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Abstract. The aim of the present paper is to give some characterizations of f -Kenmotsu
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1. Introduction

The revolutionary concept of Ricci flow was introduced by Hamilton [5] in order
to solve Poincare conjecture. The conjecture was fully solved by Perelman [11] using
Hamilton’s Ricci flow technique. After the work of Perelman, the study of Ricci
flow has become an important topic in differential geometry. A Ricci flow is a weak
parabolic heat type partial differential equation of the following form

∂gij

∂t
= −2Sij ,(1.1)

g(0) = g0.(1.2)

Here gij denotes the components of Riemannian metric g and Sij denotes the com-
ponents of Ricci tensor S. A Ricci soliton is a solution of the above equation which
is constant up to diffeomorphism and scaling. A Ricci soliton on a Riemannian
manifold is characterized by the equation

(£V g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0.

Here λ is a constant, called soliton constant and the vector field V is called soliton
vector field. A Ricci soliton is called expanding, shrinking or steady while λ is
positive, negative or zero. A Ricci soliton is called Ricci almost soliton if λ is
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considered as a function instead of a constant [12]. A Ricci soliton is called gradient
Ricci soliton if the soliton vector field is gradient of a potential function [13]. The
study of Ricci solitons on almost contact manifolds was first initiated by Ramesh
Sharma [16]. The Ricci solitons on almost contact manifolds have been studied by
several authors ([4], [13], [15]). Ricci soliton on (κ, µ) contact metric manifold has
been studied by the present authors in [14]

The notion of Kenmotsu manifold was introduced by K. Kenmotsu and was
subsequently generalized to f -Kenmotsu manifolds. For details we refer to [8] and
[9]. Ricci solitons on Kenmotsu manifold have been studied in [6]. The notion
of φ-Ricci symmetric manifolds was introduced by U. C. De and A. Sarkar [2].
The notion of φ-symmetric manifolds was introduced by T. Takahashi [17]. Later
several authors studied φ-symmetric manifolds. Three dimensional quasi-Sasakian
manifolds with cyclic parallel and η-parallel Ricci tensor have been studied by U.
C. De and A. Sarkar [3].

The objective of the present paper is to give some characterizations of f -Kenmotsu
manifolds with Ricci solitons and hence establish the relations between such man-
ifolds with locally φ-symmetric manifolds and manifolds with cyclic parallel and
η-parallel Ricci tensors.

The present paper is organised as follows:
After the introduction, we give will required preliminaries in Section 2. In Section
3, we will study three dimensional f -Kenmotsu manifolds admitting Ricci soliton.
Section 4 contains a supporting example.

2. Preliminaries

An odd dimensional smooth manifold M is said to be an almost contact metric
manifold, if there exists a (1,1) tensor field φ, a vector field ξ, a 1-form η, and a
Riemannian metric g on M such that [1]

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(φ(X)) = 0.(2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y )(2.2)

for any vector fields X , Y ∈ χ(M). Such a manifold of dimension (2n+1) is denoted
by M2n+1 (φ, ξ, η, g) . Also M2n+1 (φ, ξ, η, g) is called an f -Kenmotsu manifold if
the covariant differentiation of φ satisfies

(∇Xφ)Y = f(g(φX, Y )ξ − η(Y )φX),(2.3)

where f ∈ C∞(M) is such that df ∧ η = 0 ([8], [9]). If f = β is nonzero constant,
then the manifold is a β-Kenmotsu manifold [7]. If f = 0, then the manifold is
cosymplectic [7]. An f -Kenmotsu manifold is said to be regular if f2 + f ′ 6= 0,
where f ′ = ξf . For an f -Kenmotsu manifold, it follows from (2.3)

∇Xξ = f(X − η(X)ξ).(2.4)
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The condition df ∧ η = 0 holds only for dim M ≥ 5 [10]. In a three dimensional
f -Kenmotsu manifold, we have

R(X,Y )Z = (
r

2
+ 2f2 + 2f ′)(X ∧ Y )Z

− (
r

2
+ 3f2 + 3f ′){η(X)(ξ ∧ Y )Z + η(Y )(X ∧ ξ)Z},(2.5)

S(X,Y ) = (
r

2
+ f2 + f ′)g(X,Y )− (

r

2
+ 3f2 + 3f ′)η(X)η(Y ),(2.6)

QX = (
r

2
+ f2 + f ′)X − (

r

2
+ 3f2 + 3f ′)η(X)ξ,(2.7)

where (X∧Y )Z = g(Y, Z)X−g(X,Z)Y , also R, S and r are Riemannian curvature
tensor, Ricci curvature tensor and scalar curvature onM respectively [9]. From (2.5)
and (2.6) we get

R(X,Y )ξ = −(f2 + f ′)(η(Y )X − η(X)Y ),(2.8)

S(X, ξ) = −2(f2 + f ′)η(X),(2.9)

S(ξ, ξ) = −2(f2 + f ′),(2.10)

Qξ = −2(f2 + f ′)ξ.(2.11)

As a consequence of (2.4), we also have

(∇Xη)(Y ) = fg(φX, φY ).(2.12)

Also from (2.9) it follows that

S(φX, φY ) = S(X,Y ) + 2(f2 + f ′)η(X)η(Y )(2.13)

for all vector fields X,Y ∈ χ(M) .

An f -Kenmotsu manifold M (2n+1) (φ, ξ, η, g) is said to be φ-symmetric if its
curvature tensor R bears the condition

φ2(∇XR)(Y, Z)W = 0,(2.14)

for all vector fields X,Y, Z,W ∈ χ(M) [17]. In particular, if X,Y, Z,W are orthogo-
nal to ξ, then M (2n+1) (φ, ξ, η, g) is said to be locally φ-symmetric. An f -Kenmotsu
manifold M (2n+1) (φ, ξ, η, g) is said to be φ-Ricci symmetric if its Ricci operator Q
bears the condition

φ2(∇XQ)Y = 0(2.15)

for all vector fields X,Y ∈ χ(M). If X and Y are orthogonal to ξ, then M (2n+1)

(φ, ξ, η, g) is said to be locally φ-Ricci symmetric. It may be noted that φ-symmetric
implies φ-Ricci symmetric, but the converse is not valid in general.

Ricci tensor S of a Riemannian manifold (M, g) is called η-parallel if

g((∇XS)Y, Z) = 0
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for all vector fields X , Y , Z tangent to M and orthogonal to ξ where g and ∇
denote Riemannian metric and Riemannian connection respectively.

Ricci tensor S of a Riemannian manifold (M, g) is called cyclic-parallel if

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0(2.16)

for all vector fields X , Y , Z tangent to M. Here ∇ denotes Riemannian connection.

3. Three-dimensional f-Kenmotsu manifolds with Ricci soliton

In this section we prove the following:

Theorem 3.1. In a three-dimensional f Kenmotsu Ricci soliton, if f is constant

and the soliton vector field is Killing, then the soliton is expanding.

Proof. For a three-dimensional f -Kenmotsu manifold, from (2.7), we get

QX = (
r

2
+ f2 + f ′)X − (

r

2
+ 3f2 + 3f ′)η(X)ξ.(3.1)

Differentiating covariantly along Y and using (2.4) and (2.12) we obtain

(∇Y Q)X = (
dr(Y )

2
+ 2fdf(Y ) + df ′(Y ))X + (

r

2
+ f2 + f ′)∇Y X

− (
dr(Y )

2
+ 6fdf(Y ) + 3df ′(Y ))η(X)ξ

− (
r

2
+ 3f2 + 3f ′)fg(φX, φY )ξ − (

r

2
+ 3f2 + 3f ′)

η(X)f(Y − η(Y )ξ).(3.2)

Taking inner product of ( 3.2) with Y we have

g((∇Y Q)X,Y ) = (
dr(Y )

2
+ 2fdf(Y ) + df ′(Y ))g(X,Y )

+ (
r

2
+ f2 + f ′)g(∇Y X,Y )

− (
dr(Y )

2
+ 6fdf(Y ) + 3df ′(Y ))η(X)η(Y )

− (
r

2
+ 3f2 + 3f ′)fg(φX, φY )η(Y )

− (
r

2
+ 3f2 + 3f ′)η(X)g(Y, Y )f

+ (
r

2
+ 3f2 + 3f ′)η(X)(η(Y ))2f.(3.3)

Let {e1, e2, ξ} be an orthonormal φ-basis at any point of a tangent space. It is
known that

div(Q)X = g((∇e1Q)X, e1) + g((∇e2Q)X, e2) + g((∇e3Q)X, e3).(3.4)
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Using (3.3) in (3.4) we get

div(Q)X = (
dr(e1)

2
+ 2fdf(e1) + df ′(e1))g(X, e1)

+ (
r

2
+ f2 + f ′)g(∇e1X, e1)

− (
dr(e2)

2
+ 6fdf(e2) + 3df ′(e2))g(X, e2)

+ (
r

2
+ 3f2 + 3f ′)g(∇e2X, e2)

+ (
dr(ξ)

2
+ 2fdf(ξ) + df ′)η(X)

+ (
r

2
+ f2 + f ′)g(∇ξX, ξ)

− (
dr(ξ)

2
+ 2fdf(ξ) + df ′)η(X).(3.5)

We know that div(Q)X = 1
2dr(X). Putting X = ξ in (3.5) we obtain

1

2
drξ = 2(

r

2
+ f2 + f ′)f − 4fdf(ξ)− 2df ′(ξ).(3.6)

If f -Kenmotsu manifold admits Ricci soliton then

S(X,Y ) = −
1

2
((LV g)(X,Y )− λg(X,Y )).(3.7)

If V is a Killing vector field, from (3.7) we get r = −3λ = constant. Therefore,
from (3.6)

(
r

2
+ f2 + f ′)f = 2fdf(ξ)− df ′(ξ).(3.8)

If f is a non-zero constant then
r = −2f2.(3.9)

Consequently, λ = 2
3f

2. This completes the proof.

We know from [6] that a three-dimensional non cosymplectic f -Kenmotsu man-
ifold M3(φ, ξ, η, g) with f being constant, is locally φ-Ricci symmetric if and only
if the scalar curvature is constant. So we get the following corollary

Corollary 3.1. If a three-dimensional f -Kenmotsu manifold with constant f ad-

mits a Ricci soliton with Killing soliton vector field, then it is φ-Ricci symmetric,

and hence φ-symmetric.

Again we know from [6] that in a three-dimensional non cosymplectic f -Kenmotsu
manifold M3(φ, ξ, η, g) with f being constant, the Ricci tensor is η-parallel if and
only if the scalar curvature is constant. Hence we get



1054 A. Sarkar and P. Bhakta

Corollary 3.2. If a three-dimensional f -Kenmotsu manifold with constant f ad-

mits Ricci soliton with Killing soliton vector field, then its Ricci tensor is η-parallel.

From [6] we know that a three-dimensional non cosymplectic f -Kenmotsu man-
ifold M3(φ, ξ, η, g) with f being constant, satisfies cyclic parallel Ricci tensor if and
only if the scalar curvature is constant. So, we can state the following:

Corollary 3.3. If a three-dimensional f -Kenmotsu manifold with constant f ad-

mits Ricci soliton with Killing soliton vector field, then its Ricci tensor is cyclic

parallel.

4. Example

Example 4.1. Let M = {(u, v, w) ∈ R3 : u, v, w(6= 0) ∈ R} be a Riemannian
manifold, where (u, v, w) denotes the standard coordinates of a point in R3. Let us
suppose that

e1 = 3w
∂

∂u
, e2 = 3w

∂

∂v
, e3 = −3w

∂

∂w
(4.1)

are three linearly independent vector fields at each point ofM and therefore it forms
a basis for the tangent space χ(M). We also define the Riemannian metric g of the
manifold M given by

g =
1

w2
[du⊙ du+ dv ⊙ dv + dw ⊙ dw].(4.2)

Let η be the one form satisfying

η(U) = g(U, e3)(4.3)

for any U ∈ χ(M) and let φ be the (1, 1) tensor field defined by φe1 = −e2,
φe2 = e1, φe3 = 0. By the linear properties of φ and g, we can easily verify the
following relations

η(e3) = 1, φ2(U) = −U + η(U)e3(4.4)

g(φU, φV ) = g(U, V )− η(U)η(V )(4.5)

for arbitrary vector fields U, V ∈ χ(M). This shows that ξ = e3 the structure
(φ, ξ, η, g) defines an almost contact metric structure on M . If ∇ is the Livi-Civita
connection with respect to the Riemannian metric g, then with the help of above,
we can easily calculate that

[e1, e2] = 0, [e1, e3] = 3e1, [e2, e3] = 3e2.(4.6)

Now we recall Koszul’s formula as

2g(∇UV,W ) = U(g(V,W )) + V (g(W,X))−W (g(U, V ))

− g(U, [V,W ])− g(V, [U,W ]) + g(W, [U, V ])
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for arbitrary vector fields U, V,W ∈ χ(M). Making use of Koszul’s formula, we get
the following:

∇e2e3 = 3e2 ∇e2e2 = 3e3 ∇e2e1 = 0(4.7)

∇e3e3 = 0 ∇e3e2 = 0 ∇e3e1 = 0(4.8)

∇e1e3 = 3e1 ∇e1e2 = 0 ∇e1e1 = 3e3.(4.9)

From the above calculation, it is clear that M satisies the condition ∇Uξ =
f{U − η(U)ξ} for e3 = ξ, where f = 3 is a non-zero constant. Thus we conclude
thatM leads to an f -Kenmotsu manifold. Also f2+f ′ is non-zero. This implies that
M is a three-dimensional regular f -Kenmotsu manifold. We find the components
of curvature tensor and Ricci tensor as follows:

R(e2, e3)e3 = −3e2, R(e3, e2)e2 = −3e3,(4.10)

R(e1, e3)e3 = −3e1, R(e3, e1)e1 = −3e3,(4.11)

R(e1, e2)e2 = −3e1, R(e1, e2)e3 = 0,(4.12)

R(e2, e1)e1 = −3e2, R(e3, e1)e2 = 0,(4.13)

S(e1, e1) = −6, S(e2, e2) = −6, S(e3, e3) = −6,(4.14)

S(φe1, φe1) = −6, S(φe2, φe2) = −6, S(φe3, φe3) = −0,(4.15)

S(φei, φej) = 0 for all i, j = 1, 2, 3(i 6= j). From the above consequence, it is
clear that φ2{(∇UQ)(V )} = 0 for all vector fields U, V ∈ χ(M). Hence M is locally
φ-Ricci symmetric. From above we get r = −18, this implies the scalar curvature
is constant. Moreover, (∇XS)(φei, φej) = 0 for X ∈ χ(M)i, j = 1, 2, 3. So M is
η-parallel, cyclic parallel. This example is also satisfying the Ricci soliton equation
if λ = 6. Hence λ = 2

3f
2 is verified. So the soliton is expanding. Thus, Theorem

3.1 and the associated corollaries are verified by this example.
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