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FOR CONTINUOUS AND DISCRETE P-MEDIAN PROBLEMS
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Abstract. Genetic algorithm with greedy heuristic is an efficient method for solving large-
scale location problems on networks. In addition, it can be adapted for solving continuous
problems such as k-means. In this article, authors propose modifications to versions of
this algorithm on both networks and continuous space improving its performance. The
Probability Changing Method was used for initial seeding of the centers in case of the
p-median problem on networks. Results are illustrated by numerical examples and prac-
tical experience of cluster analysis of semiconductor device production lots.
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1. Introduction

The general aim of the optimal location problem is determining the location
optimal of one or more new facilities in a continuous space or a discrete set when
the number of possible locations is finite (discrete location problem) or infinite
(continuous problem). The aim of a p-median problem on a network [16], which is
one of the basic problems of discrete location theory, is finding p nodes in a network
such that the sum of distances from other nodes to the closest of the selected p nodes
is minimal. Search for medians is performed across the finite set of the nodes. In
general, this problem is NP-hard [27]. Polynomial time algorithm is developed
for trees only [18]. In view of the high computational complexity of the problem,
many heuristic algorithms were developed to solve this.

Despite the complexity of the problem, various heuristic algorithms give good
results for most problems in reasonable time. One of the simplest but efficient
methods for the p-median problem is local search [32, 31]. Rabbani [30] proposes
an algorithm based on the new graph theory for small size problems. The p-
median problems on bipartite graphs are considered [14], results are achieved
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for comparatively small-size problems, too. Using Lagrangian relaxation allows
for an approximate solving of huge-scale problems [8, 7], up to 90000 vertices in a
network. However, ”good” solutions [7] were achieved by the analogous technique
for problems with n = 3795 which were also considered as large-scale problems.

Heuristic methods do not guarantee finding an exact solution. However, they
are statistically optimal. The percent of the problems which can be solved ”almost
optimal” grows with increase of the dimension of the problem [3, 4] (number of
nodes n and nodes to be selected p).

The idea of the genetic algorithms (GA) is based on a recombination of elements
of some set of candidate solutions called ”population”. The candidate solutions are
called ”specimen”. The first GA for solving the p-median problem was proposed by
Hosage and Godschild [15]. Algorithm [11] gives rather precise results, however, its
convergence is very slow. Alp, Erkut and Drezner [2] proposed a faster algorithm
with a special ”greedy” heuristic which is also precise. This algorithm for p-median
problems was later improved by use of the probability changing method [5, 19]
which was used for the initial seeding of p vertices (centers) of a network.

The aim of the continuous p-median problem [39] is to find p points (centers)
such that the sum of distances from n known points called demand points (or data
vectors in case of the k-means problem) to the nearest of p centers is minimal. The
continuous location problems with Euclidean, Manhattan and Chebyshev metrics
are well investigated, many algorithms based on Weiszfeld procedure and standard
procedure for Manhattan metric are well known. In special cases, most complex
continuous problems with restricted zones, barriers etc. can be converted into a
discrete problem and solved approximately [20, 21, 33].

If the distances in a continuous problem are measured with use of the squared
Euclidean metric, the p-median problem transforms into a k-means problem which
is the most popular model of the cluster analysis [35, 26].

Most popular procedures for solving the continuous p-median problem (in-
cluding k-means problem) are variations of the Alternating Location-Allocation
procedure (ALA) [12]. This is a local search procedure which starts from some
initial candidate solution. This initial solution is a set of p points, called centers or
centroids chosen among the demand points. Thus, choosing the initial solution is
a discrete location problem.

The idea of using the genetic algorithm with the greedy heuristic [2] was pro-
posed by Neema et al. [29]. In this case, the genetic algorithm is used for forming
the initial solutions of the ALA algorithm which is performed at each step of the
genetic algorithm.

In this paper, we propose new modification to such algorithms which increases
its efficiency. Any ALA algorithm can be used with our new method. Results of
running this modification for the continuous p-median problems was presented
in [23]. Results are illustrated by numerical examples on standard testbeds and a
practical example.
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2. Known methods

Let G = (V,E) be an undirected adjacent graph (a network), V = {v1, ..., vn} be a
set of its vertices, E = {ei|i = 1,m} be a set of its edges, ei = (vj, vk), j ∈ {1, n}, k ∈ {1, n},
i ∈ {1,m} without loops (ei � (vj, vj) ∀i = 1,m, j = 1, n). For each edge ei, its length
li is defined, li ≥ 0∀i = 1,m. For an edge ei = (vj, vk), let us denote l j,k = li. Weight
wj ≥ 0 is defined for each vertex v j. For each pair of the vertices (vj, vk), a distance
function L( j, k) is defined as the length of the shordest path from vi to vj.

L( j, k) = min
P∈Pj,k

∑
q∈P

lq(2.1)

Here, Pj,k is a set of all possible paths between vj and vk. We can formulate the
the p-median problem as

arg min
m1,...,mp∈{1,n}

f (m1, ...,mp) = arg min
m1,...mp∈1,n

n∑
i=1

wi min
i=1,p

L(mj, i).(2.2)

Let
Ci = {k|∃ej = (ci, vk), j ∈ {1,m}, k ∈ {1, n}}

be a set of the indexes of the vertices adjacent to the ith vertex.
For calculating the value of the objective function f (m1, ...,mp), we can use the

algorithm described in [5] or another algorithm.
For comparison, we used the local search (LS) [31] with random order of vertices

evaluation (Algorithm 2.1) as one of the simplest and efficient algorithms [5].

Algorithm 2.1. Local search (LS)

Require: array of indexesM = {m1, ...,mp} of the vertices (initial solution), value of
the objective function f ∗ = f (m1, ...,mp).

1: shuffle elements ofM; r = 0;
2: for each element m of the arrayM do
2.1: for each vertex m∗ which is adjacent to m do
2.1.1: f ∗∗ = f (m1, ...,m∗, ...,mp) (here, the vertex m is replaced by m∗);
2.1.2: if f ∗∗ < f ∗ then replace m by m∗ inM; f ∗ = f ∗∗; r = 1;
2.1.3: next 2.1;
2.2: next 2;
3: if r = 1 then goto 1;
4: return new solution (m1, ...,mp).

The GA with greedy heuristic proposed in [2] includes a special crossover
procedure (Algorithm 2.2). The ”chromosomes” of this algorithm are sets of the
vertices (feasible solutions of the problem).
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Algorithm 2.2. Crossover procedure for the GA with greedy heuristic on networks

Require: sets of vertex indexesM1 = {m1,1, ...,m1,p},M2 = {m2,1, ...,m2,p}.
1: M =M1 ∪M2;
2: while |M| > p do
2.1: f ∗ = +∞;
2.2: for each vertex m∗ inM do
2.2.1: M∗ =M\ {m∗};
2.2.2: f ∗ ∗ = f (M∗);
2.2.2: if f ∗∗ < f ∗ then m∗∗ = m∗;
2.1.3: next 2.2;
2.3: SetM =M\ {m∗∗};
2.3: next 2;
3: return new solution (”chromosome”)M.

This method uses an original procedure of the initial population generation [2].
It does not use any mutation procedure.

In general, the continuous p-median problem can be formulated as

arg min
X1,...,Xp∈Rd

n∑
i=1

wi min
j∈{1,p}

L(Xj,Ai)(2.3)

where {A1, ...,An} is a set of the demand points (data vectors) in a d-dimensional
space, w1, ...,wn are their weight coefficients (equal to 1 in case of the k-means prob-
lem), X1, ...,Xp are the points (centers) to be found and L(·) is some distance function
(metric). In case of the squared Euclidean metric, L(Xj,Ai) =

∑d
k=1(xj,k − ai,k)2, we

have the k-means problem. Here, Xj = (xj,1, ..., xj,d)∀ j = 1, p, Ai = (ai,1, ..., ai,d)∀i =
1, n.

One of the simplest ALA procedures known as the standard k-means procedure
can be described as follows.

Algorithm 2.3. ALA procedure.

Require: initial centers X1, ...,Xp ∈ {A1, ...,An}.
1: For each demand point Ai ∈ A1, ...,An, find the nearest center Ci = arg min j=1,p L(Ai,Xj).

Form p sets (clusters) of the demand points closest to each of p centers: Cclust
j = {i ∈

{1, n|Ci = j};
2: For each cluster Cclust

j , j = 1, p, calculate its center Xj;

3: If Step 2 has changed at least one center then go to Step 1;
4: Otherwise, STOP.
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In case of the squared Euclidean metric, searching for the new cluster center
Xj = (xj,1, ..., xj,d) at Step 1 is a very simple problem:

xj,k =
∑

i∈Cclust
j

ai,k/|Cclust
j |∀k = 1, d.

In case of Euclidean metric, the new cluster center is a solution of the Weber problem
[37], its approximate value can be found by the Weiszfeld procedure [38, 13]. To
reduce the computational complexity, at Step 2, algorithm does not recalculate the
centers of the clusters which have not been changed at Step 1.

Very efficient local search algorithms are further development of this stan-
dard procedure [1] in combination with other techniques such as sampling [35].
However, their result always depends on the initial solution. Known procedure
k-means++ [6] improves the results in comparison with the chaotic chose of the ini-
tial solution and guarantees an approximation ratio O(lo�(p)) in expectation (over
the randomness of the algorithm), where p is the number of clusters used[17].

The probability changing method initially proposed for unconstrained pseudo-
Boolean optimization is a random search method. Its modifications for constrained
problems proposed in [13] can solve problems with dimensions up to millions of
Boolean variables.

The p-median problem can be solved using many methods [28, 35, 13] including
the probability changing method [5]. We perform several steps of the probability
changing method [5] and pass the results (its last population) to the GA with greedy
heuristic as its initial population.

3. Original GA with greedy heuristic for continuous problems

To improve the accuracy of local search, many techniques of recombination of
the initial sets of centers can be used. The GA with greedy heuristic was proposed
for solving the p-median problems on networks [2]. Based on ideas of Algorithm 2.2
[2], Neema et al. [29] proposed its realization for the continuous p-median problem.

Algorithm 3.1. Genetic algorithm for the continuous p-median problem [29, 23].

Require: size of the population N, n data vectors.

1: Form N initial candidate solutions χ1, ..., χN ⊂ {1, n}. Here, each candidate
solution is a set of indexes of data vectors, |χ j| = p ∀ j = 1,N. Such initial solutions
can be selected randomly or with use of the k-means++ procedure.

2: For each initial candidate solution, estimate the fitness function value Ff itness(χ j)
and store the values to variables f1, ..., fN. The ALA procedure with the initial so-
lution {Aj| j ∈ χi} is performed to obtain the fitness function value Ff itness(χi) =∑n

k=1 wk min j∈{1,p} L(Xj,Ak). Here, X1, ...,Xp are the centers obtained by the ALA
procedure.
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3: If the stop conditions are reached then STOP. The result of the algorithm is
set χi∗ such that fi∗ = mini∈{1,N} fi. For finding the final solution, the ALA procedure
is performed again.

4: Select randomly two indexes k1, k2 ∈ {1, n}, k1 � k2.

5: Form an interim solution χc = χk1 ∪ χk2 .

6: If |χc| ≤ p then go to Step 9.
7: Calculate j∗ = arg min

j∈χc

F f itness(χc \ { j}).
Here, to obtain the values of the fitness function, the ALA procedure is per-

formed |χc| times.

8: Exclude j∗ from χc: χc = χc \ { j∗}. Go to Step 6.

9: If ∃i ∈ {1,N} : χi = χc then go to Step 3.

10: Choose an index k3 ∈ {1,N}. In paper [29], the method of choosing this
index is not determined. The original method [2] for the p-median problem on
networks chooses the index of the solution which has the worst (maximum) value
of the fitness function. However, the authors [2] do not consider this method as
the only possible way of selecting. We used the simplest tournament selection: the
algorithm chooses randomly two indexes k4, k5 ∈ {1,N}; if fk4 > fk5 then k3 = k4;
otherwise, k3 = k5. This method slightly improves the results in comparison with
[2].

11: Replace χk3 and fk3 : χk3 = χc; fk3 = Ff itness(χc).

12: Go to Step 3.

4. Modified algorithms

Step 5 of Algorithm 3.1 produces an interim solution χc. In general, this solution
is not feasible: its cardinality is up to 2p. At Steps 7–8, Algorithm excludes one
member from χc until |χc| = p. These steps demand many starts of the ALA
procedure which is performed |χc| times in each iteration. Thus, the ALA procedure
starts up to 2p + 2p − 1 + 2p − 2 + ... + p + 1 times. In addition, the computational
complexity of the ALA procedure depends on the number of centers |χc|.

Various stop conditions (Step 3) can be used [2, 29, 5]. Algorithm can be stopped
after a number of steps without result improvement or if the time limit is reached.

Other idea of global search in case of the p-median problem include improving
the local search results by replacing some part of centers with randomly selected
demand points [29]. We propose a combination of both ideas. In our modification of
Algorithm 3.1, we add a random number r of the demand points of some candidate
solution to another candidate solution. The distribution of r allows adding 1...p
solutions and tends to adding small number of solutions. Then, |χc| − p demand
points are eliminated.

Thus, Step 5 of Algorithm 3.1 is as follows.
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5.1: Generate a random value rinit ∈ [0; 1) with the uniform distribution (stan-
dard Random function).

5.2: Set r = 1 + [(p − 1) · r2
init].

5.3: From set χk2 , select randomly a subset χ∗k2
with cardinality r.

5.3: From an interim solution χc = χk1 ∪ χ∗k2
, select randomly a subset.

Here, the cardinality r ∈ {1, p} of set χ∗k2
can be chosen randomly with the

uniform distribution. However, the equation in Step 5.2 gives better results.
χb and χw are the best and the worst samples of the sets of vertex indexes χ

generated by
Several modifications to Algorithm 3.1 were proposed in [22]. The modifications

proposed here can be used with modifications proposed in [22] or separately.
For problems on networks, we propose the following modification of Step 1 of

Algorithm 2.2.
1.1: Generate a random value rinit ∈ [0; 1) with uniform distribution;
1.2: Set r = 1 + [(p − 1) · rinit];
1.3: From setM2, select randomly a subsetM∗

2 with cardinality r;
1.4: Form an interim joint solutionM =M1 ∪M∗

2.
Results of proposed modifications of GAs with greedy heuristics on both net-

works and continuous spaces are explained below.

5. Numerical experiments

For testing purposes, we used data sets from the UCI library [40] and au-
tomatically generated data sets which are sets of pairs of uniformly distributed
coordinates in a square 10x10.

The maximum number of data vectors in the k-means problems was 169309
(n = 169309, ”Europe” data set from the UCI library), the maximum dimension
was d = 32. In addition, we solved several p-median problems with Euclidean
metric.

An important parameter of Algorithm 3.1 is the size of the population N. Neema
et al. [29] do not propose any method of determining this value. In the original
method for the p-median problems on networks [2], the size of the genetic algo-
rithm population depends on the number of network nodes n and p. However,
unlike the p-median problem on a network, in case of the the continuous problem,
computational experiments did not reveal any correlation of the problem size and
the population size N providing the fastest convergence. The optimal values of N
are larger for the large-scale problems than the optimal values for the small prob-
lems. However, the values of N providing the fastest convergence and the most
accurate results belong to the set {10, 27} for all tested problems (n ∈ {150, 169309},
p ∈ {3, 100}) for both, original Algorithm 3.1 and our modification. The smaller sizes
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of the population reduce the accuracy, the larger values increase the time needed
for obtaining the most accurate results. In all experiments below, we used popu-
lations of N = 20 candidate solutions. The results of computational experiments
with various population sizes on the 2-dimensional generated data set, n = 10000,
p = 100 are shown in Fig. 5.1. The average results for 20 runs are shown.

Computational experiments were performed on a system with CPU Xeon 5650
2.76 GHz, 12 Gb RAM, HyperThreading disabled. The GNU Fortran compiler was
used.

The computational experiments were organized as follows. The original Algo-
rithm 3.1 ran 20 times with time limit as the stop condition. We fixed the average
fitness function value reached by the algorithm. Then, the original and modified
algorithms ran more 20 times until reaching the fixed fitness function value as the
new stop condition. In addition, we ran the algorithm which performed multiple
starts of the k-means++ procedure.

For all problems with n > 1000 and p > 5, our modification of Algorithm 3.1
was faster than the original version of this algorithm [2, 29] with equal or higher
accuracy. In Fig.5.4 and 5.2, we show the average results achieved by our algorithm
and original algorithm fixed after each iteration.

Fig. 5.1: Comparison of the results for modified GA with greedy heuristic for the
planar p-median problem using various population sizes

The results of the modified GA with greedy heuristic on networks are shown
in Table 5.1 and Fig. 5.3. The speed-up of our modification for networks is not as
valuable as the speed-up of our modification for continuous problem.

For testing purposes, we used the local search method (Algorithm 2.1) with
multistart from randomly generated initial solution as one of the simplest methods
and the genetic algorithm (GA) [2] with the crossover procedure given by Algo-
rithm 2.2 (greedy heuristic). As a testbed, we used the p-median problems from
the OR Library [9]. This library contains problems with numbers of vertices up to
n = 900. We used special algorithm [5] for generating larger problems.
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Europe data set

Fig. 5.2: Comparison of the results of the original and modified genetic algorithm
with greedy heuristic for the planar p-median problem. 1 – original genetic algo-
rithm with greedy heuristic, 2 – modified algorithm

Fig. 5.3 shows the average values for 10 runs and the worst result. To calculate
the quantity of exemplars of the generated solutions in each population N, we used
formula

N = �
√

nC

(
n
p

)

100�n/p �n/p.(5.1)
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Table 5.1: Comparison of results for problems on networks
Problem Method avg.time, Avg.result

sec.
Generated LS multistart 27.5 129440.66
(n=2000, p=100) Original GA 73.76 120031.2

Original GA + LS 4.4 119885.61
Modified GA 53.52 120258.03

Modified GA + LS 3.4 119865.35
pmed11 LS multistart 0.1 7578
(n=300, p=5) Original GA 0.7 7578,89

Original GA + local search 0.05 7578
Modified GA 0.42 7602.11

Modified GA + LS 0.19 7578
pmed13 LS multistart 1.15 4311
(n=300, p=30) Original GA 13.25 4331

Original GA + LS 0,28 4314.25
Modified GA 0.52 4386.13

Modified GA + LS 0.24 4311
pmed17 LS multistart 2.41 6980
(n=400, p=10) Original GA 6.22 6982

Original GA + LS 0.95 6980
Modified GA 1 7044.6

Modified GA + LS 1.08 6981.2
pmed22 LS multistart 7.09 8464
(n=500, p=10) Original GA 15.48 8464

Original GA + LS 1.89 8464
Modified GA 2.69 8500.71

Modified GA + LS 0.98 8464
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A) Randomly generated data set

B) MissAmerica1 data set

C) Iris data set

Fig. 5.3: Comparison of the results of the original and modified genetic algorithm
with greedy heuristic for the k-means problems. 1 – original genetic algorithm
with greedy heuristic, 2 – modified algorithm, 3 – k-means++multistart
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6. Practical example. Classification of the semiconductor devices

For any class of electronic production, using semiconductor devices with equal
operational performance within one unit is preferred. The ideal situation is using
semiconductor devices produced as a single production batch. At the same time,
semiconductor device suppliers do not always guarantee the uniformity of the
lot [24, 36]. In this case, complex testing of the supplied lots is the only way of
improving quality and uniformity of the lots of the electronic elements. Cluster
analysis of the tests results allows to estimate the uniformity.

Results of the ALA procedure depend on initial centers seeding. Thus, repro-
ducibility of the results of an algorithm based on the ALA procedure is a serious
problem. Information Bottleneck method of cluster analysis provides perfect re-
producible results. However, such algorithms are very slow. GA with greedy
heuristic are compromise methods providing precise results in reasonable time.

Various number of tests are performed depending on the class of the semicon-
ductor device and the unit. In our example, 55 various values with various scale
were measured for the electronic chip STK403-090. Proposed k-means algorithm
was performed for classifying lots of this device on production batches produced
under various conditions. Moreover, algorithm was performed for evaluation of
the production bathes within one supplied lot of 700 devices.

MDS (Multi-Dimensional Scaling) [34, 10] and open-source visualization means
ELKI [25] and GNUPLOT were used for visualizing of test data and their clusters.

We performed test data clustering for 10 lots of various devices (diods, stabil-
itrons, stabistors, transistors, chips) containing 1..7 production batches with under
different production conditions. Each lot contains 60..1250 devices. Proposed al-
gorithm was run for each lot 10 times with various value of k ∈ {1, 10} (estimated
number of clusters representing production batches). Results of splitting of a lot
of the chip STK403-090 into various number of clusters k ∈ {2, 3} are shown in
Fig. 6.1 (MDS results). Result of running of our algorithm is the correspondence of
the device identifiers in the lot and numbers of the clusters (estimated production
batches). In addition, the result is the sum of distances from test data vectors and
cluster centers in a normed space. Dependence of this total distance on cluster
number k (estimated production batches) is shown in Fig. 6.2.

In our tested lot, actual production batches are known. There are 3 actual pro-
duction batches. Standard k-means procedure returns the correspondence with
6-10 errors (incorrect correspondence of cluster analysis results and actual produc-
tion batches) after 10 algorithm runs (average value is 7.4 errors). Our algorithm
reduces number of errors to 1-7 (average is 4.3).
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7. Conclusion

The proposed modification to the genetic algorithm with greedy heuristic acceler-
ates the convergence of the algorithm significantly. In our experiments, we were
unable to find any continuous test problems which cannot be solved faster with our
new algorithm when compare with the original algorithm with greedy heuristic.

The applicability of the proposed modification to the genetic algorithm with
greedy heuristic for the p-median problems on graphs is subject to the further
research.

The proposed modification to the GA with greedy heuristic for p-median prob-
lems on networks are less efficient. However, it improves the performance in most
cases.
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