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Abstract. The object of the present paper is to obtain sufficient conditions for a K-
contact manifold to be a Sasakian manifold.
Keywords: Sasakian manifold; K-contact manifold; W2 curvature tensor.

1. Introduction

The inclination of existent mathematics is abstractions, generalizations and ap-
plications. In the offering exposition, we are entering an era of new concepts and
some generalizations which play a functional role in contemporary mathematics.
Contact geometry has been matured from the mathematical formalism of classical
mechanics. A complete regular contact metric manifold M2n+1 carries a K-contact
structure (φ, ξ, η, g), defined in terms of the almost Kähler structure (J,G) of the
base manifold M2n. Here the K-contact structure (φ, ξ, η, g) is Sasakian if and only
if the base manifold (M2n, J,G) is Kählerian. If (M2n, J,G) is only almost Kähler,
then (φ, ξ, η, g) is only K-contact [3]. It is to be noted that a K-contact manifold
is intermediate between a contact metric manifold and a Sasakian manifold. K-
contact and Sasakian manifolds have been studied by several authors such as ([2],
[7], [8], [10],[18], [20], ) and many others. It is well known that every Sasakian
manifold is K-contact, but the converse is not true, in general. However, a three-
dimensional K-contact manifold is Sasakian [9].

On the other hand, Pokhariyal and Mishra [14] have introduced new tensor fields,
called W2 and E-tensor fields, in a Riemannian manifold, and studied their rela-
tivistic properties. Then, Pokhariyal [13] and De [6] have studied some properties of
this tensor fields in a Sasakian manifold and Trans-Sasakian manifold respectively.

The curvature tensor W2 is defined by

W2(X,Y, U, V ) = R(X,Y, U, V )
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+
1

n− 1
[g(X,U)S(Y, V )− g(Y, U)S(X,V )],(1.1)

where S is a Ricci tensor of type (0,2).

A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric
([16],[11]) if R(X,Y ).R = 0, where R is the Riemannian curvature tensor and
R(X,Y ) is considered as a derivation of the tensor algebra at each point of the
manifold for tangent vectorsX,Y . If a Riemannian manifold satisfiesR(X,Y ).W2 =
0, then the manifold is said to be W2 semi-symmetric manifold.

The object of the present paper is to enquire under what conditions a K contact
manifold will be a Sasakian manifold.

The present paper is organized as follows:

After a brief introduction in Section 2, we discuss about some preliminaries that
will be used in the later sections. Section 3 is devoted to the study ofK-contact man-
ifolds satisfying Z̃(X,Y ).W2 = 0 and prove that the manifold is Sasakian. In section
4, we consider K-contact manifolds satisfying R(ξ,X).W2 = 0 and W2(ξ,X).R = 0.

2. Priliminaries

An odd dimensional smooth manifold M2n+1 (n ≥ 1) is said to admit an almost
contact structure, sometimes called a (φ, ξ, η)-structure, if it admits a tensor field
φ of type (1, 1), a vector field ξ and a 1-form η satisfying ([3], [4])

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0.(2.1)

An almost contact structure is said to be normal if the induced almost complex
structure J on Mn × R defined by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
)(2.2)

is integrable, where X is tangent to M , t is the coordinate of R and f is a smooth
function on Mn × R. Let g be a compatible Riemannian metric with (φ, ξ, η),
structure, that is,

g(φX, φY ) = g(X,Y )− η(X)η(Y )(2.3)

or equivalently,
g(X,φY ) = −g(φX, Y )(2.4)

and

g(X, ξ) = η(X),

for all vector fields X , Y tangent to M . Then M becomes an almost contact metric
manifold equipped with an almost contact metric structure (φ, ξ, η, g).

An almost contact metric structure becomes a contact metric structure if

g(X,φY ) = dη(X,Y ),(2.5)



W2-curvature Tensor 997

for all X , Y tangent to M . The 1-form η is then a contact form and ξ is its
characteristic vector field.

If ξ is a Killing vector field, then M2n+1 is said to be a K-contact manifold ([3],
[15]). A contact metric manifold is Sasakian if and only if

R(X,Y )ξ = η(Y )X − η(X)Y.(2.6)

Besides the above relations in K-contact manifold the following relations hold ([1],
[3], [15]):

∇Xξ = −φX.(2.7)

R̃(ξ,X, Y, ξ) = η(R(ξ,X)Y ) = g(X,Y )− η(X)η(Y ).(2.8)

R(ξ,X)ξ = −X + η(X)ξ.(2.9)

S(X, ξ) = 2nη(X).(2.10)

(∇Xφ)Y = R(ξ,X)Y,(2.11)

for any vector fields X , Y .
Again a K-contact manifold is called Einstein if the Ricci tensor S is of the form
S = λg, where λ is a constant.

A transformation of a n-dimensional Riemannian manifold M , which transforms
every geodesic circle of M into a geodesic circle, is called a concircular transforma-
tion ([12], [21]). A concircular transformation is always a conformal transformation
[12]. Here geodesic circle means a curve in M whose first curvature is constant and
whose second curvature is identically zero. Thus, the geometry of concircular trans-
formations, i.e., the concircular geometry, is a generalization of inversive geometry
in the sense that the change of metric is more general than that induced by a circle
preserving diffeomorphism. An interesting invariant of a concircular transformation
is the concircular curvature tensor Z̃. It is defined by ([19], [22])

Z̃(X,Y )U = R(X,Y )U −
r

n(n− 1)
(g(Y, U)X − g(X,U)Y ).(2.12)

whereX,Y,W ∈ T (M). Riemannian manifolds with vanishing concircular curvature
tensor are of constant curvature. Thus the concircular curvature tensor is a measure
of the failure of a Riemannian manifold to be of constant curvature.

In a K-contact manifold, using (2.6) equation (2.12) reduce to

Z̃(ξ,X)Y = (1−
r

n(n− 1)
){g(X,Y )ξ − η(Y )X}.(2.13)

A K-contact manifold is said to be W2 flat if W2 curvature vanishes at each point
of the manifold. From the definition of the W2 curvature tensor, it can be easily
proved that a W2 flat manifold implies the manifold is an Einstein manifold. It is
known that [5] a compact K-contact Einstein manifold is Sasakian. Thus we have
the following:

Proposition 2.1. A W2 flat compact K-contact manifold is Sasakian.
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3. K-contact manifolds satisfying Z̃(X,Y ).W2 = 0

In this section we consider a K-contact manifolds satisfying the curvature condition

Z̃(X,Y ).W2 = 0.(3.1)

This equation implies

Z̃(X,Y )W2(Z,U)V −W2(Z̃(X,Y )Z,U)V

−W2(Z, Z̃(X,Y )U)V −W2(Z,U)Z̃(X,Y )V = 0.(3.2)

Putting X = ξ in (3.2) we obtain

Z̃(ξ, Y )W2(Z,U)V −W2(Z̃(ξ, Y )Z,U)V

−W2(Z, Z̃(ξ, Y )U)V −W2(Z,U)Z̃(ξ, Y )V = 0.(3.3)

Using (2.13) in (3.3), we obtain

(1−
r

n(n− 1)
){g(Y,W2(Z,U)V )ξ − g(W2(Z,U)V, ξ)Y

−g(Y, Z)W2(ξ, U)V + η(Z)W2(Y, U)V − g(Y, U)W2(Z, ξ)V

η(U)W2(Z,U)V − g(Y, V )W2(Z,U)ξ + η(V )W2(Z,U)Y } = 0.(3.4)

Taking the inner product with ξ and using (2.13) in (3.4), we have

(1−
r

n(n− 1)
)g(Y,W2(Z,U)V ) = 0.(3.5)

Again from (2.13) we have (1− r

n(n−1) ) 6= 0. Hence we have

W2(Z,U, V, Y ) = 0.(3.6)

From the Proposition 2.1 we have

Theorem 3.1. A K-contact manifold satisfying the curvature condition

Z̃(X,Y ).W2 = 0,

is Sasakian.

4. K-contact manifolds satisfying R(ξ,X).W2 = 0 and W2(ξ,X).R = 0

In this section we first proof a proposition

Proposition 4.1. In an n-dimensional K-contact manifold, η(W2(X,Y )Z) = 0.
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Proof. From equation (1.1), we have

W2(X,Y )Z = R(X,Y )Z +
1

(n− 1)
[g(X,Z)QY − g(Y, Z)QX ].(4.1)

Taking the inner product of above equation with ξ and using equations (2.8) and
(2.10), we get

η(W2(X,Y )Z) = 0.(4.2)

Theorem 4.1. In an n-dimensional K-contact manifold , R(ξ,X)W2 = 0 if and

only if W2 = 0.

Proof. Let in an n-dimensional K-contact manifold the curvature condition

R(ξ,X).W2 = 0(4.3)

holds. This equation implies

R(ξ,X)W2(Y, Z)U −W2(R(ξ,X)Y, Z)U

−W2(Y,R(ξ,X)Z)U −W2(Y, Z)R(ξ,X)U = 0.(4.4)

Using equation (2.8) and taking the inner product of above equation with ξ, we
get

W2(Y, Z, U,X)− η(W2(Y, Z)U)η(X)− g(X,Y )η(W2(ξ, Z)U)

+η(Y )η(W2(X,Z)U) + η(Z)η(W2(Y,X)U)− g(X,Z)η(W2(Y, ξ)U)

+η(U)η(W2(Y, Z)X)− g(X,U)η(W2(Y, Z)ξ) = 0,(4.5)

which on using equation (4.2) gives

W2(Y, Z, U,X) = 0,

that is W2 = 0.

Conversely, suppose W2 = 0, then from equation (4.4), we have R(ξ,X)W2 = 0.

This completes the proof.

Theorem 4.2. An n-dimensional K-contact manifold satisfying W2(ξ,X).R = 0,
is an Einstein manifold.

Proof. Let the curvature condition W2(ξ,X).R = 0 holds, then we have

W2(ξ,X)R(Y, Z)U −R(W2(ξ,X)Y, Z)U −R(Y,W2(ξ,X)Z)U

−R(Y, Z)W2(ξ,X)U = 0.(4.6)

Now putting X = ξ in equation (4.1) and using equations (2.8) and (2.10), we
obtain

W2(ξ, Y )Z = η(Z)[
QY

n− 1
− Y ].(4.7)
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Now from equations (4.6) and (4.7), we have

η(R(Y, Z)U)[
QX

n− 1
−X ]− η(Y )[

1

n− 1
R(QX,Z)U −R(X,Z)U ]

−η(Z)[
1

n− 1
R(Y,QX)U −R(Y,X, )U ]−

η(U)[
1

n− 1
R(Y, Z)QX −R(Y, Z)X ] = 0,(4.8)

which on taking the inner product with ξ and using equations (2.10) gives

η(Y )η(X)g(Z,U)− η(Z)η(X)g(Y, U) + η(Y )η(U)g(X,Z)

−η(U)η(Z)g(X,Y )−
1

n− 1
[S(X,Y )g(Z,U)− S(X,Z)g(Y, U) +

η(U)η(Y )S(Z,X)− η(U)η(Z)S(X,Y )] = 0.(4.9)

Putting U = Z = ξ in above equation , we get

S(X,Y ) = (n− 1)g(X,Y ),(4.10)

which shows that the manifold is an Einstein Manifold.

It is known that [5] a compact K-contact Einstein manifold is Sasakian. Thus we
get the following:

Corollary 4.1. A compact K-contact manifold satisfying the curvature condition

W2(ξ,X).R = 0, is Sasakian.
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