FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 36, No 1 (2021), 157-163 https://doi.org/10.22190/FUMI200420013K

Original Scientific Paper

PARALLELISM OF DISTRIBUTIONS AND GEODESICS ON $F(\pm a^2,\pm b^2)$ -STRUCTURE LAGRANGIAN MANIFOLD

Mohammad Nazrul Islam Khan¹ and Lovejoy S. Das²

¹Department of Computer Engineering, College of Computer, Qassim University, Buraydah, Saudia Arabia

²Department of Mathematics, College of Computer, Kent State University, New Philadelphia, OH 44663, U.S.A.

Abstract. This paper deals with the Lagrange vertical structure on the vertical tangent space $T_V(N)$ endowed with a non-zero (1,1) tensor field F_v satisfying $(F_v^2 - a^2)(F_v^2 + a^2)(F_v^2 - b^2)(F_v^2 + b^2) = 0$. The similar structure on the horizontal subspace $T_H(N)$ and on T(N) is investigated if the $F(\pm a^2, \pm b^2)$ -structure on $T_V(N)$ is given. Furthermore, we have proved some theorems and obtained conditions under which the distribution P and Q are ∇ -parallel, $\overline{\nabla}$ anti half parallel when $\nabla = \overline{\nabla}$. Finally, certain theorems on geodesics on the Lagrange manifold are established.

Keywords: Distribution, Parallelism, Geodesic, Almost product structure.

1. Introduction

Let M and N be two differentiable manifolds of dimension n and 2n respectively and (N, π, M) be vector bundle with $\pi(N) = M$. The local coordinate systems $(x^1, x^2,, x^n)$ about x in M and $(y^1, y^2,, y^n)$ about y in N. Let $(x^i, y^\alpha), 1 \le i \le n, 1 \le \alpha \le n$ be system of local coordinates in the open set $\pi^{-1}(U)$ and called induced coordinates in $\pi^{-1}(U)$, where U is a coordinate neighborhood in M. Let $T_p(N)$ be tangent space and $\left\{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^\alpha}\right\}$ canonical basis for $T_p(N)$ such that $p \in \pi^{-1}(U)$ and it is also denoted by $\{\partial_i, \partial_\alpha\}$ where $\partial_i = \frac{\partial}{\partial x^i}$. If (x^h, x^{α^1}) be coordinates of a point in the interesting region $\pi^{-1}(U) \cap \pi^{-1}(U)$, then [2, 6]

(1.1)
$$x^{i^1} = x^{i^1}(x^i),$$

Received April 20, 2020; accepted December 5, 2020.

Corresponding Author: Mohammad Nazrul Islam Khan, Department of Computer Engineering, College of Computer, Qassim University, Buraydah, Saudia Arabia, | E-mail: m.nazrul@edu.qu.sa, mnazrul@rediffmail.com

²⁰¹⁰ Mathematics Subject Classification. Primary 53C15; Secondary 53C22

^{© 2021} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

M. N. I. Khan and L. S. Das

(1.2)
$$y^{\alpha^1} = \frac{\partial x^{\alpha^1}}{\partial x^{\alpha}} y^{\alpha},$$

and another canonical basis in the intersecting region are given by

(1.3)
$$\partial_{i^1} = \frac{\partial x^i}{\partial x^{i^1}} \partial_i$$

(1.4)
$$\partial_{\alpha^1} = \frac{\partial y^{\alpha}}{\partial y^{\alpha^1}} \partial_{\alpha}.$$

The tangent space of N is denoted by T(N) and spanned by $\{\partial_i, \partial_\alpha\}$ and its subspaces by $T_V(N)$ and $T_H(N)$ spanned by $\{\partial_\alpha\}$ and $\{\partial_i\}$ respectively [8]. Then we have,

(1.5)
$$dim T_V(N) = dim T_H(N) = n.$$

The Riemannian material structure on T(N) is given by

(1.6)
$$G = g_{ij}(x^i, y^{\alpha})dx^i \otimes dx^j + g_{ab}(x^i, y^{\alpha})\delta y^{\alpha} \otimes \delta y^b$$

where $g_{ij}(x^i, y^{\alpha}) = g_{ij}(x^i)$, $g_{ab} = \frac{1}{2} \partial_a \partial_b L(x^i, y^{\alpha})$ and $L(x^i, y^{\alpha})$ denotes the Lagrange function. The manifold referred as Lagrangian manifold [2].

Let X be an element of T(N), then

(1.7)
$$X = \bar{X}^i \partial_i + X^\alpha \partial_\alpha.$$

The automorphism $J: \chi(T(N)) \to \chi(T(N))$ given as

(1.8)
$$JX = \bar{X}^i \partial_i + X^\alpha \partial_\alpha$$

is a natural almost product structure on T(N) that is $J^2 = I$, I denotes the identity operator. The projection morphisms of T(N) onto $T_V(N)$ and $T_H(N)$ denoted by v and h respectively, then we have

(1.9)
$$J_0 h = v_0 J.$$

2. The $F(\pm a^2, \pm b^2)$ -structure

Let $T_V(N)$ be the vertical space and F_v a non-zero tensor field of type (1,1) satisfying [10]

(2.1)
$$(F_v^2 - a^2)(F_v^2 + a^2)(F_v^2 - b^2)(F_v^2 + b^2) = 0,$$

where a, b are real or complex constants, then the vertical space $T_V(N)$ admits $F(\pm a^2, \pm b^2)$ -structure. The rank $(F_v) = r$ and such structure is called Lagrange vertical structure on $T_V(N)$.

Theorem 2.1. Let $T_V(N)$ be a vertical space ad F_v Lagrange vertical structure on $T_V(N)$. Then the structure define on the subspace $T_H(N)$ with respect to almost product structure of T(N).

158

Proof: Suppose that (2.2)

$$F_h = JF_v J,$$

then F_h is a tensor field of type (1,1) on $T_H(N)$, where J is an almost product structure on T(N).

Apply F_h on both sides we get

$$F_h^2 = (JF_vJ)(JF_vJ) = JF_v^2J,$$

$$F_h^3 = JF_v^3J$$

and so on.

In the view of equation (2.1), we have

(2.3)
$$(F_h^2 - a^2)(F_h^2 + a^2)(F_h^2 - b^2)(F_h^2 + b^2)$$
$$= J((F_v^2 - a^2)(F_v^2 + a^2)(F_v^2 - b^2)(F_v^2 + b^2))J$$
$$= 0,$$

Hence, F_h gives $F(\pm a^2, \pm b^2)$ -structure on $T_H(N)$.

Theorem 2.2. Let $T_V(N)$ be a vertical space ad F_v Lagrange vertical structure on $T_V(N)$. Then the similar structure define on the enveloping space T(N) by using projection morphism of T(N).

Proof: In the view of Theorem (2.1), the projection morphisms of $T_V(N)$ and $T_H(N)$ on T(N) denoted by v and h respectively then we have

$$(2.4) F = F_v h + F_v v$$

As hv = vh = 0 and $h^2 = h, v^2 = v$, we obtain

$$F^2 = F_h^2 h + F_v^2 v$$

Now,

$$(F^{2} - a^{2})(F^{2} + a^{2})(F^{2} - b^{2})(F^{2} + b^{2})$$

= $(F_{h}^{2} - a^{2})(F_{h}^{2} + a^{2})(F_{h}^{2} - b^{2})(F_{h}^{2} + b^{2})h$
+ $(F_{v}^{2} - a^{2})(F_{v}^{2} + a^{2})(F_{v}^{2} - b^{2})(F_{v}^{2} + b^{2})v$
(2.5)

By theorem 2.1, we have

$$(F^2 - a^2)(F^2 + a^2)(F^2 - b^2)(F^2 + b^2) = 0.$$

As $rank(F_v) = rank(F_h) = r$, Hence, rank(F) = 2r. 159

Let us define tensor fields p and q of type (1,1) on T(N) with $F(\pm a^2, \pm b^2)$ -structure of rank 2r as follows

(2.6)
$$p = \frac{(F^2 + a^2)(F^2 - a^2)}{b^4 - a^4}$$
$$q = \frac{(F^2 + b^2)(F^2 - b^2)}{a^4 - b^4}$$

Then it is easy to show that

(2.7)
$$p^2 = p, q^2 = q, pq = qp = 0, p + q = I.$$

This implies that p and q are complementary projection operators [4, 5, 7].

3. Parallelism of distributions

Suppose that N be Lagrangian manifold with $F(\pm a^2, \pm b^2)$ -structure on T(N)and let P and Q complementary distributions corresponding to complementary projection operators p and q respectively. The linear connection $\overline{\nabla}$ and $\widetilde{\nabla}$ are given by [2]

(3.1)
$$\bar{\nabla}_X Y = p \nabla_X (pY) + q \nabla_X (qY)$$

and

(3.2)
$$\tilde{\nabla}_X Y = p \nabla_{pX}(pY) + q \nabla_{qX}(qY) + p[qX, pY] + q[pX, qY].$$

We have the following definitions [3, 6]:

 ∇ -parallel: The distribution P is said ∇ -parallel if $\forall X \in P, Y \in T(N)$ implies that $\nabla_Y X \in P$.

 ∇ -half parallel: The distribution P is said ∇ -half parallel if $\forall X \in P, Y \in T(N), (\Delta F)(X,Y) \in P$ where

(3.3)
$$(\Delta F)(X,Y) = F\nabla_X Y - F\nabla_Y X - \nabla_{FX} Y + \nabla_Y (FX)$$

 ∇ -anti half parallel: The distribution P is said ∇ -anti half parallel if for all $X \in P, Y \in T(N), (\Delta F)(X, Y) \in Q$.

Theorem 3.1. On the $F(\pm a^2, \pm b^2)$ -structure manifold, the complementary distributions namely P and Q are $\overline{\nabla}$ -parallel and $\widetilde{\nabla}$ -parallel.

Proof: By using the equations (3.1), (3.2) and pq = qp = 0, $q^2 = q$, we obtain

$$q\bar{\nabla}_X Y = q\nabla_X (qY)$$

If $Y \in P, qY = 0$ so $q\overline{\nabla}_X Y = 0 \to \overline{\nabla}_X Y = 0$, as qY = 0 because Y is an element of P.

This implies that $\overline{\nabla}_X Y \in P$.

Thus, $\forall Y \in P, \forall X \in T(N) \Rightarrow \overline{\nabla}_X Y \in P.$

Hence P is $\overline{\nabla}$ -parallel. In a similar way $\forall X \in T(N), \forall Y \in P$ $\widetilde{\nabla}_X Y = q \nabla_{qX}(qY) + q[pX, qY] = 0$ as qY = 0. So $\widetilde{\nabla}_X Y \in P$. Thus P is $\widetilde{\nabla}$ -parallel.

In a similar way, it can be shown that distribution Q is $\overline{\nabla}$ as well as $\widetilde{\nabla}$ parallel.

Theorem 3.2. On the $F(\pm a^2, \pm b^2)$ -structure manifold, the complementary distributions namely P and Q are ∇ -parallel iff $\overline{\nabla} = \widetilde{\nabla}$.

Proof: Let distributions P and Q are ∇ -parallel. By definition of ∇ -parallel, we have

$$q\nabla_X(pY) = 0, \quad p\nabla_X(qY) = 0.$$

where X and Y are elements of T(N).

Using equation (2.7), we get

(3.4)
$$\nabla_X(pY) = p\nabla_X(pY)$$

(3.5) $\nabla_X(qY) = q\nabla_X(qY)$

Thus

$$\nabla_X Y = p \nabla_X (pY) + q \nabla_X (qY) = \overline{\nabla}_X Y.$$

This shows that $\nabla = \overline{\nabla}$.

The converse of the theorem showed easily.

Theorem 3.3. On the $F(\pm a^2, \pm b^2)$ -structure manifold N, the complementary distribution M is $\overline{\nabla}$ -anti half parallel if

$$q\bar{\nabla}_Y(FX) = q\nabla_{FX}qY.$$

where X is an element of Q and Y element of T(N).

Proof: Let $\overline{\nabla}$ be linear connection on N. Then by using equations (3.3) and (2.7), we obtain

(3.6)
$$q(\Delta F)(X,Y) = q\bar{\nabla}_Y F X - q\bar{\nabla}_{FX} Y, \quad as \quad qF = Fq = 0.$$

Making use of the equation (3.1), the obtained equation is

$$\bar{\nabla}_{FX}Y = p\nabla_{FX}(pY) + q\nabla_{FX}(qY)$$

operating q on both sides of above equation and using $pq = 0, q^2 = q$, we get

$$q\overline{\nabla}_{FX}Y = q\nabla_{FX}(qY)$$

and

162

$$q(\Delta F)(X,Y) = q\bar{\nabla}_Y F X - q\bar{\nabla}_{FX} Y,$$

as $(\Delta F)(X, Y) \in P$ so $q(\Delta F)(X, Y) = 0$. Hence,

$$q\overline{\nabla}_Y(FX) = q\nabla_{FX}(qY),$$

This completes the proof.

3.1. Geodesics on the Lagrangian manifold

Let T be tangent to the curve γ in N. The curve γ is said the geodesic concernig to the connection ∇ if $\nabla_T T$ [6].

Theorem 3.4. A curve γ is said to be geodesic concerning to connection $\overline{\nabla}$ if the vector fields $\nabla_T T - \nabla_T (qT) \in Q$ and $\nabla_T (qT) \in P$.

Proof: The curve γ is said to be geodesic concerning to the connection $\overline{\nabla}$, we have $\overline{\nabla}_T T = 0$.

In the view of the equation (3.1), $\overline{\nabla}_T T = 0$ becomes

(3.7)
$$p\nabla_T(pT) + q\nabla_T(qT) = 0,$$

Using the equation (2.7), the equation (3.7) becomes

$$p\nabla_T (I-q)T + q\nabla_T (qT) = 0$$

or

$$p\nabla_T T - p\nabla_T (qT) + q\nabla_T (qT) = 0.$$

or

$$p(\nabla_T T - \nabla_T (qT))$$
 and $q\nabla_T (qT) = 0.$

Hence, $\nabla_T T - \nabla_T (qT) \in Q$ and $\nabla_T (qT) \in P$.

This completes the proof.

Theorem 3.5. The tensor fields p and q of type (1,1) are always covariantly constants concerning to connection $\overline{\nabla}$.

Proof: Let X and Y be elements of T(N), then

(3.8)
$$(\bar{\nabla}_X p)(Y) = \bar{\nabla}_X (pY) - p\bar{\nabla}_X Y$$

From equation (3.1), we have

$$(\bar{\nabla}_X p)(Y) = p\nabla_X (p^2 Y) + q\nabla_X (qpY) - p \{p\nabla_X pY + q\nabla_X qY)\}$$

Using the properties $p^2 = p, q^2 = q, pq = qp = 0$, we have

$$(\overline{\nabla}_X p)(Y) = p\nabla_X (pY) - p\nabla_X pY = 0.$$

This shows that p is covariantly constant. In similar way, q is covariantly constant can be proved easily.

REFERENCES

- 1. Yano, K., Ishihara, S.: Tangent and Cotangent bundles, Mercel Dekker, Inc., New York, 1973.
- Nikic, J.: Distribution's parallelism and geodesics in the F(3, ε)-structure Lagrangian manifold. Novi Sad J. Math. 27(2), 117-125 (1997).
- Nikic, J., Comic, I: The Recurrent and Metric Connection and f-structures in Gauge Spaces of Second Order, FACTA UNIVERSITATIS Series: Mechanics, Automatic Control and Robotics, 5(1), 91-98, (2006).
- 4. Yano, K.: On a structure defined by a tensor field f of type (1,1) satisfying $F^3 + f = 0$. Tensor N. S. 14, 99-109 (1963).
- 5. Das, Lovejoy, Nivas, R.: On a differentiable manifold with $[F_1, F_2](K + 1, 1)$ -structure. Tensor N. S. 65, 29-35 (2004).
- Singh, A., Pandey, A.K. and Khare, S.: Parallelism of distributions and geodesics on F(2K + S; S)-structure Lagrangian manifolds, International Journal of Contemporary Mathematical Sciences, 9(11), 515-522 (2014).
- Khan, M. N. I., Jun, J. B.: Lorentzian Almost r-para-contact Structure in Tangent Bundle, Journal of the Chungcheong Mathematical Society 27 (1), 29-34 (2014).
- Das, Lovejoy: Fiberings on almost r-contact manifolds. Publications Mathematicae, Debrecen, Hongrie. 43(1-2), 1-7 (1993).
- 9. Das, Lovejoy: On CR-structure and F-structure satisfying $F^{K} + (-)^{K+1}F = 0$, Rocky Mountain Journal of Mathematics. 36(3), 885-892 (2006).
- 10. Das, Lovejoy, Nivas, R. and Saxena, M.: A structure defined by a tensor field of type (1,1) satisfying $(f^2 a^2)(f^2 + a^2)(f^2 b^2)(f^2 + b^2) = 0$. Tensor N.S., 65, 36-41 (2004).
- Das, Lovejoy, Nivas, R.: On certain structures defined on the tangent bundle. Rocky Mountain Journal of Mathematics. 36(6), 1857-1866 (2006).