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Abstract. For a graph G = (V,E), a sequence S = (v1, . . . , vk) of distinct vertices of G
it is called a dominating sequence if NG[vi] \

⋃i−1

j=1
N [vj ] 6= ∅ and is called a total dom-

inating sequence if NG(vi) \
⋃i−1

j=1
N(vj) 6= Ø for each 2 ≤ i ≤ k. The maximum length

of (total) dominating sequence is denoted by (γt
gr) γgr(G). In this paper we compute

(total) dominating sequence numbers for generalized corona products of graphs.
Keywords: dominating sequence; total dominating sequence; generalized corona prod-
ucts.

1. Introduction

In this paper, G is a simple graph with the vertex set V = V (G) and the
edge set E = E(G). For notation and graph theoretical terminology, we generally
follow [8]. The order |V | and the size |E| of G is denoted by n = n(G) and
m = m(G), respectively. For every vertex v ∈ V , the open neighborhood NG(v) of
v is the set {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is the set
NG[v] = NG(v) ∪ {v}. The degree of a vertex v ∈ V is degG(v) = dG(v) = |NG(v)|.
Theminimum degree and themaximum degree of a graphG are denoted by δ = δ(G)
and ∆ = ∆(G), respectively. We write Pn for the path of order n, Cn for the cycle
of order n, and Kn for the complete graph of order n. A subset D of V (G) is called
a dominating set of G if every vertex of G is either in D or adjacent to at least
one vertex in D. The domination number of G, denoted by γ(G), is the number
of vertices in a smallest dominating set of G. A total dominating set of G is a
set D of vertices of G such that every vertex is adjacent to a vertex in D. The
total domination number of G, denoted by γt(G), is the minimum cardinality of a
total dominating set. A dominating set of cardinality γ(G) (γt(G)) is called a γ-set
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(γt-set). For further information about various domination sets in graphs, we refer
reader to [9, 10].

Let G be a graph of order n and letH1, H2, . . . , Hn, be n graphs. The generalized
corona product, is the graph obtained by taking one copy of graphsG,H1, H2, · · · , Hn

and joining the ith vertex of G to every vertex of Hi. This product is denoted by
G◦∧n

i=1Hi. If each Hi is isomorphic to a graph H , then generalized corona product
is called the corona product of G and H and is denoted by G ◦H .

Let G be a graph of size m and H be a graph. The edge corona product, denoted
by G ⋄H , is the graph obtained by taking one copy of G and m copies of H , and
then joining two end-vertices of the ith edge ei of G to every vertex of ith copy of
H . The neighborhood corona, denoted by G ⋆H , is the graph obtained by taking n
copies of H and for each i, 1 ≤ i ≤ n, the ith copy of H being adjacent to vertices
of NG[vi]. It is not difficult to see that G⋄H is the same as G◦∧n

i=1Hi, where each
Hi is a disjoint union of deg(vi) copies of H and G ⋆ H is the same as G ◦ ∧n

i=1Hi,
where each Hi is a disjoint union of deg(vi) + 1 copies of H .

Based on the domination number and the total domination number, various
Grundy domination invariants have been introduced in recent years by some authors
[1, 5, 6] and then they continued the study of these concepts in [3, 2, 4, 7].

In [5] the first type of Grundy dominating sequence was introduced. Let S =
(v1, . . . , vk) be a sequence of distinct vertices of a graph G. The corresponding

set {v1, . . . , vk} of vertices from the sequence S will be denoted by Ŝ. A sequence
S = (v1, . . . , vk) is called a closed neighborhood sequence if, for each i,

NG[vi] \

i−1⋃

j=1

NG[vj ] 6= Ø.

If for a closed neighborhood sequence S, the set Ŝ is a dominating set of G, then S
is called a dominating sequence of G. Clearly, if S = (v1, v2, . . . , vk) is a dominating
sequence for G, then k ≥ γ(G). We call the maximum length of a dominating se-
quence in G the Grundy domination number of G and denote it by γgr(G). The cor-
responding sequence is called a Grundy dominating sequence of G or γgr-sequence
of G.

Total dominating sequences were introduced in [6], when G is a graph without
isolated vertices. Using the same notation as in the previous paragraph, we say
that a sequence S = (v1, . . . , vk) is called an open neighborhood sequence if, for each
2 ≤ i ≤ k,

NG(vi) \

i−1⋃

j=1

NG(vj) 6= Ø.

Any open neighborhood sequence S, where Ŝ is a total dominating set is called a
total dominating sequence. The maximum length of a total dominating sequence
in G is called the Grundy total domination number of G and denoted by γt

gr(G).



Grundy Domination Sequences 1233

The corresponding sequence is called a Grundy total dominating sequence of G or
a γt

gr-total sequence.

An additional variant of the Grundy (total) domination number was introduced
in [1]. Let G be a graph without isolated vertices. A sequence S = (v1, . . . , vk),
where vi ∈ V (G), is called a Z − sequence if for each i,

NG(vi) \

i−1⋃

j=1

NG[vj ] 6= Ø.

Then the Z-Grundy domination number γZ
gr(G) of the graph G is the length of a

longest Z-sequence.

Let S1 = (v1, . . . , vn) and S2 = (u1, . . . , um), n,m ≥ 1, be two sequences in

G, with Ŝ1 ∩ Ŝ2 = Ø. The concatenation of S1 and S2 is defined as the sequence
S1 ⊕ S2 = (v1, . . . , vn, u1, . . . , um). Clearly ⊕ is an associative operation on the set
of all sequences, but is not commutative. If S2 = {v}, then S1 ⊕ S2 is denoted by
S1 ⊕ v.

In the next section, we compute Grundy domination numbers for generalized
corona products of graphs and based on, we find Grundy domination numbers of
edge and neighborhood corona products of graphs.

2. Main Results

In this section we give the exact value of (total) Grundy domination numbers for
generalized corona products, and compute them for corona product of some special
graphs. First we state two necessary known propositions.

Proposition 2.1. [6] For n ≥ 4 even, γt
gr(Pn) = n and γt

gr(Cn) = n − 2, while
for n ≥ 3 odd, γt

gr(Pn) = γt
gr(Cn) = n− 1.

Proposition 2.2. [5, 1] For n ≥ 3, γgr(Cn) = γZ
gr(Cn) = n− 2, while for n ≥ 2,

γgr(Pn) = γZ
gr(Pn) = n− 1.

we are now state and proof the our first main result.

Theorem 2.1. Let G and H1, H2, . . . , Hn be n+1 graphs without isolated vertices.
Then

γgr(G ◦ ∧n
i=1Hi) =

n∑

i=1

γgr(Hi) + γZ
gr(G).

Proof. Set K = G ◦ ∧n
i=1Hi. Let S = (v1, . . . , vk) be a Z-Grundy sequence of G

and Si be a γgr-sequence of Hi for 1 ≤ i ≤ n. It is not difficult to see that

S1 ⊕ v1 ⊕ S2 ⊕ v2 ⊕ . . .⊕ Sk ⊕ vk ⊕ Sk+1 ⊕ Sk+2 ⊕ . . .⊕ Sn
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is a dominating sequence for K. This implies that γgr(K) ≥
∑n

i=1 γgr(Hi)+γZ
gr(G).

Let T be a γgr-sequence of K such that |T̂
⋂
V (G)| is minimum among all

γgr-sequences. Suppose that T̂
⋂
V (G) = {v1, . . . , vt}, where (v1, . . . , vt) is a subse-

quence of T . If t > γZ
gr(G), then (v1, . . . , vt) is not a Z-sequence forG and thus, there

exists 1 ≤ l ≤ t such that NG(vl)\
⋃l−1

i=1 NG[vi] = ∅. But NK [vl]\
⋃l−1

i=1 NK [vi] 6= ∅,

since (v1, . . . , vt) is a sub-sequence of T . If T̂
⋂
V (Hl) 6= ∅, then there exists an ele-

ment z ∈ V (Hl) such that one of the (v1, . . . , vl, z) or (v1, . . . , vi−1, z, vi, . . . , vl) is a

subsequence of T . If (v1, . . . , vl, z) is a subsequence of T , then NK [z]\
⋃l

i=1 NK [vi] =
Ø, which is a contradiction. Hence (v1, . . . , vi−1, z, vi, . . . , vl) is a subsequence of

T . Therefore there exists x ∈ NK [vl] \
⋃l−1

i=1 NK [vi]
⋃
NK [z]. Since vl ∈ NK [z] and

NG(vl) \
⋃l−1

i=1 NG[vi] = Ø, we conclude that x 6= vl. In addition, x ∈ V (Hl) and

x, z are not adjacent vertices, and x /∈ T̂ . Now, by replacing vl by x in T , we obtain
a γgr-sequence T ′, such that |T̂ ′

⋂
V (G)| < |T̂

⋂
V (G)|, which is a contradiction.

Hence T̂
⋂
V (Hl) = Ø. Again consider a vertex x ∈ V (Hl) and put x instead of

vl in T . Then we obtain a γgr-sequence T ′ such that the size of intersection of

T̂ ′ and V (G) is less than the size of intersection of T̂ and V (G). This is a con-
tradiction and so we conclude that |T̂

⋂
V (G)| ≤ γZ

gr(G). It is not difficult to see

|T̂
⋂
V (Hi)| ≤ γgr(Hi) for 1 ≤ i ≤ n and thus γgr(K) ≤

∑n

i=1 γgr(Hi)+γZ
gr(G).

The following corollary is an easy consequence of Theorem 2.1 and Proposition
2.2.

Corollary 2.1. For n,m ≥ 3

γgr(Cn ◦ Cm) = n(m− 1)− 2, γgr(Pn ◦ Pm) = mn− 1,

γgr(Cn ◦ Pm) = nm− 2, γgr(Pn ◦ Cm) = n(m− 1)− 1.

we are now stat and proof our second main result.

Theorem 2.2. Let G andH1, H2, . . . , Hn be graphs without isolated vertices. Then

γt
gr(G ◦ ∧n

i=1Hi) =

n∑

i=1

γt
gr(Hi) + γZ

gr(G).

Proof. Consider the sequence

T = S1 ⊕ v1 ⊕ S2 ⊕ v2 ⊕ . . .⊕ Sk ⊕ vk ⊕ Sk+1 ⊕ Sk+2 ⊕ . . .⊕ Sn,

where S = (v1, . . . , vk) is a Z-Grundy sequence of G and Si’s are γt
gr-sequences of

Hi’s for 1 ≤ i ≤ n. We show that T is a γt
gr-sequence for K = G ◦ ∧n

i=1Hi. Let

x ∈ T̂ . Hence there exists either 1 ≤ i ≤ n such that x ∈ Ŝi or 1 ≤ j ≤ k for which
x = vj . If x = vj , then there exists y ∈ NG(vj) \

⋃j−1
t=1 NG[vt]. Hence y 6= vt for
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1 ≤ t ≤ j− 1 and therefore y ∈ NK(vj)\
⋃j−1

t=1 NK [vt]
⋃
(
⋃j

t=1 Nk[St]). This implies
that

NK(vj) \

j−1⋃

t=1

NK [vt]
⋃

(

j⋃

t=1

NK [St]) 6= Ø.

The same argument can be apply when x ∈ Ŝi. Since clearly T̂ is a total dominating
set, we conclude that T is a total dominating sequence of G. Hence

γt
gr(K) ≥

n∑

i=1

γt
gr(Hi) + γZ

gr(G).

Now suppose that T is a γt
gr-sequence of K such that |T̂

⋂
V (G)| is minimum

among all γt
gr-sequences of G. Suppose that T̂

⋂
V (G) = {v1, . . . , vt} and t >

γZ
gr(G). Hence (v1, . . . , vt) is not a Z-sequence for G. Therefore, there exists 1 ≤

l ≤ t such that NG(vl)\
⋃l−1

i=1 NG[vi] = Ø. If T̂
⋂
V (Hl) = Ø, then by replacing vl by

x ∈ V (Hl), we can construct a γt
gr-sequence T

′ such that |T̂ ′
⋂
V (G)| < |T̂

⋂
V (G)|,

which is a contradiction. Hence T̂
⋂
V (Hl) 6= Ø. If there exists x ∈ T̂

⋂
V (Hl)

such that x appears after vl in the sequence T , then (vl, x) is a subsequence of

T and NK(x) \ NK(vl) 6= Ø. Since NG(vl) \
⋃l−1

i=1 NG[vi] = Ø, we conclude that

NK(x) \ NK(vl) = {vl} and hence T̂
⋂
V (Hl) = {x}. Now choose y ∈ N(x) and

replace vl by y in T . Again we obtain a γt
gr-sequence T ′ such that |T̂ ′

⋂
V (G)| <

|T̂
⋂
V (G)|, which is a contradiction. Hence all elements of T̂

⋂
V (Hl) appear

before vl in the sequence T . Hence there exists y ∈ V (Hl) such that y ∈ NK(vl) \⋃
x∈T̂

⋂
V (Hl)

NK(x). Since degHl
(y) ≥ 1, there exists z ∈ V (Hl) which is adjacent

to y. Clearly z /∈ T̂ and by changing vl with z, we get a γt
gr-sequence T ′ such

that |T̂ ′
⋂
V (G)| < |T̂

⋂
V (G)|, which is a contradiction. This argument implies

that |T̂
⋂
V (G)| ≤ γZ

gr(G). One can easily check that |T̂
⋂
V (Hi)| ≤ γt

gr(Hi) for

1 ≤ i ≤ n and so we conclude that γt
gr(K) ≤

∑n

i=1 γ
t
gr(Hi) + γZ

gr(G).

Corollary 2.2. Let G be a graph of order n and size m and H be a graph without
isolated vertices. Then γgr(G ⋄H) = 2mγgr(H) + γZ

gr(G) and γt
gr(G ⋆ H) = (2m+

n)γt
gr(H) + γZ

gr(G).

Proof. Note that G ⋄H is the same as G ◦ ∧n
i=1Hi, where Hi is the disjoint union

of deg(vi) copies of H . Hence by Theorem 2.1,

γgr(G ⋄H) = γgr(G ◦ ∧n
i=1Hi) =

n∑

i=1

γgr(Hi) + γZ
gr(G) = 2mγgr(H) + γZ

gr(G).

The proof of the second part of the corollary is similar.

Corollary 2.3. Let G be a connected graph of order n. Then γt
gr(G ◦K1) = 2n.
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Proof. Suppose that V (G) = {v1, . . . , vn} is the vertex set of G. It is not difficult to
see that sequence (u1, u2, . . . , un, v1, v2, . . . , vn), where ui is the vertex of K1, which
is adjacent to vi, is a Grundy total domination sequence of G ◦K1.

Corollary 2.4. Let G be a nontrivial connected graph of order n. Then γt
gr(G ◦

H) = nγt
gr(H) + γZ

gr(G), for any nontrivial connected graph H.

As a similar argument to proof of Theorem 2.1, we can find the Z-Grundy domina-
tion number of corona product of graphs.

Theorem 2.3. Let G and H1, H2, . . . , Hn be n+1 graphs without isolated vertices.
Then

γZ
gr(G ◦ ∧n

i=1Hi) =

n∑

i=1

γZ
gr(Hi) + γZ

gr(G).
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