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A NOTE FOR A GENERALIZATION OF THE DIFFERENTIAL
EQUATION OF SPHERICAL CURVES

Athoumane Niang1 and Ameth Ndiaye2
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Abstract. The differential equation characterizing a spherical curve in R3 expresses
the radius of curvature of the curve in terms of its torsion. In this paper, we have
given a generalization of this equation for a curve lying in an arbitrary surface in R3.
Moreover, we have established the analogue of the Frenet equations for a curve lying
in a surface of R3. We have also revisited some formulas for the geodesic torsion of a
curve lying in a surface of R3.
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1. Introduction

The curves to be considered here are curves in the Euclidean space R3 of the
form α = α(s), s ∈ [0, L], where s is the arc length which is of class C3. For such a
curve, the following facts are well known.

There exists two functions κ, τ defined on [0, L] that determine completely the
shape of the curve in R3. The functions κ and τ are respectively the curvature
and the torsion of the curve. Such a curve α : [0, L] −→ R3 have a Frenet frame
(T,N,B) which is a map on [0, L], s 7−→ (T (s), N(s), B(s)) that satisfies the Frenet
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equations  T ′ = κN
N ′ = −κT − τB
B′ = τN

,(1.1)

where the prime (′) denotes the differentiation with respect to arc length. For more
information see [1, 3].

The condition for a curve to be a spherical curve, (i.e) it lies on a sphere, is
usually given in form [

1

τ

(
1

κ

)′
]′

+
τ

κ
= 0.(1.2)

One can ask what the analogous of the equation (1.2) is when the curve is
assumed to be in an arbitrary surface in R3. One of the aims is to give an answer
to this question.

When a curve such as the above mentioned is assumed to lie in a given surface
Σ ⊂ R3, then there exists two other invariants κn and τg defined on [0, L] which are
unique except for the sign (depending on the orientation of Σ). The functions κn
and τg defined on [0, L] are the normal curvature and the geodesic curvature of the
curve.

Let Σ be a surface on R3. We will assume that Σ is oriented by choice of a unit
normal field

ξ : Σ −→ S2.(1.3)

For a curve α : [0, L] −→ R3 given as above, and lying in Σ, there are two naturel
frames along α (see [1]). The first is Frenet frame (T,N,B) given above. For the
second, let denoted by ξ = ξ(s) be the restriction of ξ on α; and we consider the
second frame (T, ξ × T, ξ) where × is the vector product in R3. These two frames
(T,N,B) and (T, ξ × T, ξ) are the positively oriented in R3 as we will see later.

In [2] it is shown that the differential equation characterizing a spherical curve
can be solved explicitly to express the radius of curvature of the curve in terms of its
torsion. The author of [6] gives a necessary condition for a curve to be a spherical
curve. In Minkowski space the characterization of curve lying on pseudohyperbolical
space and Lorentzian hypersphere are stated both depending on curvature functions
and character of Serret-Frenet frame of the curve, respectively. For detail see [4, 5,
7]. The main results of this paper is to prove the following results.

Theorem 1.1. Under the assumptions and notations above, we have the following

i) the trihedron (T, ξ, T×ξ) and the functions κ, τ , κn and τg satisfy the following
equation  T ′ = κnξ +

√
κ2 − κ2n(ξ × T )

ξ′ = −κnT + τg(ξ × T )

(T × ξ)′ = −
√
κ2 − κ2nT − τg(ξ × T )

,(1.4)
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ii) (κn
κ

)′
= −(τ − τg)

√
1−

(κn
κ

)2
(1.5)

iii)

τ2g = −(K − 2Hκn + κ2n)(1.6)

where K and H are respectively the restriction of mean curvature and the
Gauss curvature of Σ to α.

Corollary 1.1. If the curve α lying in a sphere with τ and κ′ are nowhere zero in
[0, L], then equation (1.5) implies (1.2).

The paper is organized as follows: in Section 2, we recall some results and definitions
which we use for the proof of our main results. In Section 3, we prove the main
results of this paper.

2. Preliminaries

Let α = α(s) , s ∈ [0, L] be a regular curve of classe C3 lying on an oriented
surface Σ in R3. An orientation of Σ is determined by a choice of a unit normal
ξ : Σ −→ S2.

If p ∈ Σ, a basis (u, v) of TpΣ is positively oriented if (u, v, ξ(p)) is a positive
basis of R3. A basis of R3 of the form (u, v, u × v) is positively oriented. So the
Frenet frame (T (s), N(s), B(s)) on α is positively oriented at every s ∈ [0, L]. The
second frame (T (s), ξ(s) × T (s), ξ(s)), s ∈ [0, L] considered above have the same
orientation that the basis (ξ(s), T (s), ξ(s) × T (s)), s ∈ [0, T ]. Therefore, on α the
”trihedron” (T,N,B) and (T, ξ × T, ξ) are positively oriented.

For each s ∈ [0, L], we define the angle θ = θ(s) between N(s) and ξ(s) by

(2.1) 〈N(s), ξ(s)〉 = cos θ(s).

And we have the following relation

(2.2) N(s) = cos θ(s)ξ(s) + sin θ(s)(ξ(s)× T (s)), s ∈ [0, T ].

Now let us recall some basic facts for a curve α = α(s) given as above and lying
on a surface Σ ⊂ R3.

If p is a point of Σ, the Gauss map ξ : Σ −→ S2 is a differential map and its
differential dpξ at p is a self-adjoint endomorphism of TpΣ. The fact that dpξ :
TpΣ −→ TpΣ is a self-adjoint map allows to associate a quadratic form Πp in TpS.
The quadratic form Πp is defined on TpΣ by

Πp(v) = −〈dpξ(v), v〉(2.3)

is called the second fundamental form of Σ at p.
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Definition 2.1. A curve α in Σ passing through p, κ the curvature of α at p and
cos θ = 〈N, ξ〉, where N is the normal vector of α at p; the number

κn = κ cos θ(2.4)

is called the normal curvature of α ∈ Σ at p.

If p = p(s) ∈ Σ, the following interpretation of Πp is well known:

Πp

(
α′(s)

)
= −〈dpξ

(
α′(s)

)
, α′(s)〉

= −〈ξ′(s), α′(s)〉
= 〈N(s), α′′(s)〉(2.5)

= 〈N(s), κN〉(p) = κn(p)(2.6)

In the other words, the value of the second fundamental form Πp at a unit vector
v ∈ TpΣ is equal to the normal curvature of a regular curve passing through p and
tangent to v.

Now let us come back to the linear map dpξ. It is known that for each p ∈ Σ there
exists an orthonormal basis {e1, e2} of TpΣ such that dpξ(e1) = −k1e1, dpξ(e2) =
−k2e2. Moreover, k1 and k2 (k1 ≥ k2) are the maximum and the minimum of the
second fundamental form Πp restricted to the unit circle of TpΣ. That is, they are
the extreme values of the normal curvature at p.

The point p ∈ Σ is called an umbilic point if k1(p) = k2(p).

Definition 2.2. In terms of the principal curvatures k1, k2, the Gauss curvature
K and the mean curvature H are given by:

K = k1k2 H =
k1 + k2

2
.(2.7)

3. Proof of the main results

3.1. Proof of the theorem

For three vectors u, v, w ∈ R3, the following formulas will be used:

u× (v × w) = 〈u,w〉v − 〈u, v〉w.(3.1)

And for an orthonormal positive oriented basis (u, v, w) in R3, the following relations

u× v = w, w × u = v,(3.2)

will be also used.
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Now assume that for s ∈ [0, L], α(s) lies in a surface Σ. For the geodesic torsion
τg of α at p = α(s), s ∈]0, L[ we have the well known two formulas:

τg(s) = τ − dθ

dt
= cosφ sinφ(k1 − k2),(3.3)

where τ is the torsion of α, θ is the angle between ξ(s) and N(s), φ is the angle
that T makes with the principal direction e1 and k1, k2 are principal curvatures
associated with the orthonormal basis {e1, e2} (assumed to be positively oriented
in TpΣ).

Here we will use another formulas for τg with is given in the lemma below.

Lemma 3.1. In the notations given above, we have

(3.4) τg(s) = 〈ξ′(s), ξ × T 〉, s ∈]0, L[.

Proof. Let {e1, e2} be an orthonormal basis of TpΣ such that

dpξ(e1) = −k1e1, dpξ(e2) = −k2e2.

where p = α(s). We can assume that e1×e2 = ξ(s); thus (e1, e2, ξ(s)) is a positively
oriented orthonormal basis of R3. We put T = cosϕe1 + sinϕe2 and we have

〈ξ′(s), ξ × T 〉 = 〈dpξ(T ), ξ × T 〉
= 〈− cosϕk1e1 − sinϕk2e2, ξ × (cosϕe1 + sinϕe2)〉
= 〈− cosϕk1e1 − sinϕk2e2,− sinϕe1 + cosϕe2)〉
= cosϕ sinϕ(k1 − k2).

This show (3.4) by (3.3).

Let us show (i) in Theorem 1.1.
For convenience, we will drop the point p = α(s) ∈ Σ in the formulas.
- From θ defined by cos θ = 〈ξ,N〉 the normal N which is normal to T becomes

N = cos θξ + sin θT × ξ,

and

T ′ = κN

= κ cos θξ + κ sin θξ × T
= κnξ + κ

√
1− cos2 θξ × T

= κnξ +
√
κ2 − κ2nξ × T.

- Since 〈ξ, ξ〉 = 1, then ξ′ = aT + bT × ξ for some numbers a and b.
We have

a = 〈ξ′, T 〉
= 〈ξ, T 〉′ − 〈ξ, T ′〉
= −κ〈ξ,N〉
= −κ cos θ

= −κn



806 A. Niang and A. Ndiaye

and by (3.4) we get

b = 〈ξ′, ξ × T 〉 = τg.

Thus we get ξ′ = −κnT + τgξ × T .
- We have (ξ × T )′ = cT + dξ for some constants c and d. We get

c = 〈(ξ × T )′, T 〉
= 〈ξ × T, T 〉′ − 〈ξ × T, T ′〉
= −κ〈ξ × T,N〉
= −κ〈ξ × T, cos θξ + sin θT × ξ〉
= −κ sin θ

= −
√
κ2 − κ2n.

and by (3.4), we get

d = 〈(ξ × T )′, ξ〉 = 〈(ξ × T ), ξ〉′ − 〈ξ × T, ξ′〉 = −τg.

Thus (ξ × T )′ = −
√
κ2 − κ2nT − τgξ.

This show the (i) of the theorem.
Let us show (ii) in Theorem 1.1.
We have κn

κ = cos θ. Differentiating this relation, we get(κn
κ

)′
= −dθ

dt
sin θ

= −(τ − τg)
√

1− cos2 θ

= −(τ − τg)
√

1−
(κn
κ

)2
.

This show (ii).
Let us show (iii) in Theorem 1.1.
Let {e1, e2} be the unit orthonormal basis of TpΣ such that dpξ(e1) = −k1e1 and
dpξ(e2) = −k2e2 as the recalls in section 2. And let ϕ be defined by cosϕ = 〈e1, T 〉;
and then we can write T = cosϕe1+sinϕe2, under the assumption that e1×e2 = ξ,
i.e (e1, e2, ξ) is a positive oriented basis of R3 = TpR3.
We have ξ′ = −κ cos θT + τgξ × T by (i). Also we have

ξ′ = dpξ(T )

= − cosϕk1e1 − sinϕk2e2.(3.5)

Thus

ξ′ = −κ cos θT + τgT × ξ
= −κ cos θ(cosϕe1 + sinϕe2) + τg(− cosϕe2 + sinϕe1)

= (−κ cos θ cosϕ+ sinϕτg)e1 + (κ cos θ sinϕ− τg cosϕ)e2.(3.6)
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By the computation given in (3.5) and (3.6) above one gets easily that{
(k1 − κ cos θ) cosϕ+ τg sinϕ = 0
(k2 − κ cos θ) sinϕ+ τg cosϕ = 0

.

By writing the last relation in matrix form:(
k1 − κ cos θ −τg

τg k2 − κ cos θ

)(
cosϕ
sinϕ

)
=

(
0
0

)
,

one gets the determinant∣∣∣∣ k1 − κ cos θ −τg
τg k2 − κ cos θ

∣∣∣∣ = 0

⇒ k1k2 − κ cos θ(k1 + k2) + κ2 cos2 θ + τ2g = 0
⇒ K − 2κnH + κ2n + τ2g = 0.
Thus we have

τ2g = −(K − 2Hκn + κ2n).

This shows (iii). So the theorem is proved.

3.2. Proof of the corollary

We assume that α lies in a sphere in R3 of radius R. We consider the equation (ii):

(κn
κ

)′
= −(τ − τg)

√
1−

(κn
κ

)2
.

It is well known that, on a sphere every point is an umbilic point. This fact is
important in the proof that on the sphere the second fundamental form is a constant
(see [8]). That is, for any unit tangent vector v at p = α(s) belong to this sphere we
have Πp(v) = ± 1

R and the Gauss curvature K and mean curvature H are constants
(K = 1

R2 , H = ± 1
R ). This shows that the geodesic curvature τg of α is zero.

Thus the equation (ii) becomes

± 1

R

(
1

κ

)′

= −τ
√

1− 1

R2κ2
,

that implies (
1

τ

( 1

κ

)′)2

+
( 1

κ

)2
= R2.

By differentiating this equation and by using κ′ 6= 0, one gets easily (ii). This shows
the corollary.
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