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Abstract. Let R be a semiprime ring, U a square-closed Lie ideal of R and D :
R × R → R a symmetric reverse bi-derivation and d be the trace of D. In the present
paper, we shall prove that R is commutative ring if any one of the following holds: i)
d(U) = (0), ii)d(U) ⊂ Z, iii)[d (x) , y] ∈ Z, iv)d(x)oy ∈ Z, v)d ([x, y]) ± [d(x), y] ∈ Z,
vi)d (x ◦ y) ± (d(x) ◦ y) ∈ Z, vii)d ([x, y]) ± d(x) ◦ y ∈ Z viii)d (x ◦ y) ± [d(x), y] ∈ Z,
ix)d(x)◦y±[d(y), x] ∈ Z, x)d([x, y])−(d(x)◦y)−[d(y), x] ∈ Z xi)[d(x), y]±[g(y), x] ∈ Z,
for all x, y ∈ U, where G : R × R → R is symmetric reverse bi-derivation such that g
is the trace of G.z
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1. Introduction

Throughout the paper, R will represent an associative ring with center Z. A ring
R is said to be prime if xRy = (0) implies that either x = 0 or y = 0 and semiprime if
xRx = (0) implies that x = 0, where x, y ∈ R. A prime ring is obviously semiprime.
For any x, y ∈ R, the symbol [x, y] stands for the commutator xy − yx and the
symbol xoy stands for the commutator xy + yx. An additive subgroup U of R
is said to be a Lie ideal of R if [u, r] ∈ U , for all u ∈ U, r ∈ R. U is called a
square-closed Lie ideal of R if U is a Lie ideal and u2 ∈ U for all u ∈ U . An
additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y) holds
for all x, y ∈ R. An additive mapping d : R → R is said to be a reverse derivation
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© 2021 by University of Nǐs, Serbia | Creative Commons License: CC BY-NC-ND
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if d(xy) = d(y)x + yd(x) holds for all x, y ∈ R. A mapping D(., .) : R × R → R is
said to be symmetric if D(x, y) = D(y, x) for all x, y ∈ R. A mapping d : R→ R is
called the trace of D(., .) if d(x) = D(x, x) for all x ∈ R.It is obvious that if D(., .) is
bi-additive (i.e., additive in both arguments), then the trace d of D(., .) satisfies the
identity d(x + y) = d(x) + d(y) + 2D(x, y), for all x, y ∈ R. If D(., .) is bi-additive
and satisfies the identities

D(xy, z) = D(x, z)y + xD(y, z)

and
D(x, yz) = D(x, y)z + yD(x, z),

for all x, y, z ∈ R. Then D(., .) is called a symmetric bi-derivation. If D(., .) is
reverse bi-additive and satisfies the identity

D(xy, z) = D(y, z)x + yD(x, z)

and
D(x, yz) = D(x, z)y + zD(x, y).

Then D(., .) is called a symmetric reverse bi-derivation.

The study of commuting mappings was initiaded by a well-known theorem due
to Posner [7] which stetes that the existence of a nonzero commuting derivation on
a prime ring R implies that R is commutative. A number of authors have extended
the Posner’s theorem in several ways. The notion of additive commuting mapping is
closely connected with the notion of bi-derivation. Every additive commuting map-
ping F : R→ R gives rise to a bi-derivation on R. Namely, linearizing [F (x), x] = 0,
we get [F (x), y] = [x, F (y)] and we note that the map (x, y) 7−→ [F (x), y] is a bi-
derivation. The concept of bi-derivation was introduced by Maksa in [5]. It is
shown in [6] that symmetric bi-derivations are related to general solution of some
functional equations. Some results concerning symmetric bi-derivations in prime
rings can found in [9] and [10].

In [4], Herstein showed that if R is a prime ring of characteristic different from
two and d is a nonzero derivation such that d(R) ⊂ Z, then R must be commutative.
Bergen et al. proved the following results in [2]: Let R be a prime ring of charac-
teristic different from 2, U a nonzero Lie ideal of R and d a nonzero derivation. If
d(U) ⊂ Z, then U ⊂ Z. Several authors investigated this result for a prime ring
admitting derivation or generalized derivation.

Many authors investigated the commutativity of prime or semiprime rings sat-
isfying certain functional identities involving derivation or generalized derivation.
In this paper, we extend some well known these results concerning of Lie ideals in
semiprime rings to a reverse bi-derivations. Throughout the present paper, we shall
make use of the following basic identities without any specific mentioning:
i) [x, yz] = y[x, z] + [x, y]z
ii) [xy, z] = [x, z]y + x[y, z]
iii) xyoz = (xoz)y + x[y, z] = x(yoz)− [x, z]y
iv) xoyz = y(xoz) + [x, y]z = (xoy)z + y[z, x].
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1.1. Results

Lemma 1.1. [1, Theorem 1.3] Let R be a 2− torsion free semiprime ring and U
a noncentral Lie ideal of R such that u2 ∈ U for all x ∈ U. Then there exists a
nonzero ideal I of R such that I ⊆ U.

Lemma 1.2. [3, Lemma 2 (b)] If R is a semiprime ring, then the center of a
nonzero ideal of R is contained in the center of R.

Lemma 1.3. [8, Theorem 2.1] Let R be a semiprime ring, I a nonzero two-sided
ideal of R and a ∈ R such that axa = 0 for all x ∈ I, then a = 0.

Lemma 1.4. Let R be a semiprime ring. If a nonzero ideal of R is in the center
of R, then R is a commutative ring.

Proof. By the hypothesis, we get

[x, r] = 0, for all x ∈ I, r ∈ R.

Replacing x by sx, s ∈ R in this equation and using this equation, we obtain that

[s, r]x = 0, for all x ∈ I, r ∈ R.

Thus, [R,R]I = (0). Multiplying this equation on the right by [R,R], we have
[R,R]I[R,R] = (0). By Lemma 3, we conclude that R is a commutative ring. The
proof is completed.

Theorem 1.1. Let R be a 2-torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R a symmetric reverse bi-derivation and d be the trace
of D. If d (U) = (0), then D = 0.

Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. By the
hypothesis, we have

d(x) = 0, for all x ∈ I.

Replacing x by x + y, y ∈ I in this equation and using the hypothesis, we get

2D(x, y) = 0, for all x, y ∈ I.

Since R is 2−torsion free, we have

D(x, y) = 0, for all x, y ∈ I.

Taking x by xr, r ∈ R in the above equation and using this equation, we obtain
that

D(r, y)x = 0, for all x, y ∈ I, r ∈ R.
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Replacing y by ys, s ∈ R, we have

D(r, s)yx = 0, for all x, y ∈ I, r, s ∈ R.

Multiplying this equation on the right by D(r, s)y, we get

D(r, s)yID(r, s)y = 0, for all y ∈ I, r, s ∈ R.

By Lemma 3, we arrive at

D(r, s)y = 0, for all y ∈ I, r, s ∈ R.

Again, multiplying this equation on the right by D(r, s), we find that

D(r, s)yD(r, s) = 0, for all y ∈ I, r, s ∈ R.

Using Lemma 3 in the above equation, we get D = 0. The proof is completed.

Theorem 1.2. Let R be a 2-torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R a symmetric reverse bi-derivation and d be the trace
of D. If d (U) ⊂ Z, then d is commuting on I where I is nonzero ideal of R.

Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. By our
hypothesis, we get

d(x) ∈ Z, for all x ∈ I.

Replacing x by x + y, y ∈ I in above expression, we get

d(x) + d(y) + 2D(x, y) ∈ Z, for all x, y ∈ I.

Using the hypothesis and R is 2−torsion free, we have

(1.1) D(x, y) ∈ Z, for all x, y ∈ I.

Commuting this term with r, r ∈ R, we get

[D(x, y), r] = 0, for all x, y ∈ I, r ∈ R.

Taking x by xs, s ∈ R in the last equation, we obtain that

[sD(x, y) + D(s, y)x, r] = 0, for all x, y ∈ I, r, s ∈ R.

Using equation (2.1), we get

[s, r]D(x, y) + D(s, y)[x, r] + [D(s, y), r]x = 0, for all x, y ∈ I, r, s ∈ R.

Replacing s by x in the last equation, we get

[x, r]D(x, y) + D(x, y)[x, r] + [D(x, y), r]x = 0, for all x, y ∈ I, r, s ∈ R.
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Applying equation (2.1), we see that

2[x, r]D(x, y) = 0, for all x, y ∈ I, r ∈ R.

Since R is 2−torsion free, we get

[x, r]D(x, y) = 0, for all x, y ∈ I, r ∈ R.

Using D(x, y) ∈ Z, we have

[x, r]tD(x, y) = 0, for all x, y ∈ I, r, t ∈ R.

Taking y by x, we have

[x, r]td(x) = 0, for all x,∈ I, r, t ∈ R.

Replacing r by d(x) in this equation, we find that

(1.2) [x, d(x)]td(x) = 0, for all x,∈ I, t ∈ R.

Multiplying this equation on the right by x, we get

[x, d(x)]td(x)x = 0, for all x,∈ I, t ∈ R.

Taking t by tx in equation (2.2), we find that

[x, d(x)]txd(x) = 0, for all x,∈ I, t ∈ R.

Subtracting two last equations, we arrive at

[x, d(x)]t[x, d(x)] = 0, for all x,∈ I, t ∈ R.

Since R is semiprime ring, we obtain that d is commuting on I. The proof is com-
pleted.

Theorem 1.3. Let R be a 2-torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R a symmetric reverse bi-derivation and d be the trace
of D. If [d (x) , y] ∈ Z, for all x, y ∈ U, then d is commuting on I where I is nonzero
ideal of R.

Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. By the
hypothesis, we get

[d(x), y] ∈ Z, for all x, y ∈ I.

Replacing y by yz in the hypothesis, we have

[d(x), y]z + y[d(x), z] ∈ Z, for all x, y, z ∈ I.

Commuting this term with r, r ∈ R, we get

[[d(x), y]z + y[d(x), z], r] = 0,
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and so,
[d(x), y][z, r] + [y, r][d(x), z] = 0 for all x, y, z ∈ I, r ∈ R.

Replacing r by z in the last equation, we obtain that

[y, z][d(x), z] = 0, for all x, y, z ∈ I.

Taking y by ty, t ∈ R in above equation, we see that

[t, z]y[d(x), z] = 0 for all x, y, z ∈ I, r ∈ R.

Replacing t by d(x), we get

[d(x), z]y[d(x), z] = 0, for all x, y, z ∈ I.

By Lemma 3, we have
[d(x), z] = 0, for all x, z ∈ I.

Using Lemma 2, we obtain that d(x) ∈ Z, for all x ∈ I. We conclude that d is
commuting on I by Theorem 2.

Theorem 1.4. Let R be a 2-torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R a symmetric reverse bi-derivation and d be the trace
of D. If d (x) ◦ y ∈ Z, for all x, y ∈ U, then d is commuting on I where I is nonzero
ideal of R.

Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. By the
hypothesis, we get

d (x) ◦ y ∈ Z, for all x, y ∈ I.

Taking y by yz in the last expression, we obtain that

y(d(x) ◦ z) + [d(x), y]z ∈ Z, for all x, y, z ∈ I.

Commuting this term with r, r ∈ R, we see that

(1.3) [d(x), y][z, r] + [y, r](d(x) ◦ z) + [[d(x), y], r]z = 0, for all x, y, z ∈ I, r ∈ R.

Taking z by zt, t ∈ R in the above equation, we get

[d(x), y][z, r]t+ [d(x), y]z[t, r] + [y, r](d(x) ◦ z)t+ [y, r]z[t, d(x)] + [[d(x), y], r]zt = 0.

Using equation (2.3), we get

[d(x), y]z[t, r] + [y, r]z[t, d(x)] = 0, for all x, y, z ∈ I, r, t ∈ R.

Replacing t by d(x) and r by y, we have

[d(x), y]z[d(x), y] = 0, for all x, y, z ∈ I.

By Lemma 3, we have
[d(x), z] = 0, for all x, z ∈ I.

We conclude that d is commuting on I by Theorem 2 and Lemma 2.
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Theorem 1.5. Let R be a 2-torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R a symmetric reverse bi-derivation and d be the trace
of D. If d ([x, y]) ± [d(x), y] ∈ Z, for all x, y ∈ U, then d is commuting on I where
I is nonzero ideal of R.

Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. By the
hypothesis, we have

d ([x, y])± [d(x), y] ∈ Z, for all x, y ∈ I.

Writting y by y + z, z ∈ I, we have

d ([x, y]) + d([x, z]) + 2D([x, y], [x, z])± [d(x), y]± [d(x), z] ∈ Z

By the hypothesis, we get
2D([x, y], [x, z]) ∈ Z.

Since R is 2−torsion free, we see that

D([x, y], [x, z]) ∈ Z, for all x, y ∈ I.

Replacing y by z in the last expression, we get

D([x, y], [x, y]) ∈ Z, for all x, y ∈ I.

That is,
d([x, y]) ∈ Z, for all x, y ∈ I.

By the hypothesis, we have

[d(x), y] ∈ Z, for all x, y ∈ I.

By Theorem 3, we conclude that d is commuting on I.

Theorem 1.6. Let R be a 2-torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R a symmetric reverse bi-derivation and d be the trace
of D. If d (x ◦ y)± (d(x) ◦ y) ∈ Z, for all x, y ∈ U, then d is commuting on I where
I is nonzero ideal of R.

Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We have

d (x ◦ y)± (d(x) ◦ y) ∈ Z, for all x, y ∈ I.

Taking y by y + z, z ∈ I, we get

d (x ◦ y) + d(x ◦ z) + 2D(x ◦ y, x ◦ z)± d(x) ◦ y ± d(x) ◦ z ∈ Z

By the hypothesis and since R is 2−torsion free, we have

D(x ◦ y, x ◦ z) ∈ Z.
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Replacing y by z in the this expression, we get

D(x ◦ y, x ◦ y) ∈ Z, for all x, y ∈ I,

and so,

d(x ◦ y) ∈ Z, for all x, y ∈ I.

Using the hypothesis, we obtain that

d(x) ◦ y ∈ Z, for all x, y ∈ I.

We see that d is commuting on I by Theorem 4.

Theorem 1.7. Let R be a 2−torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R a symmetric reverse bi-derivation and d be the trace
of D. If d ([x, y])± d(x) ◦ y ∈ Z , for all x, y ∈ U, then d is commuting on I where
I is nonzero ideal of R.

Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We have

d ([x, y])± (d(x) ◦ y) ∈ Z, for all x, y ∈ I.

Taking y by y + z, z ∈ I in the hypothesis, we get

d ([x, y]) + d([x, z]) + 2D([x, y], [x, z])± d(x) ◦ y ± d(x) ◦ z ∈ Z

Using the hypothesis and since R is 2−torsion free, we find that

D([x, y], [x, z]) ∈ Z.

Writting y by z in the above expression, we see that

D([x, y], [x, y]) ∈ Z, for all x, y ∈ I.

That is,

d ([x, y]) ∈ Z, for all x, y ∈ I.

By the hypothesis, we have

d(x) ◦ y ∈ Z, for all x, y ∈ I.

By Theorem 4, we obtain that d is commuting on I.

Theorem 1.8. Let R be a 2−torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R a symmetric reverse bi-derivation and d be the trace
of D. If d (x ◦ y)± [d(x), y] ∈ Z , for all x, y ∈ U, then d is commuting on I where
I is nonzero ideal of R.
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Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We get

d (x ◦ y)± [d(x), y] ∈ Z, for all x, y ∈ I.

Replacing y by y + z, z ∈ I, we get

d (x ◦ y) + d (x ◦ z) + 2D(x ◦ y, x ◦ z)± [d(x), y]± [d(x), z] ∈ Z.

Using the hypothesis and R is 2−torsion free, we have

D(x ◦ y, x ◦ z) ∈ Z.

Writting y by z in the last expression, we get

D(x ◦ y, x ◦ y) ∈ Z, for all x, y ∈ I,

and so, d (x ◦ y) ∈ Z, for all x, y ∈ I. Using the hypothesis, we have

[d(x), y] ∈ Z, for all x, y ∈ I.

We conclude that d is commuting on I by Theorem 3.

Theorem 1.9. Let R be a 2−torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R a symmetric reverse bi-derivation and d be the trace
of D. If d(x) ◦ y ± [d(y), x] ∈ Z, for all x, y ∈ U, then d is commuting on I where I
is nonzero ideal of R.

Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We have

d(x) ◦ y ± [d(y), x] ∈ Z, for all x, y ∈ I.

Replacing y by y + z, z ∈ I, we get

d(x) ◦ y + d(x) ◦ z ± 2[D(y, z), x]± [d(y), x]± [d(z), x] ∈ Z

Applying the hypothesis, we see that

2[D(y, z), x] ∈ Z.

Since R is 2−torsion free, we find that

[D(y, z), x] ∈ Z.

Replacing z by y in this expression, we get

[D(y, y), x] ∈ Z, for all x, y ∈ I

and so, [d(y), x] ∈ Z, for all x, y ∈ I. Using the hypothesis, we have

d(x) ◦ y ∈ Z, for all x, y ∈ I.

By Theorem 4, we conclude that d is commuting on I.
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Theorem 1.10. Let R be a 2−torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R, G : R×R→ R two symmetric reverse bi-derivations
where d is the trace of D and g is the trace of G. If [d(x), y]± [g(y), x] ∈ Z, for all
x, y ∈ U, then d is commuting on I where I is nonzero ideal of R.

Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We get

[d(x), y]± [g(y), x] ∈ Z, for all x, y ∈ I.

Taking y by y + z, z ∈ I, we get

[d(x), y] + [d(x), z]± [g(y), x]± [g(z), x]± 2[G(y, z), x] ∈ Z

Since R is 2−torsion free and using the hypothesis , we obtain

[G(y, z), x] ∈ Z.

Replacing y by z in the above expression, we have

[G(y, y), x] ∈ Z, for all x, y ∈ I.

That is,
[g(y), x] ∈ Z, for all x, y ∈ I.

We see that d is commuting on I by Theorem 3.

Theorem 1.11. Let R be a 2−torsion free semiprime ring, U a square-closed Lie
ideal of R and D : R×R→ R a symmetric reverse bi-derivation and d be the trace
of D. If d([x, y]) − (d(x) ◦ y) − [d(y), x] ∈ Z, for all x, y ∈ U, then d is commuting
on I where I is nonzero ideal of R.

Proof. By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. By the
hypothesis, we obtain that

d([x, y])− (d(x) ◦ y)− [d(y), x] ∈ Z, for all x, y ∈ I.

Taking y by y + z, z ∈ I, we get

d([x, y]) + d([x, z]) + 2D([x, y], [x, z])

− d(x) ◦ y − d(x) ◦ z − [d(y), x]− [d(z), x]− 2[D(y, z), x] ∈ Z.

Using the hypothesis, we have

D([x, y], [x, z])− [D(y, z), x] ∈ Z.

Replacing y by z in this expression, we see that

D([x, y], [x, y])− [D(y, y), x] ∈ Z, for all x, y ∈ I.
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That is,
d([x, y])− [d(y), x] ∈ Z, for all x, y ∈ I.

Hence we can write

d([x, y])− [d(y), x]− d(y) ◦ x + d(y) ◦ x ∈ Z

and using the hypothesis, we get

d(y) ◦ x ∈ Z, for all x, y ∈ I.

By Theorem 4, we conclude that d is commuting on I.
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