ON THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS ADMITTING SCHOUTEN-VAN KAMPEN CONNECTION

Ashis Mondal
Department of Mathematics, Jangipur College, Jangipur-742213, Murshidabad, West Bengal, India

Abstract

In the present paper, we study three-dimensional trans-Sasakian manifolds admitting the Schouten-van Kampen connection. Also, we have proved some results on ϕ-projectively flat, ξ-projectively flat and ξ-concircularly flat three-dimensional transSasakian manifolds with respect to the Schouten-van Kampen connection. Locally ϕ-symmetric trans-Sasakian manifolds of dimension three have been studied with respect to Schouten-van Kampen connection. Finally, we construct an example of a three-dimensional trans-Sasakian manifold admitting Schouten-van Kampen connection which verifies Theorem 4.1. and Theorem 5.2. Key words: General geometric structures on manifolds, Schouten-van Kampen connection, Special Riemannian manifolds

1. Introduction

The Schouten-van Kampen connection is one of the most natural connections adapted to a pair of complementary distributions on a differentiable manifold endowed with an affine connection. Solov'ev investigated hyperdistributions in Riemannian manifolds using the Schouten-van Kampen connection ([18], [19], [20], [21]). In 2014, Olszak studied the Schouten-van Kampen connection to adapt it to an almost contact metric structure [17]. He characterized some classes of almost contact metric manifolds with the Schouten-van Kampen connection. Recently, G. Ghosh [10], Yildiz [26], Nagaraja [15] and D. L. Kiran Kumar [12] have studied the

[^0]Schouten-van Kampen connection in Sasakian manifolds, f-Kenmotsu manifolds and Kenmotsu manifolds respectively.

A transformation of an n-dimensional differentiable manifold M, which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation [27], [13]. A concircular transformation is always a conformal transformation [13]. Here geodesic circle means a curve in M whose first curvature is constant and whose second curvature is identically zero. Thus the geometry of concircular transformations, i.e., the concircular geometry, is a generalization of inversive geometry in the sense that the change of metric is more general than that induced by a circle preserving diffeomorphism. An interesting invariant of a concircular transformation is the concircular curvature tensor \mathbb{W} with respect to Levi-Civita connection. It is defined by [27], [28]

$$
\begin{equation*}
\mathbb{W}(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y], \tag{1.1}
\end{equation*}
$$

where $X, Y, Z \in \chi(M), R$ and r are the curvature tensor and the scalar curvature with respect to the Levi-Civita connection.
The concircular curvature tensor $\widetilde{\mathbb{W}}$ with respect to the Schouten-van Kampen connection is defined by

$$
\begin{equation*}
\tilde{\mathbb{W}}(X, Y) Z=\tilde{R}(X, Y) Z-\frac{\tilde{r}}{n(n-1)}[g(Y, Z) X-g(X, Z) Y], \tag{1.2}
\end{equation*}
$$

where \tilde{R} and \tilde{r} are the curvature tensor and the scalar curvature with respect to the Schouten-van Kampen connection. Riemannian manifolds with vanishing concircular curvature tensor are of constant curvature. Thus the concircular curvature tensor is a measure of the failure of a Riemannian manifold to be of constant curvature.

In 1985, a new class of n-dimensional almost contact manifold namely transSasakian manifold was introduced by J. A. Oubina [16] and further study about the local structures of trans-Sasakian manifolds was carried by J. C. Marrero [14]. Trans-Sasakian manifolds of type $(0,0),(\alpha, 0)$ and $(0, \beta)$ are, called the cosymplectic, α-Sasakian and β-Kenmotsu respectively ([2], [11]). In particular, if $\alpha=$ $0, \beta=1 ; \alpha=1, \beta=0$; then a trans-Sasakian manifold becomes Kenmotsu and Sasakian manifolds respectively. Hence, trans-Sasakian structures give a large class of generalized Quasi-Sasakian structures. It has been proven that a trans-Sasakian manifold of dimension $n \geq 5$ is either cosymplectic or α-Sasakian and β-Kenmotsu manifold. Three-dimnesional trans-Sasakian manifolds with different restrictions on curvature and smooth functions α, β are studied in ([7], [8], [5], [6]).

In the present paper, we have studied three-dimensional trans-Sasakian manifolds with respect to the Schouten-van Kampen connection.

The present paper is organized as follows: After the introduction in Section 1, we give some required preliminaries in Section 2. Section 3 is devoted to the study of the curvature tensor, the Ricci tensor, scalar curvature of a three-dimensional transSasakian manifold with respect to the Schouten-van Kampen connection. Section 4
is devoted to the study of ξ-projectively and ϕ-projectively flat trans-Sasakian manifolds of dimension three with respect to the Schouten-van Kampen connection. In this section, we have proved that a three-dimensional trans-Sasakian manifold admitting the Schouten-van Kampen connection is ξ-projectively flat if and only if the scalar curvature of the manifold vanishes. In Section 5, we study ξ-concircularly flat trans-Sasakian manifold of dimension three admitting Schouten-van Kampen connection. In the next section, we study locally ϕ-symmetric trans-Sasakian manifolds of dimensional three with respect to Schouten-van Kampen connection. In Section 7, we study Weyl ξ-conformally flat in three-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection. In the last section, we construct an example of a three-dimensional trans-Sasakian manifold admitting the Schouten-van Kampen connection to support the results obtained in Section 4 and Section 5.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is an $(1,1)$ tensor field, ξ is a vector field, η is an 1 -form and g is compatible Riemannian metric such that

$$
\begin{gather*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta \phi=0, \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}\\
g(X, \phi Y)=-g(\phi X, Y), \quad g(X, \xi)=\eta(X) \tag{2.3}
\end{gather*}
$$

for all $X, Y \in T(M)[1]$. The fundamental 2-form Φ of the manifold is defined by

$$
\begin{equation*}
\Phi(X, Y)=g(X, \phi Y) \tag{2.4}
\end{equation*}
$$

for $X, Y \in T(M)$.
An almost contact metric manifold is normal if $[\phi, \phi](X, Y)+2 d \eta(X, Y) \xi=0$.
An almost contact metric structure (ϕ, ξ, η, g) on a manifold M is called transSasakian structure [16] if $(M \times R, J, G)$ belongs to the class W_{4} [9], where J is the almost complex structure on $M \times R$ defined by

$$
J(X, f d / d t)=(\phi X-f \xi, \eta(X) d / d t)
$$

for all vector fields X on M, a smooth function f on $M \times R$ and the product metric G on $M \times R$. This may be expressed by the condition [3]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.5}
\end{equation*}
$$

for smooth functions α and β on M. Here ∇ is Levi-Civita connection on M. We say M as the trans-Sasakian manifold of type (α, β). From (2.5) it follows that

$$
\begin{equation*}
\nabla_{X} \xi=-\alpha \phi X+\beta(X-\eta(X) \xi) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) \tag{2.7}
\end{equation*}
$$

In a three-dimensional trans-Sasakian manifold following relations hold [7], [8]:

$$
\begin{equation*}
2 \alpha \beta+\xi \alpha=0 \tag{2.8}
\end{equation*}
$$

$$
S(X, Y)=\left\{\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right\} g(X, Y)
$$

$$
\begin{equation*}
-\left\{\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right\} \eta(X) \eta(Y)-\{Y \beta+(\phi X) \alpha\} \eta(Y) \tag{2.9}
\end{equation*}
$$

$$
\begin{aligned}
R(X, Y) Z= & \left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y) \\
& -g(Y, Z)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi\right. \\
& -\eta(X)(\phi \operatorname{grad} \alpha-\operatorname{grad} \beta)+(X \beta+(\phi X) \alpha) \xi] \\
& +g(X, Z)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \xi\right. \\
& -\eta(Y)(\phi \operatorname{grad} \alpha-\operatorname{grad} \beta)+(Y \beta+(\phi Y) \alpha) \xi] \\
& -[(Z \beta+(\phi Z) \alpha) \eta(Y)+(Y \beta+(\phi Y) \alpha) \eta(Z) \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta(Z)\right] X \\
& +[(Z \beta+(\phi Z) \alpha) \eta(X)+(X \beta+(\phi X) \alpha) \eta(Z) \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z)\right] Y
\end{aligned}
$$

where S is the Ricci tensor of type $(0,2)$, and r is the scalar curvature of the manifold M with respect to Levi-Civita connection.

From here after we consider α and β are constants, then the above relations become

$$
\begin{align*}
R(X, Y) Z= & \left\{\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right\}[g(Y, Z) X-g(X, Z) Y] \\
& +\left\{\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right\}[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] \xi \\
& +\left\{\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right\}[\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X] \tag{2.11}
\end{align*}
$$

$$
S(X, Y)=\left\{\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right\} g(X, Y)
$$

$$
-\left\{\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right\} \eta(X) \eta(Y)
$$

$$
\begin{equation*}
S(X, \xi)=2\left(\alpha^{2}-\beta^{2}\right) \eta(X) \tag{2.13}
\end{equation*}
$$

$$
\begin{gather*}
Q X=\left\{\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right\} X-\left\{\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right\} \eta(X) \xi, \tag{2.14}\\
R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y), \tag{2.15}\\
R(\xi, X) Y=2\left(\alpha^{2}-\beta^{2}\right)(g(X, Y) \xi-\eta(Y) X) \tag{2.16}
\end{gather*}
$$

From (2.8) it follows that if α and β are constants, then the manifold is either α-Sasakian or β-Kenmotsu or cosymplectic.

3. Curvature tensor of a three-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection

For an almost contact metric manifold M, the Schouten-van Kampen connection $\tilde{\nabla}$ is given by [17]

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y-\eta(Y) \nabla_{X} \xi+\left(\nabla_{X} \eta\right)(Y) \xi \tag{3.1}
\end{equation*}
$$

Let M be a three-dimensional trans-Sasakian manifold. Then from above equation we have
(3.2) $\left.\quad \tilde{\nabla}_{X} Y=\nabla_{X} Y+\alpha\{\eta(Y) \phi X)-g(\phi X, Y) \xi\right\}+\beta\{g(X, Y) \xi-\eta(Y) X\}$.

We define the curvature tensor \tilde{R} of a three-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection $\tilde{\nabla}$ by

$$
\begin{equation*}
\tilde{R}(X, Y) Z=\tilde{\nabla}_{X} \tilde{\nabla}_{Y} Z-\tilde{\nabla}_{Y} \tilde{\nabla}_{X} Z-\tilde{\nabla}_{[X, Y]} Z \tag{3.3}
\end{equation*}
$$

In view of (3.2) and (3.3) we obtain

$$
\begin{align*}
\tilde{R}(X, Y) Z= & R(X, Y) Z+\alpha^{2}\{g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \\
& +\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
& -g(Y, Z) \eta(X) \xi+g(X, Z) \eta(Y) \xi\} \\
& +\beta^{2}\{g(Y, Z) X-g(X, Z) Y\} \tag{3.4}
\end{align*}
$$

Taking inner product in both sides of (3.4) with W, we have

$$
\begin{aligned}
\tilde{R}(X, Y, Z, W)= & R(X, Y, Z, W)+\alpha^{2}\{g(\phi Y, Z) g(\phi X, W)-g(\phi X, Z) g(\phi Y, W) \\
& +g(Y, W) \eta(X) \eta(Z)-g(X, W) \eta(Y) \eta(Z) \\
& -g(Y, Z) \eta(X) \eta(W)+g(X, Z) \eta(Y) \eta(W)\} \\
& +\beta^{2}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\}
\end{aligned}
$$

where $\tilde{R}(X, Y, Z, W)=g(\tilde{R}(X, Y) Z, W)$.

Taking a frame field from (3.5), we get

$$
\begin{equation*}
\tilde{S}(Y, Z)=S(Y, Z)+2 \beta^{2} g(Y, Z)-2 \alpha^{2} \eta(Y) \eta(Z) . \tag{3.6}
\end{equation*}
$$

From above equation we have

$$
\begin{equation*}
\tilde{Q} Y=Q Y++2 \beta^{2} Y-2 \alpha^{2} \eta(Y) \xi \tag{3.7}
\end{equation*}
$$

Again putting $Y=Z=e_{i}(i=1,2,3)$ and taking summation over i in (3.6), we obtain

$$
\begin{equation*}
\tilde{r}=r-2 \alpha^{2}+6 \beta^{2}, \tag{3.8}
\end{equation*}
$$

where \tilde{r} and r are the scalar curvatures of the Schouten-van Kampen connection $(\tilde{\nabla})$ and Levi-Civita connection (∇) respectively.

Hence we have the following :
Proposition 3.1. A three-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection following statements are equivalent
(a) The curvature tensor \tilde{R} is given by (3.4),
(b) The Ricci tensor \tilde{S} is given by (3.6),
(c) $\tilde{r}=r-2 \alpha^{2}+6 \beta^{2}$,
(d) The Ricci tensor \tilde{S} is symmetric, provided α and β are constants.

4. ξ-Projectively and ϕ-projectively flat trans-Sasakian manifolds with respect to the Schouten-van Kampen connection

In this section, we study projectively flat three-dimensional trans-Sasakian manifold M with respect to the Schouten-van Kampen connection. In a three-dimensional trans-Sasakian manifold, the projective curvature tensor with respect to the Schou-ten-van Kampen connection is given by

$$
\begin{equation*}
\tilde{P}(X, Y) Z=\tilde{R}(X, Y) Z-\frac{1}{2}\{\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y\} \tag{4.1}
\end{equation*}
$$

Definition 4.1. A three-dimensional trans-Sasakian manifold M with respect to the Schouten-van Kampen connection is said to be ξ-projectively flat if

$$
\tilde{P}(X, Y) \xi=0
$$

for all vector fields X, Y on M. This notion was first defined by Tripathi and Dwivedi [22]. If $\tilde{P}(X, Y) \xi=0$, just holds for X, Y orthogonal to ξ, we call such a manifold a horizontal ξ-projectively flat manifold.

Using (3.4) in (4.1) we have

$$
\begin{align*}
\tilde{P}(X, Y) Z= & R(X, Y) Z+\alpha^{2}\{g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \\
& +\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
& -g(Y, Z) \eta(X) \xi+g(X, Z) \eta(Y) \xi\} \\
& +\beta^{2}\{g(Y, Z) X-g(X, Z) Y\} \\
& -\frac{1}{2}\{\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y\} \tag{4.2}
\end{align*}
$$

Putting $Z=\xi$ and using (2.1), (2.3), (2.15) and (3.6) in (4.2), we get

$$
\begin{equation*}
\tilde{P}(X, Y) \xi=0 \tag{4.3}
\end{equation*}
$$

Thus we can state the following:
Theorem 4.1. A three-dimensional trans-Sasakian manifold is ξ-projectively flat with respect to the Schouten-van Kampen connection provided α and β are constants.

Again putting (3.6) in (4.2) we get

$$
\begin{align*}
\tilde{P}(X, Y) Z= & P(X, Y) Z+\alpha^{2}\{g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \\
& -g(Y, Z) \eta(X) \xi+g(X, Z) \eta(Y) \xi\} \tag{4.4}
\end{align*}
$$

Putting $Z=\xi$ in (4.4) and using (2.1) and (2.3), it follows that

$$
\begin{equation*}
\tilde{P}(X, Y) \xi=P(X, Y) \xi \tag{4.5}
\end{equation*}
$$

In view of above discussion we state the following theorem:
Theorem 4.2. A three-dimensional trans-Sasakian manifold is ξ-projectively flat with respect to the Schouten-van Kampen connection if and only if the manifold is ξ-projectively flat with respect to the Levi-Civita connection provided α and β are constants.

Definition 4.2. A trans-Sasakian manifold M with respect to the Schouten-van Kampen connection is said to be ϕ-projectively flat if

$$
\phi^{2} \tilde{P}(\phi X, \phi Y) \phi Z=0
$$

It can be easily seen that $\phi^{2} \tilde{P}(\phi X, \phi Y) \phi Z=0$ holds if and only if

$$
\begin{equation*}
g(\tilde{P}(\phi X, \phi Y) \phi Z, \phi W)=0 \tag{4.6}
\end{equation*}
$$

for $X, Y, Z, W \in T(M)$.

Using (4.1) and (4.6), ϕ-projectively flat means

$$
\begin{align*}
g(\tilde{R}(\phi X, \phi Y) \phi Z, \phi W)= & \frac{1}{2}\{\tilde{S}(\phi Y, \phi Z) g(\phi X, \phi W) \\
& -\tilde{S}(\phi X, \phi Z) g(\phi Y, \phi W)\} \tag{4.7}
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \xi\right\}$ be a local orthonormal basis of the vector fields in M and using the fact that $\left\{\phi e_{1}, \phi e_{2}, \xi\right\}$ is also a local orthonormal basis, putting $X=W=e_{i}$ in (4.7) and summing up with respect to i, we have

$$
\begin{align*}
\sum_{i=1}^{2} g\left(\tilde{R}\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right) & =\frac{1}{2} \sum_{i=1}^{2}\left\{\tilde{S}(\phi Y, \phi Z) g\left(\phi e_{i}, \phi e_{i}\right)\right. \\
& \left.-\tilde{S}\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)\right\} \tag{4.8}
\end{align*}
$$

Using (2.1), (2.2), (2.3) and (3.5) it can be easily verified that

$$
\begin{align*}
\sum_{i=1}^{2} g\left(\tilde{R}\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right)= & \sum_{i=1}^{2} g\left(R\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right) \\
& +\left(\alpha^{2}+\beta^{2}\right) g(Y, Z)+\left(\beta^{2}-3 \alpha^{2}\right) \eta(Y) \eta(Z) \\
= & S(\phi Y, \phi Z)+\left(\alpha^{2}+\beta^{2}\right) g(Y, Z) \tag{4.9}\\
& +\left(\beta^{2}-3 \alpha^{2}\right) \eta(Y) \eta(Z) \tag{4.10}
\end{align*}
$$

$$
\begin{align*}
\sum_{i=1}^{2} g\left(\phi e_{i}, \phi e_{i}\right) & =2 \tag{4.11}\\
\sum_{i=1}^{2} \tilde{S}\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right) & =\tilde{S}(\phi Y, \phi Z) \tag{4.12}
\end{align*}
$$

Using (4.9), (4.10) and (4.11), the equation (4.8) becomes
(4.13) $\tilde{S}(\phi Y, \phi Z)=2\left\{S(\phi Y, \phi Z)+\left(\alpha^{2}+\beta^{2}\right) g(Y, Z)+\left(\beta^{2}-3 \alpha^{2}\right) \eta(Y) \eta(Z)\right\}$.

Using (3.6) in (4.12), we get

$$
\begin{equation*}
S(\phi Y, \phi Z)=-2 \alpha^{2} g(Y, Z)+2\left(3 \alpha^{2}-\beta^{2}\right) \eta(Y) \eta(Z) \tag{4.14}
\end{equation*}
$$

Putting $Y=\phi Y$ and $Z=\phi Z$ in (4.13) and using (2.1) (2.2) and (2.13), we obtain

$$
\begin{equation*}
S(Y, Z)=-2 \alpha^{2} g(Y, Z)+2\left(2 \alpha^{2}-\beta^{2}\right) \eta(Y) \eta(Z) . \tag{4.15}
\end{equation*}
$$

Conversely, let S be of the form (4.14), then obviously

$$
g(\tilde{P}(\phi X, \phi Y) \phi Z, \phi W)=0
$$

Thus we can state the following:
Theorem 4.3. A three-dimensional trans-Sasakian manifold admitting the Schouten-van Kampen connection is ϕ-projectively flat if and only if the manifold is an η-Einstein manifold with respect to the Levi-Civita connection provided α, β are constants with $\beta \neq \pm \sqrt{2} \alpha,(\alpha \neq 0)$.

5. ξ-Concircularly flat trans-Sasakian manifolds with respect to the Schouten-van Kampen connection

Definition 5.1. A trans-Sasakian manifold M with respect to the Schouten-van Kampen connection is said to be ξ-concircularly flat if

$$
\begin{equation*}
\tilde{\mathbb{W}}(X, Y) \xi=0 \tag{5.1}
\end{equation*}
$$

for all vector fields $X, Y \in \chi(M), \chi(M)$ is the set of all differentiable vector fields on M.

Theorem 5.1. A three-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection is horizontally ξ-concircularly flat if and only if the manifold with respect to the Levi-Civita connection is also ξ-concircular flat provided α, β are constants.

Proof. Combining (1.1),(1.2) and using (3.4), (3.6) (3.8), we get

$$
\begin{gather*}
\tilde{\mathbb{W}}(X, Y) Z=\mathbb{W}(X, Y) Z+\alpha^{2}\{g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \\
-g(Y, Z) \eta(X) \xi+g(X, Z) \eta(Y) \xi \\
-\eta(Y) \eta(Z) X+\eta(X) \eta(Z) Y\} \tag{5.2}
\end{gather*}
$$

Putting $Z=\xi$ in (5.2) we get

$$
\begin{equation*}
\tilde{\mathbb{W}}(X, Y) \xi=\mathbb{W}(X, Y) \xi+\frac{2 \alpha^{2}}{3}\{\eta(X) Y-\eta(Y) X\} \tag{5.3}
\end{equation*}
$$

From (5.3), implies that

$$
\begin{equation*}
\tilde{\mathbb{W}}(X, Y) \xi=\mathbb{W}(X, Y) \xi ; \quad \text { for all } X, Y \text { orthogonal to } \xi \tag{5.4}
\end{equation*}
$$

Hence the proof of theorem is complete.
Theorem 5.2. A three-dimensional trans-Sasakian manifold is ξ-concircularly flat with respect to the Schouten-van Kampen connection if and only if the scalar curvature \tilde{r} is zero, provided α and β are constants.

Proof. Putting $Z=\xi$ in (1.2) and using (2.1), (2.3), (2.3), (2.15) and (3.4), we have

$$
\begin{equation*}
\tilde{\mathbb{W}}(X, Y) \xi=-\frac{\tilde{r}}{6}\{\eta(Y) X-\eta(X) Y\} . \tag{5.5}
\end{equation*}
$$

Thus the theorem is proved.
6. Locally ϕ-symmetric trans-Sasakian manifolds with respect to the Schouten-van Kampen connection

Definition 6.1. A trans-Sasakian manifold M with respect to the Schouten-van Kampen connection is called to be locally ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z=0 \tag{6.1}
\end{equation*}
$$

for all vector fields X, Y, Z, W orthogonal to ξ on M. This notion was introduced by Takahashi [24], for Sasakian manifolds.

We know that

$$
\begin{align*}
\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z= & \tilde{\nabla}_{W}(\tilde{R}(X, Y) Z)-\tilde{R}\left(\tilde{\nabla}_{W} X, Y\right) Z \\
& -R\left(X, \tilde{\nabla}_{W} Y\right) Z-\tilde{R}(X, Y) \tilde{\nabla}_{W} Z \tag{6.2}
\end{align*}
$$

By virtue of (3.1), above equation is reduced to

$$
\begin{aligned}
\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z= & \left(\nabla_{W} \tilde{R}\right)(X, Y) Z+\eta(X) \tilde{R}\left(\nabla_{W} \xi, Y\right) Z+\left(\nabla_{W} \eta\right)(X) \tilde{R}(\xi, Y) Z \\
& +\eta(Y) \tilde{R}\left(X, \nabla_{W} \xi\right) Z+\left(\nabla_{W} \eta\right)(Y) \tilde{R}(X, \xi) Z \\
& +\eta(Z) \tilde{R}(X, Y) \nabla_{W} Z+\left(\nabla_{W} \eta\right)(Z) \tilde{R}(X, Y) \xi
\end{aligned}
$$

Now differentiating (3.4) with respect to W, using (2.1), (2.2), (2.3), (2.5) and (2.7) we obtain

$$
\begin{align*}
\left(\nabla_{W} \tilde{R}\right)(X, Y) Z= & \left(\nabla_{W} R\right)(X, Y) Z \\
& +\alpha^{3}[\{g(X, Y) g(\phi Y, Z)-g(W, Y) g(\phi X, Z)\} \xi \\
& +\{g(\phi X, Z) \eta(Y)-g(\phi Y, Z) \eta(X)\} W] \\
& +\alpha^{2} \beta[\{g(\phi W, X) g(\phi Y, Z)-g(\phi W, Y) g(\phi X, Z)\} \xi \\
& +\{g(\phi X, Z) \eta(Y)-g(\phi Y, Z) \eta(X)\} \phi W] \\
& +\left(\alpha^{2}-\beta^{2}\right)[\{\alpha(g(\phi W, Y) X-g(\phi W, X) Y) \\
& \left.-\beta^{2}(g(\phi W, \phi Y) X+g(\phi W, \phi X) Y)\right\} \eta(Z) \\
& +(\beta g(\phi W, \phi Z)-\alpha g(\phi W, Z))(\eta(X) Y-\eta(Y) X)] \\
& +\alpha^{2}(g(X, Z) \eta(Y)-g(Y, Z) \eta(X))(-\alpha \phi W+\beta(W-\eta(W) \xi)) \\
& -\alpha^{2}[-\alpha(g(Y, Z) g(\phi W, X)+g(X, Z) g(\phi W, Y)) \\
& +\beta(g(Y, Z) g(\phi W, \phi X)+g(X, Z) g(\phi W, \phi Y))] \xi \\
& +\beta^{2}[\{-\alpha(g(W, \phi Z) \eta(Y)+g(W, \phi Y) \eta(Z)) \\
& -\beta(g(\phi W, \phi Z) \eta(Y)+g(\phi W, \phi Y) \eta(Z))\} X \\
& +\{\alpha(g(W, \phi Z) \eta(X)+g(W, \phi X) \eta(Z)) \\
& -\beta(g(\phi W, \phi Z) \eta(X)+g(\phi W, \phi X) \eta(Z))\} Y] . \tag{6.4}
\end{align*}
$$

Using (6.4) in (6.3) we have

$$
\begin{align*}
\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z= & \left(\nabla_{W} R\right)(X, Y) Z \\
& +\alpha^{3}[\{g(X, Y) g(\phi Y, Z)-g(W, Y) g(\phi X, Z)\} \xi \\
& +\{g(\phi X, Z) \eta(Y)-g(\phi Y, Z) \eta(X)\} W] \\
& +\alpha^{2} \beta[\{g(\phi W, X) g(\phi Y, Z)-g(\phi W, Y) g(\phi X, Z)\} \xi \\
& +\{g(\phi X, Z) \eta(Y)-g(\phi Y, Z) \eta(X)\} \phi W] \\
& +\left(\alpha^{2}-\beta^{2}\right)[\{\alpha(g(\phi W, Y) X-g(\phi W, X) Y) \\
& \left.-\beta^{2}(g(\phi W, \phi Y) X+g(\phi W, \phi X) Y)\right\} \eta(Z) \\
& +(\beta g(\phi W, \phi Z)-\alpha g(\phi W, Z))(\eta(X) Y-\eta(Y) X)] \\
& +\alpha^{2}(g(X, Z) \eta(Y)-g(Y, Z) \eta(X))(-\alpha \phi W+\beta(W-\eta(W) \xi)) \\
& -\alpha^{2}[-\alpha(g(Y, Z) g(\phi W, X)+g(X, Z) g(\phi W, Y)) \\
& +\beta(g(Y, Z) g(\phi W, \phi X)+g(X, Z) g(\phi W, \phi Y))] \xi \\
& +\beta^{2}[\{-\alpha(g(W, \phi Z) \eta(Y)+g(W, \phi Y) \eta(Z)) \\
& -\beta(g(\phi W, \phi Z) \eta(Y)+g(\phi W, \phi Y) \eta(Z))\} X \\
& +\{\alpha(g(W, \phi Z) \eta(X)+g(W, \phi X) \eta(Z)) \\
& -\beta(g(\phi W, \phi Z) \eta(X)+g(\phi W, \phi X) \eta(Z))\} Y] \\
& +\eta(X) \tilde{R}\left(\nabla_{W} \xi, Y\right) Z+\left(\nabla_{W} \eta\right)(X) \tilde{R}(\xi, Y) Z \\
& +\eta(Y) \tilde{R}\left(X, \nabla_{W} \xi\right) Z+\left(\nabla_{W} \eta\right)(Y) \tilde{R}(X, \xi) Z \\
& +\eta(Z) \tilde{R}(X, Y) \nabla_{W} Z+\left(\nabla_{W} \eta\right)(Z) \tilde{R}(X, Y) \xi . \tag{6.5}
\end{align*}
$$

Now applying ϕ^{2} on both sides of (6.5) and taking X, Y, Z, W are orthogonal to ξ and using (2.1), (2.3) we get from above equation

$$
\begin{equation*}
\phi^{2}\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z=\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z . \tag{6.6}
\end{equation*}
$$

Hence we can state the following:
Theorem 6.1. A three-dimensional trans-Sasakian manifold is locally ϕ-symmetry with respect to the Schouten-van Kampen connection $\tilde{\nabla}$ if and only if the manifold is also locally ϕ-symmetry with respect to the Levi-Civita connection ∇ provided α, β are constants.
U. C. De and Avijit Sarkar [7] have proved that a trans-Sasakian manifold is locally ϕ-symmetry if and only if the scalar curvature is constant provided α, β are constants.

In view of above result we can state the following:
Theorem 6.2. A three-dimensional trans-Sasakian manifold is locally ϕ-symmetric with respect to the Schouten-van Kampen connection $\tilde{\nabla}$ if and only if the scalar curvature is constant, provided α, β are constants.

7. Weyl conformally flat trans-Sasakian manifold with respect to Schouten-van Kampen connection

The Weyl conformal curvature tensor \tilde{C} of type $(1,3)$ of M, an n-dimensional trans-Sasakian manifolds with respect to the Schouten-van Kampen connection $\tilde{\nabla}$ is given by [23]

$$
\begin{align*}
\tilde{C}(X, Y) Z= & \tilde{R}(X, Y) Z-\frac{1}{n-2}[\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y+g(Y, Z) \tilde{Q} X \\
& -g(X, Z) \tilde{Q} Y]+\frac{\tilde{r}}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y] \tag{7.1}
\end{align*}
$$

where \tilde{Q} is the Ricci operator with respect to the Schouten-van Kampen connection.
Let us consider that a three-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection is Weyl conformally flat, that is $\tilde{C}=0$. Then from (7.1), we get

$$
\begin{align*}
\tilde{R}(X, Y) Z= & {[\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y+g(Y, Z) \tilde{Q} X} \\
& -g(X, Z) \tilde{Q} Y]-\frac{\tilde{r}}{2}[g(Y, Z) X-g(X, Z) Y] \tag{7.2}
\end{align*}
$$

Let us take inner product of the equation (7.2) with W. Then we get
$g(\tilde{R}(X, Y) Z, W)=[\tilde{S}(Y, Z) g(X, W)-\tilde{S}(X, Z) g(Y, W)+g(Y, Z) g(\tilde{Q} X, W)$

$$
\begin{equation*}
-g(X, Z) g(\tilde{Q} Y, W)]-\frac{\tilde{r}}{2}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{7.3}
\end{equation*}
$$

Using (2.1), (2.3), (3.5)-(3.8), we get

$$
\begin{equation*}
g(\tilde{R}(X, Y) Z, W)=[S(Y, Z) g(X, W)-S(X, Z) g(Y, W)+g(Y, Z) g(Q X, W) \tag{7.4}
\end{equation*}
$$

Putting $X=W=\xi$ in (7.4) and using (2.1) and (2.3), we get

$$
\begin{align*}
g(\tilde{R}(\xi, Y) Z, \xi)= & {[S(Y, Z)-S(\xi, Z) \eta(Y)+g(Y, Z) S(\xi, \xi)} \\
& -\eta(Z) S(Y, \xi)]-\frac{r}{2}[g(Y, Z)-\eta(Z) \eta(Y)], \tag{7.6}
\end{align*}
$$

where $g(Q Y, Z)=S(Y, Z)$.

Now, using (2.13) and (2.16), we get

$$
\begin{equation*}
S(Y, Z)=\frac{r}{2} g(Y, Z)+\left[6\left(\alpha^{2}-\beta^{2}\right)-\frac{r}{2}\right] \eta(Y) \eta(Z) . \tag{7.7}
\end{equation*}
$$

Therefore

$$
S(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z)
$$

where $a=\frac{r}{2}$ and $b=\left[6\left(\alpha^{2}-\beta^{2}\right)-\frac{r}{2}\right]$.
This shows that the manifold M is an η-Einstein manifold.

Thus we can state the following:
Theorem 7.1. A three-dimensional Weyl conformally flat trans-Sasakian manifold with respect to the Schouten-van Kampen connection $\tilde{\nabla}$ is an η-Einstein manifold provided α, β are constants with $\alpha \neq \beta$.

8. Example of a three-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen Connection

In this section, we wanted to construct an example of a three-dimensional transSasakian manifold with respect to Schouten-van Kampen connection.

We have considered the three-dimensional manifold $M=\left\{(x, y, z) \in R^{3}, z \neq 0\right\}$, where (x, y, z) are the standard coordinates in R^{3}. The vector fields

$$
e_{1}=e^{-z}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right), \quad e_{2}=e^{-z}\left(-\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right), \quad e_{3}=\frac{\partial}{\partial z},
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=0, \quad g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi\left(e_{1}\right)=e_{2}, \phi\left(e_{2}\right)=-e_{1}, \phi\left(e_{3}\right)=0$. Then using the linearity of ϕ and g we have

$$
\eta\left(e_{3}\right)=1, \quad \phi^{2} Z=-Z+\eta(Z) e_{3}, \quad g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W)
$$

for any $Z, W \in \chi(M)$. Thus for $e_{3}=\xi,(\phi, \xi, \eta, g)$ defines an almost contact metric structure on M. Now, by direct computations we obtain

$$
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{2}, e_{3}\right]=e_{2}, \quad\left[e_{1}, e_{3}\right]=e_{1}
$$

The Riemannian connection ∇ of the metric tensor g is given by the Koszul's formula which is

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right) & =X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) \tag{8.1}
\end{align*}
$$

By Koszul formula

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{3}=e_{1}, & \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{1}=-e_{3}, \\
\nabla_{e_{2}} e_{3}=e_{2}, & \nabla_{e_{2}} e_{2}=-e_{3}, & \nabla_{e_{2}} e_{1}=0, \\
\nabla_{e_{3}} e_{3}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{1}=0 .
\end{array}
$$

From above we see that the manifold satisfies (2.6) for $\alpha=0, \beta=1$, and $e_{3}=\xi$. Hence the manifold is a trans-Sasakian manifold of type $(0,1)$. With the help of the above results it can be verified that

$$
\begin{array}{lll}
R\left(e_{1}, e_{2}\right) e_{3}=0, & R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, & R\left(e_{1}, e_{3}\right) e_{3}=-e_{1}, \\
R\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, & R\left(e_{2}, e_{3}\right) e_{2}=e_{3}, & R\left(e_{1}, e_{3}\right) e_{2}=0 \\
R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, & R\left(e_{2}, e_{3}\right) e_{1}=0, & R\left(e_{1}, e_{3}\right) e_{1}=e_{3}
\end{array}
$$

Now we consider the Schouten-Van Kampen connection to this example.

Using (3.2) and above result we have
$\tilde{\nabla}_{e_{1}} e_{3}=(1-\beta) e_{1}+\alpha e_{2}$,
$\tilde{\nabla}_{e_{1}} e_{2}=-\alpha e_{3}$,
$\tilde{\nabla}_{e_{1}} e_{1}=(\beta-1) e_{3}$,
$\tilde{\nabla}_{e_{2}} e_{3}=-\alpha e_{1}+(1-\beta) e_{2}$
$\tilde{\nabla}_{e_{2}} e_{2}=(\beta-1) e_{3}$,
$\nabla_{e_{2}} e_{1}=0$,
$\tilde{\nabla}_{e_{3}} e_{3}=0$
$\tilde{\nabla}_{e_{3}} e_{2}=-\beta e_{2}$,
$\tilde{\nabla}_{e_{3}} e_{1}=-\beta e_{1}$.

Using (3.4) we get

$$
\begin{array}{ll}
\tilde{R}\left(e_{1}, e_{2}\right) e_{3}=0, & \tilde{R}\left(e_{2}, e_{3}\right) e_{3}=\left(\beta^{2}-\alpha^{2}-1\right) e_{2}, \\
\tilde{R}\left(e_{1}, e_{3}\right) e_{3}=\left(\beta^{2}-\alpha^{2}-1\right) e_{1}, & \tilde{R}\left(e_{1}, e_{2}\right) e_{2}=\alpha^{2} e_{2}+\left(\beta^{2}+\alpha^{2}-1\right) e_{1}, \\
\tilde{R}\left(e_{2}, e_{3}\right) e_{2}=\left(-\beta^{2}+\alpha^{2}+1\right) e_{3}, & \tilde{R}\left(e_{1}, e_{3}\right) e_{2}=0, \\
\tilde{R}\left(e_{1}, e_{2}\right) e_{1}=\left(1-\beta^{2}-\alpha^{2}\right) e_{2}, & \tilde{R}\left(e_{2}, e_{3}\right) e_{1}=0, \\
\tilde{R}\left(e_{1}, e_{3}\right) e_{1}=\left(1+\alpha^{2}-\beta^{2}\right) e_{3} . &
\end{array}
$$

From the above expressions of the curvature tensor we obtain

$$
S\left(e_{1}, e_{1}\right)=\sum_{i=1}^{3} g\left(R\left(e_{i}, e_{1}\right) e_{1}, e_{i}\right)=-2 .
$$

Similarly, we have

$$
S\left(e_{2}, e_{2}\right)=-2 \quad \text { and } \quad S\left(e_{3}, e_{3}\right)=-2 .
$$

$$
\begin{gathered}
\tilde{S}\left(e_{1}, e_{2}\right)=\tilde{S}\left(e_{2}, e_{2}\right)=2\left(\beta^{2}-1\right) \quad \tilde{S}\left(e_{3}, e_{3}\right)=2\left(\beta^{2}-\alpha^{2}-1\right) . \\
r=-6 \quad \tilde{r}=6 \beta^{2}-2 \alpha^{2}-6 .
\end{gathered}
$$

From above we see that $\tilde{r}=0$ for $\alpha=0, \beta=1$. Therefore, the manifold under consideration satisfies the Theorem 5.2.
Using (4.1) and above relations, we get

$$
\begin{aligned}
& P\left(e_{1}, e_{2}\right) e_{3}=P\left(e_{1}, e_{3}\right) e_{3}=P\left(e_{2}, e_{3}\right) e_{3}=0 \\
& \tilde{P}\left(e_{1}, e_{2}\right) e_{3}=\tilde{P}\left(e_{1}, e_{3}\right) e_{3}=\tilde{P}\left(e_{2}, e_{3}\right) e_{3}=0
\end{aligned}
$$

Therefore, the manifold will be ξ-projectively flat on a three-dimensional transSasakian manifold with respect to the Schouten-van Kampen connection which varifies the Theorem 4.1.

Acknowledgments

The author is thankful to the referees for their valuable suggestions towards the improvement of the paper.

REFERENCES

1. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math., Vol. 203, Birkhäuser, Boston, 2002.
2. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture notes in math. No 509. Springer-Verlag, Berlin-New York, 1976.
3. D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Mathematiques, 34 (1990), 199-207.
4. C. Baikoussis and D. E. Blair, On Legendre curves in contact 3-manifolds, Geometry Dedicata, 49 (1994), 135-142.
5. S. Deshmukh and M. M. Tripathi, Anote on trans-Sasakian manifolds, Math. Slov., 53(6) (2013), 1361-1370.
6. U. C. De and K. De, On a class of three-dimensional Trans-Sasakian manifolds, Commun Korean Math. Soci., 27(4) (2012), 795-808.
7. U. C. De and A. Sarkar, On Three-dimensional Trans-Sasakian Manifolds, Extracta Mathematicae, 23 (2008), 256-277.
8. U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43 (2003), 247-255.
9. A. Gray and L. M. Hervella, The sixteen classes of almost Harmite manifolds and their linear invariants, Ann. Mat, Pura Appl., 123 (1980), 35-58.
10. G. Ghosh, On Schouten-van Kampen connection in Sasakian manifolds, Boletim da Sociedade Paranaense de Mathematica, 36 (2018), 171-182.
11. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku math. J., 24 (1972), 93-103.
12. D. L. Kiran Kumar, H. G. Nagaraja and S. H. Naveenkumar, Some curvature properties of Kenmotsu manifolds with Schouten-van Kampen connection, Bull. of the Transilvania Univ. of Brasov., Series III: Math., Informatics, Phys., 2 (2019), 351-364.
13. W. Kühnel, Conformal transformatons between Einstein spaces, Conformal geometry (Bonn, 1985/1986), 105-146, Aspects Math. E12, Friedr. Vieweg, Braunschweing, 1988.
14. J. C. Marrero, The local structures of trans-Sasakian manifolds, Ann. Math. Pura. Appl, 4(162) (1992), 77-86.
15. H. G. Nagaraja and D. L. Kiran Kumar, Kenmotsu manifolds admitting Schoutenvan Kampen connection, Facta Univ. Series: Math. and Informations, 34 (2019), 23-34.
16. J. A. Oubiña, New classes of almost contact metric structures, Publicationes Mathematicae Debrecen, 32 (1985), 187-193.
17. Z. OlSZAK, The Schouten-Van Kampen affine connection adapted to an almost(para) contact metric structure, Publications Delinstitut Mathematique, 94 (2013), 31-42.
18. A. F. Solov'Ev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb., 19 (1978), 12-23(in Russian).
19. A. F. Solov'ev, The bending of hyperdistributions, Geom. Sb., 20 (1979), 101-112.
20. A. F. Solov'Ev, Second fundamental form of a distribution, Mathematical notes of the Academy of Sciences of the USSR, 31 (1982), 71-75.
21. A. F. Solov'ev, Curvature of a distribution, Mathematical notes of the Academy of Sciences of the USSR, 35 (1984), 61-68.
22. M. M. Tripathi and M. K. Dwivedi, The structure of some classes of K-contact manifolds, Proc. Indian Acad. Sci. Math. Sci., 118 (2008), 371-379.
23. M. M. Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801.4222v1, [math.DG], 28 (2008).
24. T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku Math. J., 29 (1977), 91-113.
25. N. TANAKA, On non-degenerate real hypersurfaces, graded Lie algebra and Cartan connections, Japan J. Math., 2 (1976), 131-190.
26. A. Yildiz, f-Kenmotsu manifolds with the Schouten-Van Kampen connection, Pub. De L'institut Math., 102(116) (2017), 93-105.
27. K. Yano, Concircular geometry I. concircular transformations, Proc. Inst. Acad. Tokyo, 16 (1940), 195-200.
28. K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Math. Studies 32, Princeton university press, 1953.

[^0]: Received June 18, 2020, accepted January 6, 2021
 Communicated by Mića Stanković
 Corresponding Author: Ashis Mondal, Department of Mathematics, Jangipur College, Jangipur742213, Murshidabad, West Bengal, India | E-mail: ashism750@gmail.com 2010 Mathematics Subject Classification. Primary 53C15, 53C25, 53A30.

