry the induced spin
structure and α ∈ iR. Then there are at least µ = µ(A, n, α) eigenvalues λ1, · · · , λµ
of the Dirac operator on DΣL

M such that

λ2k ≤ n2|α|2 +
1

4vol(M)

∫

M

|Ω|2,

Proof. Now, let ψ be a Killing spinor on A with Killing constant α ∈ iR. Such
Killing spinors have constant length and we may assume that |ψ| = 1. We compute
the Rayleigh quotient of D̃ΣL

M using the previous notation. The same computations
as in the proof of the previous Theorem, we get the following
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(

(D̃ψ
ΣL

M )2ψ, ψ
)

L2(M)

(ψ, ψ)L2(M)

=
1

vol(M)
{‖D̂ψ‖2

L(M)

−
1

2
(D̂ψ,

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ)L2(M)

−
1

2
(

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ, D̂ψ)L2(M)

+
1

4
‖

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ‖
2
L2(M)}

=
1

vol(M)
{n2|α|2vol(M)

+
nα

2
(ψ,

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ)L2(M)

+
nᾱ

2
(

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ, ψ)L2(M)

+
1

4
‖

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ‖
2
L2(M)}

= n2|α|2 +
1

4vol(M)
‖

n
∑

i,j=1

γA(Uj · Ui · Ω(Uj , Ui))ψ‖
2
L2(M)

≤ n2|α|2 +
1

4vol(M)

n
∑

i,j=1

‖γA(Uj · Ui · Ω(Uj , Ui))ψ‖
2
L2(M)

= n2|α|2 +
1

4vol(M)

∫

M

|Ω|2|ψ|2

= n2|α|2 +
1

4vol(M)

∫

M

|Ω|2.

The min-max principle implies the assertion.

Example 6.1. Let rank L = 1 (i.e., L is the trivial line bundle since it is ori-
entable). In this case, the Dirac operator on M twisted by L is ordinary Dirac
operator and the above theorem become as follows: If (A, gA) is a Lie algebroid with
spin structure that A = TM ⊕ R and spin manifold is close, there exist at least
µ = µ(A, n, α) eigenvalues λ1 · · ·λµ of DM that |λj | ≤ n|α|. This is because Ω = 0.
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