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ON THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS
ADMITTING SCHOUTEN-VAN KAMPEN CONNECTION
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Department of Mathematics, Jangipur College, Jangipur-742213,
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Abstract. In the present paper, we study three-dimensional trans-Sasakian manifolds
admitting the Schouten-van Kampen connection. Also, we have proved some results on
φ-projectively flat, ξ-projectively flat and ξ-concircularly flat three-dimensional trans-
Sasakian manifolds with respect to the Schouten-van Kampen connection. Locally
φ-symmetric trans-Sasakian manifolds of dimension three have been studied with re-
spect to Schouten-van Kampen connection. Finally, we construct an example of a
three-dimensional trans-Sasakian manifold admitting Schouten-van Kampen connec-
tion which verifies Theorem 4.1. and Theorem 5.2.
Key words: General geometric structures on manifolds, Schouten-van Kampen con-
nection, Special Riemannian manifolds

1. Introduction

The Schouten-van Kampen connection is one of the most natural connections
adapted to a pair of complementary distributions on a differentiable manifold en-
dowed with an affine connection. Solov’ev investigated hyperdistributions in Rie-
mannian manifolds using the Schouten-van Kampen connection ([18], [19], [20],
[21]). In 2014, Olszak studied the Schouten-van Kampen connection to adapt it to
an almost contact metric structure [17]. He characterized some classes of almost
contact metric manifolds with the Schouten-van Kampen connection. Recently, G.
Ghosh [10], Yildiz [26], Nagaraja [15] and D. L. Kiran Kumar [12] have studied the
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Schouten-van Kampen connection in Sasakian manifolds, f -Kenmotsu manifolds
and Kenmotsu manifolds respectively.

A transformation of an n-dimensional differentiable manifold M , which trans-
forms every geodesic circle of M into a geodesic circle, is called a concircular trans-
formation [27], [13]. A concircular transformation is always a conformal transforma-
tion [13]. Here geodesic circle means a curve in M whose first curvature is constant
and whose second curvature is identically zero. Thus the geometry of concircular
transformations, i.e., the concircular geometry, is a generalization of inversive ge-
ometry in the sense that the change of metric is more general than that induced
by a circle preserving diffeomorphism. An interesting invariant of a concircular
transformation is the concircular curvature tensor W with respect to Levi-Civita
connection. It is defined by [27], [28]

W(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ],(1.1)

where X,Y, Z ∈ χ(M), R and r are the curvature tensor and the scalar curvature
with respect to the Levi-Civita connection.
The concircular curvature tensor W̃ with respect to the Schouten-van Kampen
connection is defined by

W̃(X,Y )Z = R̃(X,Y )Z − r̃

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ],(1.2)

where R̃ and r̃ are the curvature tensor and the scalar curvature with respect to
the Schouten-van Kampen connection. Riemannian manifolds with vanishing con-
circular curvature tensor are of constant curvature. Thus the concircular curvature
tensor is a measure of the failure of a Riemannian manifold to be of constant cur-
vature.

In 1985, a new class of n-dimensional almost contact manifold namely trans-
Sasakian manifold was introduced by J. A. Oubina [16] and further study about
the local structures of trans-Sasakian manifolds was carried by J. C. Marrero [14].
Trans-Sasakian manifolds of type (0, 0), (α, 0) and (0, β) are, called the cosym-
plectic, α-Sasakian and β-Kenmotsu respectively ([2], [11]). In particular, if α =
0, β = 1;α = 1, β = 0; then a trans-Sasakian manifold becomes Kenmotsu and
Sasakian manifolds respectively. Hence, trans-Sasakian structures give a large class
of generalized Quasi-Sasakian structures. It has been proven that a trans-Sasakian
manifold of dimension n ≥ 5 is either cosymplectic or α−Sasakian and β−Kenmotsu
manifold. Three-dimnesional trans-Sasakian manifolds with different restrictions on
curvature and smooth functions α, β are studied in ([7], [8], [5], [6]).

In the present paper, we have studied three-dimensional trans-Sasakian mani-
folds with respect to the Schouten-van Kampen connection.

The present paper is organized as follows: After the introduction in Section 1,
we give some required preliminaries in Section 2. Section 3 is devoted to the study of
the curvature tensor, the Ricci tensor, scalar curvature of a three-dimensional trans-
Sasakian manifold with respect to the Schouten-van Kampen connection. Section 4
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is devoted to the study of ξ-projectively and φ-projectively flat trans-Sasakian man-
ifolds of dimension three with respect to the Schouten-van Kampen connection. In
this section, we have proved that a three-dimensional trans-Sasakian manifold ad-
mitting the Schouten-van Kampen connection is ξ-projectively flat if and only if the
scalar curvature of the manifold vanishes. In Section 5, we study ξ-concircularly
flat trans-Sasakian manifold of dimension three admitting Schouten-van Kampen
connection. In the next section, we study locally φ-symmetric trans-Sasakian man-
ifolds of dimensional three with respect to Schouten-van Kampen connection. In
Section 7, we study Weyl ξ-conformally flat in three-dimensional trans-Sasakian
manifold with respect to the Schouten-van Kampen connection. In the last section,
we construct an example of a three-dimensional trans-Sasakian manifold admitting
the Schouten-van Kampen connection to support the results obtained in Section 4
and Section 5.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric
structure (φ, ξ, η, g), that is, φ is an (1, 1) tensor field, ξ is a vector field, η is an
1-form and g is compatible Riemannian metric such that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0,(2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.2)

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X),(2.3)

for all X,Y ∈ T (M) [1]. The fundamental 2-form Φ of the manifold is defined by

Φ(X,Y ) = g(X,φY ),(2.4)

for X,Y ∈ T (M).

An almost contact metric manifold is normal if [φ, φ](X,Y ) + 2dη(X,Y )ξ = 0.

An almost contact metric structure (φ, ξ, η, g) on a manifold M is called trans-
Sasakian structure [16] if (M ×R, J,G) belongs to the class W4 [9], where J is the
almost complex structure on M ×R defined by

J(X, fd/dt) = (φX − fξ, η(X)d/dt),

for all vector fields X on M, a smooth function f on M ×R and the product metric
G on M ×R. This may be expressed by the condition [3]

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX),(2.5)

for smooth functions α and β on M. Here ∇ is Levi-Civita connection on M. We
say M as the trans-Sasakian manifold of type (α, β). From (2.5) it follows that

∇Xξ = −αφX + β(X − η(X)ξ),(2.6)
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(∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ).(2.7)

In a three-dimensional trans-Sasakian manifold following relations hold [7], [8]:

2αβ + ξα = 0,(2.8)

S(X,Y ) = {r
2

+ ξβ − (α2 − β2)}g(X,Y )

−{r
2

+ ξβ − 3(α2 − β2)}η(X)η(Y )− {Y β + (φX)α}η(Y ),(2.9)

R(X,Y )Z = (
r

2
+ 2ξβ − 2(α2 − β2))(g(Y, Z)X − g(X,Z)Y )

−g(Y,Z)[(
r

2
+ ξβ − 3(α2 − β2))η(X)ξ

−η(X)(φgradα− gradβ) + (Xβ + (φX)α)ξ]

+g(X,Z)[(
r

2
+ ξβ − 3(α2 − β2))η(Y )ξ

−η(Y )(φgradα− gradβ) + (Y β + (φY )α)ξ]

−[(Zβ + (φZ)α)η(Y ) + (Y β + (φY )α)η(Z)

+(
r

2
+ ξβ − 3(α2 − β2))η(Y )η(Z)]X

+[(Zβ + (φZ)α)η(X) + (Xβ + (φX)α)η(Z)

+(
r

2
+ ξβ − 3(α2 − β2))η(X)η(Z)]Y,(2.10)

where S is the Ricci tensor of type (0, 2), and r is the scalar curvature of the
manifold M with respect to Levi-Civita connection.

From here after we consider α and β are constants, then the above relations
become

R(X,Y )Z = {r
2
− (α2 − β2)}[g(Y,Z)X − g(X,Z)Y ]

+{r
2
− (α2 − β2)}[g(X,Z)η(Y )− g(Y, Z)η(X)]ξ

+{r
2
− 3(α2 − β2)}[η(X)η(Z)Y − η(Y )η(Z)X],(2.11)

S(X,Y ) = {r
2
− (α2 − β2)}g(X,Y )

−{r
2
− 3(α2 − β2)}η(X)η(Y ),(2.12)

S(X, ξ) = 2(α2 − β2)η(X),(2.13)
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QX = {r
2
− (α2 − β2)}X − {r

2
− 3(α2 − β2)}η(X)ξ,(2.14)

R(X,Y )ξ = (α2 − β2)(η(Y )X − η(X)Y ),(2.15)

R(ξ,X)Y = 2(α2 − β2)(g(X,Y )ξ − η(Y )X).(2.16)

From (2.8) it follows that if α and β are constants, then the manifold is either
α-Sasakian or β-Kenmotsu or cosymplectic.

3. Curvature tensor of a three-dimensional trans-Sasakian manifold
with respect to the Schouten-van Kampen connection

For an almost contact metric manifold M , the Schouten-van Kampen connection
∇̃ is given by [17]

∇̃XY = ∇XY − η(Y )∇Xξ + (∇Xη)(Y )ξ.(3.1)

Let M be a three-dimensional trans-Sasakian manifold. Then from above equation
we have

∇̃XY = ∇XY + α{η(Y )φX)− g(φX, Y )ξ}+ β{g(X,Y )ξ − η(Y )X}.(3.2)

We define the curvature tensor R̃ of a three-dimensional trans-Sasakian manifold
with respect to the Schouten-van Kampen connection ∇̃ by

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z.(3.3)

In view of (3.2) and (3.3) we obtain

R̃(X,Y )Z = R(X,Y )Z + α2{g(φY,Z)φX − g(φX,Z)φY

+η(X)η(Z)Y − η(Y )η(Z)X

−g(Y, Z)η(X)ξ + g(X,Z)η(Y )ξ}
+β2{g(Y,Z)X − g(X,Z)Y }.(3.4)

Taking inner product in both sides of (3.4) with W , we have

R̃(X,Y, Z,W ) = R(X,Y, Z,W ) + α2{g(φY,Z)g(φX,W )− g(φX,Z)g(φY,W )

+g(Y,W )η(X)η(Z)− g(X,W )η(Y )η(Z)

−g(Y,Z)η(X)η(W ) + g(X,Z)η(Y )η(W )}
+β2{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )},(3.5)

where R̃(X,Y, Z,W ) = g(R̃(X,Y )Z,W ).
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Taking a frame field from (3.5), we get

S̃(Y,Z) = S(Y,Z) + 2β2g(Y,Z)− 2α2η(Y )η(Z).(3.6)

From above equation we have

Q̃Y = QY + +2β2Y − 2α2η(Y )ξ.(3.7)

Again putting Y = Z = ei (i = 1, 2, 3) and taking summation over i in (3.6), we
obtain

r̃ = r − 2α2 + 6β2,(3.8)

where r̃ and r are the scalar curvatures of the Schouten-van Kampen connection
(∇̃) and Levi-Civita connection (∇) respectively.

Hence we have the following :
Proposition 3.1. A three-dimensional trans-Sasakian manifold with respect to
the Schouten-van Kampen connection following statements are equivalent
(a) The curvature tensor R̃ is given by (3.4),
(b) The Ricci tensor S̃ is given by (3.6),
(c) r̃ = r − 2α2 + 6β2,
(d) The Ricci tensor S̃ is symmetric,
provided α and β are constants.

4. ξ-Projectively and φ-projectively flat trans-Sasakian manifolds with
respect to the Schouten-van Kampen connection

In this section, we study projectively flat three-dimensional trans-Sasakian manifold
M with respect to the Schouten-van Kampen connection. In a three-dimensional
trans-Sasakian manifold, the projective curvature tensor with respect to the Schou-
ten-van Kampen connection is given by

P̃ (X,Y )Z = R̃(X,Y )Z − 1

2
{S̃(Y,Z)X − S̃(X,Z)Y }.(4.1)

Definition 4.1. A three-dimensional trans-Sasakian manifold M with respect
to the Schouten-van Kampen connection is said to be ξ-projectively flat if

P̃ (X,Y )ξ = 0,

for all vector fields X,Y on M . This notion was first defined by Tripathi and
Dwivedi [22]. If P̃ (X,Y )ξ = 0, just holds for X,Y orthogonal to ξ, we call such a
manifold a horizontal ξ-projectively flat manifold.

Using (3.4) in (4.1) we have
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P̃ (X,Y )Z = R(X,Y )Z + α2{g(φY,Z)φX − g(φX,Z)φY

+η(X)η(Z)Y − η(Y )η(Z)X

−g(Y,Z)η(X)ξ + g(X,Z)η(Y )ξ}
+β2{g(Y, Z)X − g(X,Z)Y }

−1

2
{S̃(Y, Z)X − S̃(X,Z)Y }.(4.2)

Putting Z = ξ and using (2.1), (2.3), (2.15) and (3.6) in (4.2), we get

P̃ (X,Y )ξ = 0.(4.3)

Thus we can state the following:

Theorem 4.1. A three-dimensional trans-Sasakian manifold is ξ-projectively
flat with respect to the Schouten-van Kampen connection provided α and β are
constants.

Again putting (3.6) in (4.2) we get

P̃ (X,Y )Z = P (X,Y )Z + α2{g(φY,Z)φX − g(φX,Z)φY

−g(Y,Z)η(X)ξ + g(X,Z)η(Y )ξ}.(4.4)

Putting Z = ξ in (4.4) and using (2.1) and (2.3), it follows that

P̃ (X,Y )ξ = P (X,Y )ξ.(4.5)

In view of above discussion we state the following theorem:

Theorem 4.2. A three-dimensional trans-Sasakian manifold is ξ-projectively
flat with respect to the Schouten-van Kampen connection if and only if the manifold
is ξ-projectively flat with respect to the Levi-Civita connection provided α and β
are constants.

Definition 4.2. A trans-Sasakian manifold M with respect to the Schouten-van
Kampen connection is said to be φ-projectively flat if

φ2P̃ (φX, φY )φZ = 0.

It can be easily seen that φ2P̃ (φX, φY )φZ = 0 holds if and only if

g(P̃ (φX, φY )φZ, φW ) = 0,(4.6)

for X,Y, Z,W ∈ T (M).
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Using (4.1) and (4.6), φ-projectively flat means

g(R̃(φX, φY )φZ, φW ) =
1

2
{S̃(φY, φZ)g(φX, φW )

−S̃(φX, φZ)g(φY, φW )}.(4.7)

Let {e1, e2, ξ} be a local orthonormal basis of the vector fields in M and using
the fact that {φe1, φe2, ξ} is also a local orthonormal basis, putting X = W = ei in
(4.7) and summing up with respect to i, we have

2∑
i=1

g(R̃(φei, φY )φZ, φei) =
1

2

2∑
i=1

{S̃(φY, φZ)g(φei, φei)

−S̃(φei, φZ)g(φY, φei)}.(4.8)

Using (2.1), (2.2), (2.3) and (3.5) it can be easily verified that

2∑
i=1

g(R̃(φei, φY )φZ, φei) =

2∑
i=1

g(R(φei, φY )φZ, φei)

+(α2 + β2)g(Y, Z) + (β2 − 3α2)η(Y )η(Z)

= S(φY, φZ) + (α2 + β2)g(Y,Z)(4.9)

+(β2 − 3α2)η(Y )η(Z).(4.10)

2∑
i=1

g(φei, φei) = 2.(4.11)

2∑
i=1

S̃(φei, φZ)g(φY, φei) = S̃(φY, φZ).(4.12)

Using (4.9), (4.10) and (4.11), the equation (4.8) becomes

S̃(φY, φZ) = 2{S(φY, φZ) + (α2 + β2)g(Y, Z) + (β2 − 3α2)η(Y )η(Z)}.(4.13)

Using (3.6) in (4.12), we get

S(φY, φZ) = −2α2g(Y,Z) + 2(3α2 − β2)η(Y )η(Z).(4.14)

Putting Y = φY and Z = φZ in (4.13) and using (2.1) (2.2) and (2.13), we
obtain

S(Y,Z) = −2α2g(Y,Z) + 2(2α2 − β2)η(Y )η(Z).(4.15)

Conversely, let S be of the form (4.14), then obviously

g(P̃ (φX, φY )φZ, φW ) = 0.
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Thus we can state the following:

Theorem 4.3. A three-dimensional trans-Sasakian manifold admitting the
Schouten-van Kampen connection is φ-projectively flat if and only if the manifold
is an η-Einstein manifold with respect to the Levi-Civita connection provided α, β
are constants with β 6= ±

√
2α, (α 6= 0).

5. ξ-Concircularly flat trans-Sasakian manifolds with respect to the
Schouten-van Kampen connection

Definition 5.1. A trans-Sasakian manifold M with respect to the Schouten-van
Kampen connection is said to be ξ-concircularly flat if

W̃(X,Y )ξ = 0,(5.1)

for all vector fields X,Y ∈ χ(M), χ(M) is the set of all differentiable vector fields
on M .

Theorem 5.1. A three-dimensional trans-Sasakian manifold with respect to
the Schouten-van Kampen connection is horizontally ξ-concircularly flat if and only
if the manifold with respect to the Levi-Civita connection is also ξ-concircular flat
provided α, β are constants.

Proof. Combining (1.1),(1.2) and using (3.4), (3.6) (3.8), we get

W̃(X,Y )Z = W(X,Y )Z + α2{g(φY,Z)φX − g(φX,Z)φY

−g(Y, Z)η(X)ξ + g(X,Z)η(Y )ξ

−η(Y )η(Z)X + η(X)η(Z)Y }.(5.2)

Putting Z = ξ in (5.2) we get

W̃(X,Y )ξ = W(X,Y )ξ +
2α2

3
{η(X)Y − η(Y )X}.(5.3)

From (5.3), implies that

W̃(X,Y )ξ = W(X,Y )ξ; for all X,Y orthogonal to ξ.(5.4)

Hence the proof of theorem is complete.

Theorem 5.2. A three-dimensional trans-Sasakian manifold is ξ-concircularly
flat with respect to the Schouten-van Kampen connection if and only if the scalar
curvature r̃ is zero, provided α and β are constants.

Proof. Putting Z = ξ in (1.2) and using (2.1), (2.3), (2.3), (2.15) and (3.4), we
have

W̃(X,Y )ξ = − r̃
6
{η(Y )X − η(X)Y }.(5.5)

Thus the theorem is proved.
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6. Locally φ-symmetric trans-Sasakian manifolds with respect to the
Schouten-van Kampen connection

Definition 6.1. A trans-Sasakian manifold M with respect to the Schouten-van
Kampen connection is called to be locally φ-symmetric if

φ2(∇̃W R̃)(X,Y )Z = 0,(6.1)

for all vector fields X,Y, Z,W orthogonal to ξ on M . This notion was introduced
by Takahashi [24], for Sasakian manifolds.

We know that

(∇̃W R̃)(X,Y )Z = ∇̃W (R̃(X,Y )Z)− R̃(∇̃WX,Y )Z

−R(X, ∇̃WY )Z − R̃(X,Y )∇̃WZ.(6.2)

By virtue of (3.1), above equation is reduced to

(∇̃W R̃)(X,Y )Z = (∇W R̃)(X,Y )Z + η(X)R̃(∇W ξ, Y )Z + (∇W η)(X)R̃(ξ, Y )Z

+η(Y )R̃(X,∇W ξ)Z + (∇W η)(Y )R̃(X, ξ)Z

+η(Z)R̃(X,Y )∇WZ + (∇W η)(Z)R̃(X,Y )ξ.(6.3)

Now differentiating (3.4) with respect to W , using (2.1), (2.2), (2.3), (2.5) and (2.7)
we obtain

(∇W R̃)(X,Y )Z = (∇WR)(X,Y )Z

+α3[{g(X,Y )g(φY,Z)− g(W,Y )g(φX,Z)}ξ
+{g(φX,Z)η(Y )− g(φY,Z)η(X)}W ]

+α2β[{g(φW,X)g(φY,Z)− g(φW, Y )g(φX,Z)}ξ
+{g(φX,Z)η(Y )− g(φY,Z)η(X)}φW ]

+(α2 − β2)[{α(g(φW, Y )X − g(φW,X)Y )

−β2(g(φW,φY )X + g(φW,φX)Y )}η(Z)

+(βg(φW,φZ)− αg(φW,Z))(η(X)Y − η(Y )X)]

+α2(g(X,Z)η(Y )− g(Y, Z)η(X))(−αφW + β(W − η(W )ξ))

−α2[−α(g(Y,Z)g(φW,X) + g(X,Z)g(φW, Y ))

+β(g(Y, Z)g(φW,φX) + g(X,Z)g(φW,φY ))]ξ

+β2[{−α(g(W,φZ)η(Y ) + g(W,φY )η(Z))

−β(g(φW,φZ)η(Y ) + g(φW,φY )η(Z))}X
+{α(g(W,φZ)η(X) + g(W,φX)η(Z))

−β(g(φW,φZ)η(X) + g(φW,φX)η(Z))}Y ].(6.4)
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Using (6.4) in (6.3) we have

(∇̃W R̃)(X,Y )Z = (∇WR)(X,Y )Z

+α3[{g(X,Y )g(φY,Z)− g(W,Y )g(φX,Z)}ξ
+{g(φX,Z)η(Y )− g(φY,Z)η(X)}W ]

+α2β[{g(φW,X)g(φY,Z)− g(φW, Y )g(φX,Z)}ξ
+{g(φX,Z)η(Y )− g(φY,Z)η(X)}φW ]

+(α2 − β2)[{α(g(φW, Y )X − g(φW,X)Y )

−β2(g(φW,φY )X + g(φW,φX)Y )}η(Z)

+(βg(φW,φZ)− αg(φW,Z))(η(X)Y − η(Y )X)]

+α2(g(X,Z)η(Y )− g(Y,Z)η(X))(−αφW + β(W − η(W )ξ))

−α2[−α(g(Y, Z)g(φW,X) + g(X,Z)g(φW, Y ))

+β(g(Y,Z)g(φW,φX) + g(X,Z)g(φW,φY ))]ξ

+β2[{−α(g(W,φZ)η(Y ) + g(W,φY )η(Z))

−β(g(φW,φZ)η(Y ) + g(φW,φY )η(Z))}X
+{α(g(W,φZ)η(X) + g(W,φX)η(Z))

−β(g(φW,φZ)η(X) + g(φW,φX)η(Z))}Y ]

+η(X)R̃(∇W ξ, Y )Z + (∇W η)(X)R̃(ξ, Y )Z

+η(Y )R̃(X,∇W ξ)Z + (∇W η)(Y )R̃(X, ξ)Z

+η(Z)R̃(X,Y )∇WZ + (∇W η)(Z)R̃(X,Y )ξ.(6.5)

Now applying φ2 on both sides of (6.5) and taking X,Y, Z,W are orthogonal to
ξ and using (2.1), (2.3) we get from above equation

φ2(∇̃W R̃)(X,Y )Z = φ2(∇WR)(X,Y )Z.(6.6)

Hence we can state the following:

Theorem 6.1. A three-dimensional trans-Sasakian manifold is locally φ-symme-
try with respect to the Schouten-van Kampen connection ∇̃ if and only if the
manifold is also locally φ-symmetry with respect to the Levi-Civita connection ∇
provided α, β are constants.

U. C. De and Avijit Sarkar [7] have proved that a trans-Sasakian manifold is
locally φ-symmetry if and only if the scalar curvature is constant provided α, β are
constants.

In view of above result we can state the following:
Theorem 6.2. A three-dimensional trans-Sasakian manifold is locally φ-symmetric
with respect to the Schouten-van Kampen connection ∇̃ if and only if the scalar
curvature is constant, provided α, β are constants.
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7. Weyl conformally flat trans-Sasakian manifold with respect to
Schouten-van Kampen connection

The Weyl conformal curvature tensor C̃ of type (1,3) of M , an n−dimensional
trans-Sasakian manifolds with respect to the Schouten-van Kampen connection ∇̃
is given by [23]

C̃(X,Y )Z = R̃(X,Y )Z − 1

n− 2
[S̃(Y,Z)X − S̃(X,Z)Y + g(Y, Z)Q̃X

−g(X,Z)Q̃Y ] +
r̃

(n− 1)(n− 2)
[g(Y,Z)X − g(X,Z)Y ],(7.1)

where Q̃ is the Ricci operator with respect to the Schouten-van Kampen connection.

Let us consider that a three-dimensional trans-Sasakian manifold with respect
to the Schouten-van Kampen connection is Weyl conformally flat, that is C̃ = 0.
Then from (7.1), we get

R̃(X,Y )Z = [S̃(Y, Z)X − S̃(X,Z)Y + g(Y,Z)Q̃X

−g(X,Z)Q̃Y ]− r̃

2
[g(Y,Z)X − g(X,Z)Y ].(7.2)

Let us take inner product of the equation (7.2) with W . Then we get

g(R̃(X,Y )Z,W ) = [S̃(Y, Z)g(X,W )− S̃(X,Z)g(Y,W ) + g(Y, Z)g(Q̃X,W )

−g(X,Z)g(Q̃Y,W )]− r̃

2
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )].(7.3)

Using (2.1), (2.3), (3.5)-(3.8), we get

g(R̃(X,Y )Z,W ) = [S(Y,Z)g(X,W )− S(X,Z)g(Y,W ) + g(Y,Z)g(QX,W )

−g(X,Z)g(QY,W )]− r − 2α2

2
[g(Y,Z)g(X,W )(7.4)

−g(X,Z)g(Y,W )]

−α2[g(φY,Z)g(φX,W )− g(φX,Z)g(φY,W )

−g(Y,W )η(X)η(Z) + g(X,W )η(Y )η(Z)

+g(Y, Z)η(X)η(W )− g(X,Z)η(Y )η(W )].(7.5)

Putting X = W = ξ in (7.4) and using (2.1) and (2.3), we get

g(R̃(ξ, Y )Z, ξ) = [S(Y,Z)− S(ξ, Z)η(Y ) + g(Y, Z)S(ξ, ξ)

−η(Z)S(Y, ξ)]− r

2
[g(Y, Z)− η(Z)η(Y )],(7.6)
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where g(QY,Z) = S(Y, Z).

Now, using (2.13) and (2.16), we get

S(Y, Z) =
r

2
g(Y,Z) + [6(α2 − β2)− r

2
]η(Y )η(Z).(7.7)

Therefore
S(Y,Z) = ag(Y,Z) + bη(Y )η(Z),

where a = r
2 and b = [6(α2 − β2)− r

2 ].

This shows that the manifold M is an η-Einstein manifold.

Thus we can state the following:
Theorem 7.1. A three-dimensional Weyl conformally flat trans-Sasakian manifold
with respect to the Schouten-van Kampen connection ∇̃ is an η-Einstein manifold
provided α, β are constants with α 6= β.

8. Example of a three-dimensional trans-Sasakian manifold with
respect to the Schouten-van Kampen Connection

In this section, we wanted to construct an example of a three-dimensional trans-
Sasakian manifold with respect to Schouten-van Kampen connection.

We have considered the three-dimensional manifold M = {(x, y, z) ∈ R3, z 6= 0},
where (x, y, z) are the standard coordinates in R3. The vector fields

e1 = e−z(
∂

∂x
+

∂

∂y
), e2 = e−z(− ∂

∂x
+

∂

∂y
), e3 =

∂

∂z
,

are linearly independent at each point of M. Let g be the Riemannian metric defined
by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let φ be the
(1,1) tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Then using the
linearity of φ and g we have

η(e3) = 1, φ2Z = −Z + η(Z)e3, g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric
structure on M. Now, by direct computations we obtain

[e1, e2] = 0, [e2, e3] = e2, [e1, e3] = e1.
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The Riemannian connection∇ of the metric tensor g is given by the Koszul’s formula
which is

2g(∇XY,Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).(8.1)

By Koszul formula

∇e1e3 = e1, ∇e1e2 = 0, ∇e1e1 = −e3,
∇e2e3 = e2, ∇e2e2 = −e3, ∇e2e1 = 0,
∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From above we see that the manifold satisfies (2.6) for α = 0, β = 1, and e3 = ξ.
Hence the manifold is a trans-Sasakian manifold of type (0, 1). With the help of the
above results it can be verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,
R(e1, e2)e2 = −e1, R(e2, e3)e2 = e3, R(e1, e3)e2 = 0,
R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = e3.

Now we consider the Schouten-Van Kampen connection to this example.

Using (3.2) and above result we have

∇̃e1e3 = (1− β)e1 + αe2, ∇̃e1e2 = −αe3, ∇̃e1e1 = (β − 1)e3,

∇̃e2e3 = −αe1 + (1− β)e2 ∇̃e2e2 = (β − 1)e3, ∇̃e2e1 = 0,

∇̃e3e3 = 0 ∇̃e3e2 = −βe2, ∇̃e3e1 = −βe1.

Using (3.4) we get

R̃(e1, e2)e3 = 0, R̃(e2, e3)e3 = (β2 − α2 − 1)e2,

R̃(e1, e3)e3 = (β2 − α2 − 1)e1, R̃(e1, e2)e2 = α2e2 + (β2 + α2 − 1)e1,

R̃(e2, e3)e2 = (−β2 + α2 + 1)e3, R̃(e1, e3)e2 = 0,

R̃(e1, e2)e1 = (1− β2 − α2)e2, R̃(e2, e3)e1 = 0,

R̃(e1, e3)e1 = (1 + α2 − β2)e3.

From the above expressions of the curvature tensor we obtain

S(e1, e1) =

3∑
i=1

g(R(ei, e1)e1, ei) = −2.

Similarly, we have

S(e2, e2) = −2 and S(e3, e3) = −2.
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S̃(e1, e2) = S̃(e2, e2) = 2(β2 − 1) S̃(e3, e3) = 2(β2 − α2 − 1).

r = −6 r̃ = 6β2 − 2α2 − 6.

From above we see that r̃ = 0 for α = 0, β = 1. Therefore, the manifold under
consideration satisfies the Theorem 5.2.
Using (4.1) and above relations, we get

P (e1, e2)e3 = P (e1, e3)e3 = P (e2, e3)e3 = 0,

P̃ (e1, e2)e3 = P̃ (e1, e3)e3 = P̃ (e2, e3)e3 = 0.

Therefore, the manifold will be ξ-projectively flat on a three-dimensional trans-
Sasakian manifold with respect to the Schouten-van Kampen connection which
varifies the Theorem 4.1.
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