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Abstract. The class of constacyclic codes plays an important role in the theory or
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1. Introduction

Coding theory was first established on a firm basis in 1948 in Claude Shannon’s
publication [23]. Since then, many researchers have worked on this topic from both
theoretical and application perspectives. The study of linear codes has been of great
importance and different classes of them were introduced such as cyclic codes, ne-
gacyclic codes and constacyclic codes. However, the latter constitutes a remarkable
generalization of cyclic and negacyclic codes. Constacyclic codes form an important
class of linear codes. They have practical applications and preferred roles in engi-
neering as they can encode with shift registers. For more details about coding the-
ory, the reader may refer to [14, 16]. Algebraic hyperstructures represent a natural
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generalization of classical algebraic structures and they were introduced by Marty
[17] in 1934 at the eighth Congress of Scandinavian Mathematicians. Where he gen-
eralized the notion of a group to that of a hypergroup. A hypergroup is a non-empty
set equipped with an associative hyperoperation and reproductive hyperoperation.
In a group, the composition of two elements is an element whereas in a hypergroup,
the composition of two elements is a non-empty set. Since then, many different
kinds of hyperstructures (hyperring, hypermodule, hypervector space, . . . ) were
widely studied from the theoretical point of view and for their applications to many
subjects of pure and applied mathematics (see [1, 2, 3, 4, 6, 7, 8, 10, 12, 20, 26, 27]).
There exists different kinds of hyperrings. A special case of this type is the hyper-
ring introduced by Krasner [15]. Also, Krasner introduced a new class of hyperrings
and hyperfields: the quotient hyperrings and hyperfields. For more details about
Krasner hyperrings we refer to [10, 15, 18, 21, 22]. Linear codes were assigned a
certain algebraic structure where different researchers studied them over finite fields
(see [13, 14]). Later, a connection between code theory and hyperstructure theory
was established by Tallini in [24]. Davvaz et al. in [11] used the latter connection to
study a certain classes of linear codes (cyclic and quasicyclic) over finite hyperrings.

Our paper is concerned about a special class of linear codes over finite hyper-
fields and it is organized as follows: after an Introduction, in Section 2, present
some basic definitions about hyperstructures. In Section 3, we use the definition of
the hyperring of polynomials from [11] to introduce some new definitions such as
divisors of a polynomial in a hyperring and investigate their properties. In Section
4, we define contacyclic codes over finite hyperfields and we characterize them by
their generating polynomial and parity check polynomial. Moreover, we present a
construction technique of constacyclic codes over finite hyperfields.

2. Basic definitions

In this section, we present some definitions related to hyperstructures that are used
throughout the paper (see [5, 8, 10, 11]).

Let H be a non-empty set. Then, a mapping ◦ : H × H → P∗(H) is called a
binary hyperoperation on H, where P∗(H) is the family of all non-empty subsets of
H. The couple (H, ◦) is called a hypergroupoid. In this definition, if A and B are two
non-empty subsets of H and x ∈ H, then we define A◦B =

⋃
a∈A,b∈B a◦ b, x◦A =

{x} ◦A and A ◦ x = A ◦ {x}. A hypergroupoid (H, ◦) is called: a semihypergroup if
for every x, y, z ∈ H, we have x ◦ (y ◦ z) = (x ◦ y) ◦ z; a quasihypergroup if for every
x ∈ H, x ◦ H = H = H ◦ x (this condition is called the reproduction axiom); a
hypergroup if it is a semihypergroup and a quasihypergroup. A Krasner hyperring
is an algebraic structure (R,+, ·) which satisfies the following axiom: (1) (R,+) is
a commutative hypergroup; (2) there exists 0 ∈ R such that 0 + x = {x} for all
x ∈ R; (3) for every x ∈ R there exists unique x′ ∈ R such that 0 ∈ x + x′; (x′ is
denoted by −x); (4) z ∈ x+ y implies that y ∈ −x+ z and x ∈ z− y; (5) (R, ·) is a
semigroup having zero as a bilaterally absorbing element, i.e., x · 0 = 0 · x = 0; (6)
the multiplication “·” is distributive with respect to the hyperoperation “+”. Note
that every ring is a Krasner hyperring. Different examples of Krasner hyperrings
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were constructed. We refer to [8]. Let (R,+, ·) be a Krasner hyperring and A be a
non-empty subset of R. Then A is said to be a subhyperring of R if (A,+, ·) is itself
a hyperring. A subhyperring A of a Krasner hyperring (R,+, ·) is a hyperideal of
R if r · a ∈ A (a · r ∈ A) for all a ∈ A, r ∈ R. A commutative Krasner hyperring
(R,+, ·) with identity element “1” is a Krasner hyperfield if (R \ {0}, ·) is a group.
An additive-multiplicative hyperring is an algebraic structure (R,+, ·) which satisfies
the following axiom: (1) (R,+) is a commutative hypergroup; (2) exists 0 ∈ R such
that 0 + x = {x} for all x ∈ R; (3) for every x ∈ R there exists unique x′ ∈ R
such that 0 ∈ x+ x′, (x′ is denoted by −x); (4) z ∈ x+ y implies that y ∈ −x+ z
and x ∈ z − y; (5) (R, ·) is a semihypergroup having zero as a bilaterally absorbing
element, i.e., x·0 = 0·x = 0; (6) the multiplication “·” is distributive with respect to
the hyperoperation “+”; (7) for all x, y ∈ R, we have x · (−y) = (−x) · y = −(x · y).
An additive-multiplicative hyperring (R,+, ·) is called commutative if (R, ·) is a
commutative semihypergroup. Tallini in [25] introduced the notion of hypervector
spaces and studied basic properties of them. Later R. Ameri et al. in [5] studied the
properties of dimension of hypervector spaces and introduced the notions of linearly
independent (respectively linearly dependent), generator and basis of a hypervector
space. Let F be a Krasner hyperfield. A commutative hypergroup (V,+) together
with a map · : F × V → V , is called a hypervector space over F if for all a, b ∈ F
and x, y ∈ V , the following conditions holds: (1) a · (x + y) = a · x + a · y; (2)
(a+ b) ·x = a ·x+ b ·x; (3) a · (b ·x) = (ab) ·x; (4) a · (−x) = (−a) ·x = −(a ·x); (5)
x = 1 · x. For example, if F is a Krasner hyperfield and n is any positive integer,
then Fn is a hypervector space over F . Let F be a Krasner hyperfield and (V,+)
be a hypervector space over F . A non-empty subset A ⊆ V is called subhypervector
space of V if for all x, y ∈ A and a ∈ F : (1) x − y ⊆ A; (2) a · x ⊆ A. A subset
S = {v1, v2, · · · , vn} of a hypervector space V over a Krasner hyperfield F is called
linearly independent if c1, c2, · · · , cn ∈ F and 0 ∈ c1 · v1 + c2 · v2 + · · · + cn · vn
then c1 = c2 = · · · = cn = 0. A subset S of V is called linearly dependent if it
is not linearly independent. A subset S = {v1, v2, · · · , vn} of a hypervector space
V over a Krasner hyperfield F is said to span V if for every vector v ∈ V , there
exists c1, c2, · · · , cn ∈ F such that v ∈ c1 · v1 + c2 · v2 + · · · + cn · vn. A basis for
a hypervector space V is a linearly independent subset of V such that it spans V .
We say that V is finite dimensional if it has a finite basis.

3. Hyperring of polynomials over Krasner hyperfields

In this section, we present the results of Davvaz et al. in [9, 11] about polynomial
hyperrings and present more results related to them by introducing new definitions.

Let (R,+, ·) be a commutative additive multiplicative hyperring and a, b ∈ R.
Then a is a divisor of b, denoted as a|b if there exists x ∈ R such that b ∈ a · x. If
a ∈ R and B ⊆ R, then by a|B we mean that a|b for all b ∈ B.

Lemma 3.1. Let (R,+, ·) be a commutative additive multiplicative hyperring and
a, b, c ∈ R. If a|b and b|c, then a|c.

Proof. Since a|b, b|c, it follows that there exists x, y ∈ R such that b ∈ ax and
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c ∈ by. The latter implies that c ∈ (ax)y = a(xy). Thus, there exists r ∈ xy such
that c ∈ ar. Therefore, a|c.

Lemma 3.2. Let (R,+, ·) be a commutative additive multiplicative hyperring and
a, b, c ∈ R. If a|b and a|c then a|(bs+ ct) for all s, t ∈ R.

Proof. Since a|b, a|c, it follows that there exists x, y ∈ R such that b ∈ ax and
c ∈ ay. The latter implies that bs ⊆ axs and ct ⊆ ayt. We get now that bs+ ct ⊆
axs+ ayt = a(xs+ yt). Thus, for every r ∈ bs+ ct there exists k ∈ (xs+ yt) such
that r ∈ ak. Therefore, a|(bs+ ct).

In [11], Davvaz et al. defined two hyperoperations on R[x], the set of all polynomials
over R, as follows: for f(x) =

∑n
i=0 aix

i, g(x) =
∑m
i=0 bix

i ∈ R[x],

f(x)⊕ g(x) =
{ M∑
i=0

cix
i : ci ∈ ai + bi,M = max{m,n}

}
,

f(x)� g(x) =
{m+n∑
k=0

ckx
k : ck ∈

∑
i+j=k

aibj

}
.

Let (R,+, ·) be a Krasner hyperring with unit element 1, where for all a, b ∈ R,
a · (−b) = (−a) · b = −(a · b) and x be an indeterminate. Then (R[x],⊕,�) is
an additive multiplicative hyperring [11]. It is easy to see that if F is a Krasner
hyperfield with the property a · (−b) = (−a) · b = −(a · b) for all a, b ∈ F then F [x]
is a commutative additive-mutiplicative hyperring.

Theorem 3.1. [11] Let F be a Krasner hyperfield and f(x), g(x) ∈ F [x]. If h(x) ∈
f(x)� g(x) then deg(h(x)) = deg(f(x)) + deg(g(x)).

Corollary 3.1. Let F be a Krasner hyperfield and fi(x) ∈ F [x] for i = 1, 2, · · · k.
If h(x) ∈ f1(x)� · · · � fk(x) then deg(h(x)) = deg(f1(x)) + · · ·+ deg(fk(x)).

Proof. The proof follows from Theorem 3.1 and by induction on i.

Theorem 3.2. [11] (Division Algorithm) Let (F,+, ·) be a Krasner hyperfield with
unit element 1 where for all a, b ∈ R, a·(−b) = (−a)·b = −(a·b). If a(x), b(x) ∈ F [x]
and b(x) 6= 0 then there exists a pair of polynomials q(x), r(x) ∈ F [x] such that

a(x) ∈ q(x)� b(x)⊕ r(x), deg(r(x)) < deg(b(x)).

For simplicity, instead of f(x) ⊕ g(x), f(x) � g(x) we write f(x) + g(x), f(x)g(x)
respectively. Let F be a Krasner hyperfield with unit element 1 where for all
a, b ∈ F , a · (−b) = (−a) · b = −(a · b) and f(x), g(x), d(x) ∈ F [x]. Then d(x) =
gcd(f(x), g(x)) if the following axioms are satisfied: (1) d(x)|f(x) and d(x)|g(x);
(2) if there exists e(x) ∈ F [x] such that e(x)|f(x) and e(x)|g(x) then e(x)|d(x); (3)
d(x) is monic. If no such element exists, we say that gcd(f(x), g(x)) does not exist.
If gcd(f(x), g(x)) = 1 then we say that f(x) and g(x) are coprime.
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Proposition 3.1. Let F be a Krasner hyperfield with unit element 1 where for all
a, b ∈ R, a · (−b) = (−a) · b = −(a · b) and f(x), g(x) ∈ F [x] such that f(x)|g(x)
and g(x)|f(x). Then there exists k ∈ F \ {0} such that f(x) = kg(x). Moreover, if
f(x) and g(x) are both monic then f(x) = g(x).

Proof. Since f(x)|g(x) and g(x)|f(x), it follows that there exists d(x), e(x) ∈ F [x]
such that g(x) ∈ f(x)d(x) and f(x) ∈ g(x)e(x). The latter implies that g(x) ∈
g(x)e(x)d(x). Corollary 3.1 implies that deg(g(x)) = deg(g(x)) + deg(d(x)) +
deg(e(x)). Thus, d(x), e(x) ∈ F , i.e., there exists a, k ∈ F such that g(x) ∈ {af(x)}
and f(x) ∈ {kg(x)}. Therefore, f(x) = kg(x). If f(x), g(x) are monic, then
k = 1.

Proposition 3.2. Let F be a Krasner hyperfield with unit element 1 where for all
a, b ∈ R, a · (−b) = (−a) · b = −(a · b) and f(x), g(x), d(x) ∈ F [x]. If gcd(f(x), g(x))
exists then it is unique.

Proof. Let d(x), e(x) be two monic polynomials in F [x] such that d(x) = gcd(f(x),
g(x)) and e(x) = gcd(f(x), g(x)). Then d(x)|e(x) and e(x)|d(x). Proposition 3.1
implies that d(x) = e(x).

Proposition 3.3. Let F be a Krasner hyperfield with unit element 1, where for
all a, b ∈ R, a · (−b) = (−a) · b = −(a · b) and f(x), g(x), q(x), r(x) ∈ F [x] and
k ∈ F \ {0}. Then the following holds: (1) gcd(f(x), g(x)) = gcd(g(x), f(x));
(2) gcd(f(x), gcd(g(x), h(x))) = gcd(gcd(f(x), g(x)), h(x)); (3) gcd(kf(x), g(x)) =
gcd(f(x), g(x)); (4) if f(x)|g(x) and f(x) has leading coefficient an ∈ F \ {0}
then gcd(f(x), g(x)) = a−1n f(x); (5) if f(x) ∈ q(x)g(x) + r(x) and g(x) 6= 0 then
gcd(f(x), g(x)) = gcd(g(x), r(x)).

Proof. The proofs of (1) and (2) are straightforward.
(3) Let d(x) = gcd(kf(x), g(x)) and e(x) = gcd(f(x), g(x)) be two monic poly-

nomials in F [x]. Since d(x)|kf(x), it follows that there exists p(x) ∈ F [x] such that
kf(x) ∈ d(x)p(x). We get that f(x) = k−1kf(x) ∈ k−1d(x)p(x) = d(x)(k−1p(x)).
The latter implies that d(x)|f(x). Having d(x)|g(x) implies that d(x)|e(x). In a
similar manner, we get that e(x)|d(x). Proposition 3.1 completes the proof.

(4) Let d(x) = gcd(f(x), g(x)). Having a−1n f(x)|f(x) and a−1n f(x)|g(x) implies
that a−1n f(x)|d(x). On the other hand, d(x)|f(x) implies that d(x)|a−1n f(x). There-
fore, by means of Proposition 3.1, d(x) = a−1n f(x).

(5) Let d(x) = gcd(f(x), g(x)) and e(x) = gcd(g(x), r(x)) be two monic polyno-
mials in F [x]. Since f(x) ∈ q(x)g(x) + r(x) and R[x] is a commutative additive-
multiplicative hyperring, it follows that r(x) ∈ f(x)− q(x)g(x). Having d(x)|f(x),
d(x)|g(x) implies, by Proposition 3.2, that d(x)|r(x). Thus, d(x)|e(x). On the other
hand, from e(x)|g(x) and e(x)|r(x) we conclude that e(x)|(q(x)g(x) + r(x)). Thus,
e(x)|f(x). We obtain now that e(x)|d(x). Proposition 3.1 completes the proof.

Theorem 3.3. Let F be a Krasner hyperfield with unit element 1 where for all
a, b ∈ R, a ·(−b) = (−a) ·b = −(a ·b) and f(x), g(x) ∈ F [x]. If gcd(f(x), g(x)) exists
then it is an element in M where M =

⋃
{s(x)f(x) + t(x)g(x) : s(x), t(x) ∈ F [x]}.
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Proof. Let M =
⋃
{s(x)f(x) + t(x)g(x) : s(x), t(x) ∈ F [x]} 6= Ø as f(x) = 1f(x) +

0g(x) ∈ M . Let e(x) be a monic polynomial in M with minimum degree ≥ 0. By
division algorithm, there exists q(x), r(x) ∈ F [x] such that f(x) ∈ q(x)e(x) + r(x)
with deg(r(x)) < deg(e(x)). We get that r(x) ∈ f(x) − q(x)e(x). Since e(x) is a
linear combination of f(x) and g(x), it follows that r(x) ∈ f(x) − q(x)e(x) ⊆ M .
Having e(x) with minimum degree in M implies that r(x) = 0 and consequently,
e(x)|f(x). In a similar manner, we get e(x)|g(x). Thus, e(x)| gcd(f(x), g(x)) =
d(x). Since d(x)|f(x), d(x)|g(x), it follows that d(x)|(s(x)f(x) + t(x)g(x)) for all
s(x), t(x) ∈ F [x]. Thus, d(x)|e(x). Proposition 3.1 asserts that d(x) = e(x).

Let F be a Krasner hyperfield with unit element 1 where for all a, b ∈ R, a · (−b) =
(−a) · b = −(a · b) and f(x), g(x),m(x) ∈ F [x]. Then m(x) = lcm(f(x), g(x)) if
the following axioms are satisfied: (1) f(x)|m(x) and g(x)|m(x); (2) if there exists
n(x) ∈ F [x] such that f(x)|n(x) and g(x)|n(x) then m(x)|n(x); (3) m(x) is monic.

Proposition 3.4. Let F be a Krasner hyperfield with unit element 1 where for all
a, b ∈ R, a · (−b) = (−a) ·b = −(a ·b) and f(x), g(x), d(x) ∈ F [x]. If lcm(f(x), g(x))
exists then it is unique.

Proof. The proof is similar to that of Proposition 3.2.

Example 3.1. Let F2 = {0, 1} and define (F2,+) and (F2, ·) by Table 3.1 and Table 3.2
respectively. It is easy to see that (F2,+, ·) is a Krasner hyperfield. Moreover, it is easy

Table 3.1: Cayley’s table of (F2,+)

+ 0 1
0 0 1
1 1 F2

Table 3.2: Cayley’s table of (F2, ·)

· 0 1
0 0 0
1 0 1

to see that x and x+ 1 are coprime and that gcd(x2 + 1, x2 + x+ 1) = x+ 1.

4. Construction of λ-constacyclic codes over finite Krasner hyperfields
and their dual

In [13], H.Q. Dinh studied constacyclic codes over finite fields. In this section,
we study constacyclic codes and their dual over finite hyperfields. We recall the
following definitions from [14].
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Let Q = {a1, · · · , ar} be a set of r elements. An r-ary code C of length n is a
non empty subset of Qn. And every element in C is called a codeword. Let A ⊆ Q
and C be a code of length n (a non empty subset of Qn). The subcode C|A of C
is defined as: C|A = {c0c1 · · · cn : c0, c1, · · · , cn ∈ A}. Inspired by the definitions
of linear codes and constacyclic codes over finite fields, we define linear codes and
constacyclic codes over finite Krasner hyperfields.

Let F be a Krasner hyperfield and C ⊆ Fn be a code with length n. Then
C is a linear code if C is a subhypervector space of Fn. Let F be a Krasner
hyperfield, λ ∈ F \ {0} and C ⊆ Fn be a linear code over F . Then C is a λ-
constacyclic code if for every codeword c = (c0, c1, · · · , cn−1) ∈ C, the λ-constacyclic
shift Tλ(c) = (λcn−1, c0, · · · , cn−2) ∈ C. According to the above definition, having
C a λ-constacyclic code is equivalent to having Tλ(C) = C i.e., C is invariant under
the λ-constacyclic shifts. If λ = 1 then C is a cyclic code over F and if λ = −1
then C is a negacyclic code over F .
Throughout this section, F is a Krasner hyperfield with unit element 1, where for
all a, b ∈ F , a · (−b) = (−a) · b = −(a · b).

Proposition 4.1. Let F be a Krasner hyperfield, K a subhyperfield of F and
C ⊆ Fn be a code of length n. If λ ∈ K and C is a λ-constacyclic code then
C|K ⊆ Kn is λ-constacyclic code.

Proof. First, we show that C|K is linear. Suppose that a = (a0, a1, · · · , an−1), b =
(b0, b1, · · · , bn−1) ∈ C|K and k ∈ K. We have that a−b = (a0−b0, a1−b1, · · · , an−1−
bn−1) and ka = (ka0, ka1, · · · , kan−1). Linearity of C implies that a−b, ka ∈ C and
having K a subhyperfield of F implies that ai−bi, kai ∈ K for all i = 0, 1, · · · , n−1.
Thus, a− b, ka ∈ C|K . In order to prove that C|K is invariant under λ-contacyclic
shifts, we have

Tλ(a) = (λan−1, a0, a1, · · · , an−2) ∈ C.
Having λan−1, a0, a1, · · · , an−2 ∈ K implies that Tλ(a) ∈ C|K .

Theorem 4.1. Let F be a Krasner hyperfield and Ci ⊆ Fn be a λ-constacyclic
code of length n for all i = 1, · · · , k. Then the following holds: (1) C1 + C2 =
{a + b : a ∈ C1, b ∈ C2} is a λ-constacyclic code; (2) C1 ∩ C2 is a λ-constacyclic
code; (3) C1 + · · ·+Ck is a λ-constacyclic code; (4) C1∩· · ·∩Ck is a λ-constacyclic
code.

Proof. Davvaz et al. in [11] proved that C1 + C2 and C1 ∩ C2 are linear.
(1) Let x ∈ C1 + C2. Then there exists a = (a0, a1, · · · , an−1) ∈ C1 and

b = (b0, b1, · · · , bn−1) ∈ C2 such that x = (x0, · · · , xn−1) ∈ a + b. Since C1, C2

are λ-constacyclic codes, it follows that Tλ(a) = (λan−1, a0, · · · , an−2) ∈ C1 and
Tλ(b) = (λbn−1, b0, · · · , bn−2) ∈ C2. We have that Tλ(x) = (λxn−1, x0, · · · , xn−2) ∈
(λ(an−1 + bn−1), a0 + b0, · · · , an−2 + bn−2) = Tλ(a) +Tλ(b). Thus, Tλ(x) ∈ C1 +C2.

(2) Let x = (x0, · · · , xn−1) ∈ C1 ∩ C2. Then x ∈ C1 and x ∈ C2. Having C1, C2

λ-constacyclic codes implies that Tλ(x) ∈ C1 ∩ C2.
(3) The proof follows from 1. and using induction on i.
(4) The proof follows from 2. and using induction on i.
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The dual of a linear code over an algebraic structure consists of all words that are
orthogonal to every codeword and it was first defined by J.H. Van Lint [16]. We
present a similar definition to the dual that is applicable to hyperstructures and
was presented in [11]. Let F be a Krasner hyperfield and C ⊆ Fn be a linear code.
The dual C⊥ of C is defined as follows:

C⊥ =
{
y ∈ Fn : 0 ∈ 〈x, y〉 =

n∑
i=1

xiyi for all x ∈ C
}
.

Moreover, C is called self-orthogonal if C ⊆ C⊥ and is called self dual if C = C⊥.

Proposition 4.2. Let F be a Krasner hyperfield and C ⊆ Fn be a code of length
n. If λ ∈ F \ {0} and C is a λ-constacyclic code then C⊥ is a λ−1-constacyclic
code.

Proof. Davvaz et al. in [11] proved that C⊥ is linear. Let x = (x0, · · · , xn−1) ∈
C⊥ ⊆ Fn. For all c = (c0, c1, · · · , cn−1) ∈ C, we have that λ−1Tn−1λ (c) =
(c1, c2, . . . , cn−1, λ

−1c0) ∈ C. We get that

0 ∈ 〈x, λ−1Tn−1λ (c)〉 = c1x0 + c2x1 + · · ·+ cn−1xn−1 + λ−1c0x1 = 〈Tλ−1(x), c〉.

Thus, Tλ−1(x) ∈ C⊥.

Corollary 4.1. Let F be a Krasner hyperfield and C ⊆ Fn be a code of length n.
If λ ∈ F \{0} with λ2 = 1 and C is a λ-constacyclic code then C⊥ is λ-constacyclic
code.

Proof. Since λ2 = 1, it follows that λ = λ−1. Proposition 4.2 completes the
proof.

Corollary 4.2. Let F be a Krasner hyperfield and C ⊆ Fn be a code of length n.
If C is a cyclic or negacyclic code then C⊥ is cyclic or negacyclic code respectively.

Proof. The proof is straightforward by using Corollary 4.1.

Theorem 4.2. Theorem 3.7, [11] Let F be a Krasner hyperfield and f(x) ∈ F [x] be
a polynomial of degree n > 0. Then R = F [x]/〈f(x)〉 = {a0 +a1x+ · · ·+an−1x

n−1 :
a0, · · · , an−1 ∈ F} is a complete system of representative of the residue classes mod
f(x) in F [x]. Moreover, R is called the residue class hyperring.

Corollary 4.3. Let F be a Krasner hyperfield and λ ∈ F . Then R = F [x]/〈xn −
λ〉 = {a0 + a1x + · · · + an−1x

n−1 : a0, · · · , an−1 ∈ F} is a complete system of
representative of the residue classes mod (xn − λ) in F [x]. Moreover, R is called
the residue class hyperring.
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Let F be a finite Krasner hyperfield. The polynomial a(x) = a0 + a1x + · · · +
an−1x

n−1 of degree at most n−1 may be regarded as the codeword a = a0a1 · · · an−1
of length n in Fn. In fact, we define a correspondence between Fn and the residue
class hyperring F [x]/〈xn − λ〉. i.e., we have the function:

Fn → F [x]/〈xn − λ〉

a0a1 · · · an−1 7→ a0 + a1x+ · · ·+ an−1x
n−1.

Then for every element a = (a0, a1, · · · , an−1) ∈ Fn, there is a corresponding ele-
ment a(x) = a0 + a1x + · · · + an−1x

n−1 ∈ F [x]/〈xn − λ〉 and vice-versa. In this
setting, the multiplication by x to an element a(x) = a0 + a1x+ · · ·+ an−1x

n−1 ∈
F [x]/〈xn− λ〉 results in xa(x) = xa0 + a1x

2 + · · ·+ an−2x
n−1 + an−1x

n = λan−1 +
xa0 + a1x

2 + · · ·+ an−2x
n−1 ∈ F [x]/〈xn − λ〉. The latter is equivalent to applying

Tλ to the corresponding element of Fn.
Let C denote the image of C under the above map and R = F [x]/〈xn − λ〉.

Theorem 4.3. A linear code C in F is λ-constacyclic if and only if C is a hyper-
ideal of F [x]/〈xn − λ〉.

Proof. If C is a hyperideal of R and a(x) = a0 + a1x + · · · + an−1x
n−1 is any

codeword then xa(x) = λan−1 + a0x+ a1x
2 + · · ·+ an−2 ∈ C and hence Tλ(a) ∈ C.

Conversely, if C is λ-constacyclic then from a(x) ∈ C we have Tλ(a) = xa(x) =
λan−1 + xa0 + a1x

2 + · · · + an−2x
n−1 ∈ C. Thus, T iλ(a) = xia(x) ∈ C. Since C is

linear, it follows that b(x)a(x) ⊆ C for all b(x) ∈ F [x]. Therefore, C is hyperideal
of R.

Theorem 4.4. If C is a hyperideal of R then there exists a unique monic polyno-
mial g(x) ∈ R of minimum degree in C = 〈g(x)〉.

Proof. The proof is similar to that of Theorem 4.8 in [11].

Proposition 4.3. Let C = 〈g(x)〉 be a hyperideal of R. Then g(x)|(xn − λ).

Proof. By Division algorithm, there exists q(x), r(x) ∈ F [x] such that xn − λ ∈
g(x)q(x) + r(x) and deg(r(x)) < deg(g(x)). We get that 0 ∈ g(x)q(x) + r(x)
in R. Since R is commutative additive-multiplicative hyperring, it follows that
r(x) ∈ −q(x)g(x) + 0 = −q(x)g(x) ⊆ C. Minimality of g(x) in C implies that
r(x) = 0. Therefore, g(x)|(xn − λ).

Corollary 4.4. Let C1 = 〈g1(x)〉, C2 = 〈g2(x)〉 be hyperideals of R. Then C1 ⊆ C2

if and only if g2(x)|g1(x).

Proof. Suppose that C1 = 〈g1(x)〉 ⊆ C2 = 〈g2(x)〉. Then g1(x) ∈ 〈g2(x)〉, i.e., there
exists q(x) ∈ R such that g1(x) ∈ q(x)g2(x). Thus, g2(x)|g1(x).

Conversely, if g2(x)|g1(x) then there exists q(x) ∈ R such that g1(x) ∈ q(x)g2(x).
The latter implies that g1 ∈ 〈g2(x)〉. Since 〈g2(x)〉 is a hyperideal of R, it follows
that 〈g1(x)〉 ⊆ 〈g2(x)〉.
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Corollary 4.5. Let C be a λ-constacyclic code. Then there exists a unique polyno-
mial g(x) ∈ R such that C = 〈g(x)〉 and g(x)|(xn−λ). g(x) is called the generating
polynomial of C.

Proof. The proof follows from Proposition 4.3, Theorem 4.3, and Theorem 4.4.

Theorem 4.5. Let C = 〈g(x)〉 be a λ-constacyclic code of length n. Then dimen-
sion of C is equal to n− deg(g(x)).

Proof. Let k = deg(g(x)), m = n − k and c(x) ∈ C = 〈g(x)〉. Then c(x) = 0 or
deg(c(x)) < n. Since c(x) ∈ C = 〈g(x)〉, it follows that there exists f(x) ∈ F [x]
such that c(x) ∈ f(x)g(x). Theorem 3.1 implies that f(x) = 0 or deg(f(x)) < m.
Thus, we can write C as C = {t(x) ∈ f(x)g(x) : f(x) = 0 or deg(f(x)) < m}.

Let S = {g(x), xg(x), · · · , xm−1g(x)} ⊆ C and a0, · · · am−1 ∈ F such that 0 ∈
a0g(x) + · · · am−1xm−1g(x) = (a0 + · · ·+ am−1x

m−1)g(x) in R. Then 0 ∈ f(x)g(x)
where f(x) = a0 + · · ·+ am−1x

m−1 = 0. The latter implies that f(x) = a0 + · · ·+
am−1x

m−1 = 0 as deg(f(x)) ≤ m − 1 < m. We get that a0 = · · · = am−1 = 0 and
hence, S is linearly independent.

Let c(x) ∈ C. Then there exists f(x) ∈ F [x], f(x) = 0 or deg(f(x)) < m such
that c(x) ∈ f(x)g(x). The latter implies that there exist a0, · · · am−1 ∈ F such that
c(x) ∈ (a0 + · · ·+ am−1x

m−1)g(x) = a0g(x) + · · · am−1xm−1g(x). Thus, S spans C.
Therefore, S is a basis for C and dimension of C is equal to the cardinality of S
which is m.

Theorem 4.6. Let F be a Krasner hyperfield and Ci ⊆ Fn be a λ-constacyclic
code of length n with generating polynomial gi(x) for all i = 1, · · · , k. Then the fol-
lowing holds: (1) If gcd(g1(x), g2(x)) exists then C1 +C2 = 〈gcd(g1(x), g2(x))〉; (2)
If lcm(g1(x), g2(x)) exists then C1∩C2 = 〈lcm(g1(x), g2(x))〉; (3) If gcd(g1(x), · · · ,
gk(x)) exists then C1+· · ·+Ck = 〈gcd(g1(x), · · · , gk(x))〉; (4) If lcm(g1(x), · · · , gk(x))
exists then C1 ∩ · · · ∩ Ck = 〈lcm(g1(x), · · · , gk(x))〉.

Proof. Theorem 4.1 asserts that C1 + C2 and C1 ∩ C2 are λ-constacyclic codes.
(1) Corollary 4.5 asserts that there exists a monic polynomial h(x) ∈ R such

that C1 + C2 = 〈h(x)〉. Let d(x) = gcd(g1(x), g2(x)). Having g1(x) = g1(x) + 0 ∈
〈h(x)〉, g2(x) = 0 + g2(x) ∈ 〈h(x)〉 implies that h(x)|g1(x), h(x)|g2(x). We get that
h(x)|d(x). Thus, 〈d(x)〉 ⊆ 〈h(x)〉. On the other hand, d(x)|g1(x), d(x)|g2(x) implies
that 〈g1(x)〉 ⊆ 〈d(x)〉 and 〈g2(x)〉 ⊆ 〈d(x)〉. Thus, 〈h(x)〉 = C1 + C2 ⊆ 〈d(x)〉.

(2) Corollary 4.5 asserts that there exists a monic polynomial s(x) ∈ R such
that C1 ∩ C2 = 〈s(x)〉. Let m(x) = lcm(g1(x), g2(x)). Having s(x) ∈ 〈g1(x)〉
and s(x) ∈ 〈g2(x)〉 implies that g1(x)|s(x), g2(x)|s(x). We get now that m(x)|s(x).
Thus, 〈s(x)〉 ⊆ 〈m(x)〉. On the other hand, g1(x)|m(x) and g2(x)|m(x). Thus,
〈m(x)〉 ⊆ 〈g1(x)〉 and 〈m(x)〉 ⊆ 〈g2(x)〉. The latter implies that 〈m(x)〉 ⊆ C1∩C2 =
〈h(x)〉.

(3) The proof follows from 1. and by using induction on i.
(4) The proof follows from 2. and by using induction on i.
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Corollary 4.6. Let F be a Krasner hyperfield and Ci = 〈gi(x)〉 ⊆ Fn be a λ-
constacyclic code of length n for i = 1, 2. If g1(x) and g2(x) are coprime then
C1 + C2 = Fn.

Proof. Using Theorem 4.6, C1 + C2 = 〈gcd(g1(x), g2(x))〉 = 〈1〉 = Fn.

Proposition 4.4. Let g(x) ∈ R with degree k < n and C = 〈g(x)〉 be a λ-
constacyclic code of length n. Then there exists a monic polynomial h(x) = b0 +
b1x+ · · ·+ bn−kx

n−k with degree n− k such that xn − λ ∈ g(x)h(x) and b0 6= 0.

Proof. Since g(x)|(xn−λ) (by Corollary 4.5), it follows that there exist h(x) ∈ F [x]
such that xn − λ ∈ g(x)h(x). Theorem 3.1 asserts that n = deg(g(x)) + deg(h(x)).
Since xn − λ and g(x) are both monic, it follows that h(x) is monic.
Let f(x) = a0 +a1x+ · · ·+akx

k. Having xn−λ ∈ g(x)h(x) implies that −λ = a0b0.
Thus, b0 6= 0.

Let C = 〈g(x)〉 be a hyperideal of R. We define Ann(C) = {f(x) ∈ R : 0 ∈
f(x)g(x)}.

Proposition 4.5. Let C = 〈g(x)〉 be a hyperideal of R. Then Ann(C) is a hyper-
ideal of R.

Proof. Suppose that f1(x), f2(x) ∈ Ann(C) and f3(x) ∈ R. Having 0 ∈ f1(x)g(x)
and 0 ∈ f2(x)g(x) implies that 0 ∈ f1(x)g(x) − f2(x)g(x) = (f1(x) − f2(x))g(x).
Thus, f1(x) − f2(x) ⊆ Ann(C). Moreover, having 0 ∈ f1(x)g(x) implies that
0 = f3(x)0 ∈ f3(x)f1(x)g(x). Thus, f3(x)f1(x) ⊆ Ann(C). Therefore, Ann(C) is a
hyperideal of R.

Proposition 4.6. Let C = 〈g(x)〉 be a hyperideal of R. Then Ann(C) = 〈h(x)〉,
where h(x) is the unique monic polynomial such that xn − λ ∈ h(x)g(x). h(x) is
the parity check polynomial for C.

Proof. Suppose that deg(g(x)) = k < n and h1(x), h2(x) ∈ F [x] such that xn−λ ∈
h1(x)g(x) and xn − λ ∈ h2(x)g(x). Then h1(x), h2(x) are monic polynomials and
deg(h1(x)) = deg(h2(x)) = n−k. It is easy to see that h1(x), h2(x) ∈ Ann(C). Since
Ann(C) is a hyperideal of R (by Proposition 4.5), it follows that h1(x) − h2(x) ⊆
Ann(C). Having h1(x), h2(x) monic polynomials of degree n − k and 0 ∈ (1 − 1)
implies that there exists h3(x) ∈ h1(x) − h2(x) with deg(h3(x)) < n − k. We get
now that h3(x) ∈ Ann(C). Thus, 0 ∈ h3(x)g(x) in R. The latter implies that
xn − λ ∈ h3(x)g(x) in F [x] which is impossible as deg(h3(x)) + deg(g(x)) < n.
Therefore, there is unique monic polynomial, say h(x) such that xn−λ ∈ h(x)g(x).

Since Ann(C) is a hyperideal of R and h(x) ∈ Ann(C), it follows that 〈h(x)〉 ⊆
Ann(C). Let f(x) ∈ Ann(C). By Division algorithm, there exists q(x), r(x) ∈ F [x]
such that f(x) ∈ q(x)h(x) + r(x) with deg(r(x)) < deg(h(x)). The latter implies
that r(x) ∈ f(x)− q(x)h(x) ⊆ Ann(C). We get now that 0 ∈ r(x)g(x). It is easy to
see that deg(r(x)) = n − k = deg(h(x)) or r(x) = 0. Since deg(r(x)) < deg(h(x)),
it follows that r(x) = 0. Therefore, Ann(C) = 〈h(x)〉.
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Proposition 4.7. Let λ ∈ F \ {0} and a(x) =
∑n−1
i=0 aix

i, b(x) =
∑n−1
i=0 bix

i ∈
F [x]. Then 0 ∈ a(x)b(x) ⊆ R if and only if (a0, a1, · · · , an−1) is orthogonal to
(bn−1, bn−2, · · · , b1, b0) and all its λ−1-constacyclic shifts.

Proof. Let Tλ−1 denote the λ−1-constacyclic shifts for codewords of length n and let
L be the smallest positive integer such that λL = 1. For 1 ≤ j ≤ n, 0 ≤ l ≤ L− 1,

T j+lnλ−1 (bn−1, bn−2, · · · , b0) = λ−lT jλ−1(bn−1, bn−2, · · · , b0)
= λ−l(λ−1bj−1, · · · , λ−1b0, bn−1, · · · , bj).

Therefore, T iλ−1(bn−1, bn−2, · · · , b0), i = 0, 1, · · · , n are all λ−1-constacyclic shifts of
(bn−1, bn−2, · · · , b0). Let c(x) = c0 + c1x + · · · + cn−1x

n−1 ∈ a(x)b(x) ⊆ R. Then,
for k = 0, 1, · · · , n− 1, 0 ≤ i, j ≤ n− 1,

ck ∈
∑

i+j=k

aibj +
∑

i+j=n+k

λaibj

= 〈(a0, · · · , ak, ak+1, · · · , an−1), (bk, bk−1, · · · , b0, λbn−1, · · · , λbk−1)〉.

Having

(bk, bk−1, · · · , b0, λbn−1, · · · , λbk−1) = (λ−1bk, λ
−1bk−1, · · · , λ−1b0, bn−1, · · · , bk−1)λ

= T k+1
λ−1 (bn−1, · · · , b0)

implies that
ck ∈ 〈(a0, a1, · · · , an−1), λT k+1

λ−1 (bn−1, · · · , b0)〉.

c(x) = 0 if and only if ck = 0 for all k = 0, 1, · · · , n− 1. The latter is equivalent to
(a0, a1, · · · , an−1) is orthogonal to T k+1

λ−1 (bn−1, bn−2, · · · , b1, b0).

Let p(x) = a0 + a1x + · · · + akx
k ∈ F [x] with ak 6= 0. Define the reciprocal

polynomial p?(x) = xkp(x−1) = a0x
k + a1x

k−1 + · · ·+ ak−1x+ ak.

Proposition 4.8. Let p(x) = a0 +a1x+ · · ·+akx
k, q(x) = b0 +b1x+ · · ·+bmx

m ∈
F [x]. then the following are true: (1) (p(x)q(x))? = p?(x)q?(x); (2) deg(p?(x)) =
deg(p(x)) if and only if a0 6= 0; (3) For every p(x) ∈ F [x], there exists q(x) ∈ F [x]
such that p(x) = q?(x).

Proof. The proof is straightforward.

Let C = 〈g(x)〉 and Ann(C) = 〈h(x)〉. Then Ann?(C) = {f?(x) : 0 ∈ f(x)g(x)} =
{(a(x)h(x))? = a?(x)h?(x) : a(x) ∈ F [x]} = 〈h?(x)〉.

Proposition 4.9. If λ = ±1 and C is a λ-contacyclic code of length n over F .
Then C⊥ = Ann?(C).

Proof. Corollary 4.1 implies that C and C⊥ are both λ-constacyclic codes. Theorem
4.3 implies that C and C⊥ are both hyperideals of R. The assertion now follows
from Proposition 4.7.
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Proposition 4.10. Let C = 〈g(x)〉 be a λ-constacyclic code of length n and λ =
±1. Then dimension of C⊥ is equal to deg(g(x)).

Proof. Since C⊥ = 〈h?(x)〉 is a λ-constacyclic code of length n (by Proposition
4.9), it follows by Theorem 4.5 that the dimension of C⊥ is n − deg(h?(x)) =
n− deg(h(x)) = deg(g(x)).

Corollary 4.7. Let C = 〈g(x)〉 be a λ-constacyclic code of length n and λ = ±1.
Then (dimension of C⊥)+ (dimension of C)= n.

Proof. The proof results from Theorem 4.5 and Proposition 4.10.

Corollary 4.8. If λ = ±1 and C is a λ-contacyclic code of length n over F . Then
C is self-orthogonal if and only if h?(x)|g(x).

Proof. Having C a self-orthogonal λ-contacyclic code is equivalent to C = 〈g(x)〉 ⊆
C⊥ = 〈h?(x)〉 by Proposition 4.9. The latter is equivalent to h?(x)|g(x) by Propo-
sition 4.4.

Corollary 4.9. Let λ = ±1, h(x) = a0 + a1x + · · · + an−kx
n−k and C is a λ-

contacyclic code of length n over F . Then C is self-dual if and only if h?(x) =
a0g(x). Moreover, if C is self-dual then n is even positive integer.

Proof. Having C a self-dual λ-contacyclic code is equivalent to C = 〈g(x)〉 = C⊥ =
〈h?(x)〉 by Proposition 4.9. The latter is equivalent to h?(x)|g(x), g(x)|h?(x) by
Proposition 4.4. Since g(x) is monic, it follows that the latter is equivalent to
having h?(x) = a0g(x).
Since h?(x) = a0g(x) and a0 6= 0, it follows that n− k = deg(h(x)) = deg(h?(x)) =
deg(a0g(x)) = k. Thus, n is even.

For a commutative additive-multiplicative hyperring A with identity 1, a linear code
C of length n over A is an A-subhypermodule of An, the checking of linearity is
equivalent to the checking of the following two conditions: (1) x, y ∈ C implies
x+ y ⊆ C; (2) k ∈ A and x ∈ C implies kx ⊆ C. Next, we generalize constacyclic
codes over finite Krasner hyperfields by introducing quasi-λ-constacyclic over finite
Krasner hyperfields.

Let Tλ be the λ-constacyclic shift operator. A linear code C of length n over F
is said to be a quasi-λ-constacyclic (λ-QC) code if there exists a positive integer l
such that T lλ(C) = C. The smallest positive integer l satisfying T lλ(C) = C is called
the index of C. For l = 1, C is simply the λ-constacyclic code over F .

Let C be a λ-QC code of index l and length n over a Krasner hyperfield F ,
where n = lm for some positive integer m (m is called the coindex of the code C).
Let R = F [x]/〈xm − λ〉 denote the residue class hyperring and

c = (c0,0, c0,1, · · · , c0,l−1, c1,0, c1,1, · · · , c1,l−1, · · · , cm−1,0, cm−1,1, · · · , cm−1,l−1)
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denotes a codeword in C. We define a map φ : F lm → Rl by φ(c) = (c0(x), c1(x) · · · ,
cl−1(x)) ∈ Rl, where for j = 0, · · · , l − 1,

cj(x) =
m−1∑
i=0

ci,jx
i ∈ R.

Let φ(C) denotes the image of C under φ. The following proposition holds.

Proposition 4.11. The map φ induces a one-to-one correspondence between λ-
QC code of index l and length lm over F and linear codes of length l over R.

Proof. Since C is a linear code over F , it follows that φ(C) is closed under scalar
multiplication by the elements of F . Having xm = λ ∈ R implies that for all
j = 0, 1, · · · , l − 1,

xcj(x) =
m−1∑
i=0

ci,jx
i+1 = λcm−1,j +

m−1∑
i=1

ci−1,jx
i.

The word (xc0(x), xc1(x) · · · , xcl−1(x)) ∈ Rl corresponds to the word d ∈ Rlm
given by:

d = (λcm−1,0, λcm−1,1, · · · , λcm−1,l−1, c0,0, · · · , c0,l−1, c1,0, · · · , c1,l−1, · · · ,
cm−2,0, · · · , cm−2,l−1).

d = T lλ(c) ∈ C as C is λ-QC code of index l. Therefore, φ(C) is closed under
multiplication by x, and hence φ(C) is a subhypermodule of Rl. By reversing the
above argument, one sees immediately that every linear code over R of length l
comes from a λ-QC of index l and length lm over F .

5. Conclusion

In this paper, we dealt with constacyclic codes, an important class of linear codes.
We studied them over finite hyperfields, characterized their dual, and found their
generating polynomial and parity check polynomial. Moreover, we generalized the
notion of constacyclic codes to quasi constacyclic codes.

For future work, it will be interesting to characterize the generating matrix and
parity check matrix for constacyclic codes over finite hyperfields.
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