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Abstract. The statistically multiplicative convergence in Riesz algebras was studied
and investigated with respect to the solid topology. In the present paper, the statisti-
cal convergence with the multiplication in Riesz algebras is introduced by developing
topology-free techniques using the order convergence in vector lattices. Moreover, we
give some relations with the other kinds of convergences such as the order statistical
convergence, the mo-convergence, and the order convergence.
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1. Introduction and Preliminaries

Steinhaus introduced the concept of statistical convergence in [15] that is a
generalization of the convergence of real sequences. Another important concept of
functional analysis is vector lattice (or, Riesz spaces) which was introduced by F.
Riesz [13]. We refer the reader for applications of Riesz spaces to [1, 2, 3, 4, 5, 18].
We aim to combine concepts of the order and the statistical convergence, and the
multiplicative on Riesz algebras, and so, we introduce the convergence on Riesz
algebras without topological structure.

For the statistical convergence, the natural density of subsets of N has critical
points. Take a subset B in N. Then the unique limit lim

n→∞
1
n |{k ≤ n : k ∈ A}| is
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said to be the natural density of B whenever it exists. Also, we abbreviate it as
δ(A). Now, take a sequence (xn) of reel numbers. If, for a given ε > 0, the limit

lim
n→∞

1

n

∣∣{k : n ≥ k, |xn − x| > ε}
∣∣ = 0.

exists then it is called that (xn) statistical converges to x. Several applications and
generalizations about the statistical convergence have been investigated by several
authors (cf. [3, 7, 8, 11, 16, 17]). In this paper, we abbreviate the cardinality of
subsets in the vertical bar.

Let ”≤” be an order relation on a reel vector space E. Then E is called ordered
vector space if βx ≤ βy and x + z ≤ y + z hold in E for all β ∈ R+ and z ∈ E
whenever x ≤ y. Let E be an order vector space. Then it is said to be vector lattice
or Riesz space if, for every pair x, y ∈ E, we have

x ∨ y = sup{x, y} and x ∧ y = inf{x, y}

in E. Moreover, a Riesz space is called σ-order or σ-Dedekind complete whenever
each countable and bounded above subset has a supremum. Take an element x in a
vector lattice E. Then x+ := x∨0 is the positive part, x− := (−x)∨0 is the negative
part, and |x| := x ∨ (−x) is the module of x. So, in this paper, we use the vertical
bar | · | of elements for the module of the given elements. Some works on Riesz
spaces with statistical convergence have done. For example, a characterization of
statistical convergence was introduced by Ercan in [8], and Aydın introduced the
statistical convergence with unbounded order convergence [3]. The crucial point in
Riesz spaces is the order convergence. Thus, we continue with its definition.

Definition 1.1. The order convergence of a sequence (xn) to an element x in a
Riesz space E defined as follows:

(i) There exists another sequence (yn) in E such that inf yn = 0 and yn ↓ in E
(i.e., yn ↓ 0);

(ii) |xn − x| 6 yn for each n ∈ N.

Next, we turn our attention to Riesz algebras. If, for an associative algebraic
vector lattice E, x · y ∈ E+ holds for every x, y ∈ E+ then E is called a Riesz
algebra (or, shortly, l-algebra). Also, if x · y = y · x holds for all pair x, y ∈ E then
E is said to be commutative. For much more information on l-algebras, we refer
[2, 6, 10, 12, 18]. Aydın and Et introduced the statistical convergence on Riesz
algebra with the solid topology [7].

Definition 1.2. Let E be a Riesz algebra. Then it is called

(1) d-algebra if (x ∧ y) · u = (x · u) ∧ (y · u) and u · (x ∧ y) = (u · x) ∧ (u · y) hold
for each x, y ∈ E and u ∈ E+;
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(2) unital if E has a multiplicative unit.

(3) f -algebra whenever we have y∧ (u ·x) = 0 and y∧ (x ·u) = 0 for all y∧x = 0,
x, y ∈ E and u ∈ E+.

It is clear that u · y ≤ u · x holds in Riesz algebras for elements y ≤ x and for
all positive vector u. Remind that if 1

nx ↓ 0 holds for any positive vector x in a
Riesz space E then it is said to be Archimedean Riesz space. By considering [18,
Thm.140.10], one can see that each Archimedean f -algebra has the commutative
property. In the works (cf. [4, 5, 6, 10, 12]), the reader can find more features and
some kinds of convergences in l-algebras.

Example 1.1. Consider the set of orthomorphisms on a Riesz space E

Orth(E) := {π ∈ Lb(E) : x ⊥ y implies πx ⊥ y}.

That is, |πx| ∧ |y| = 0 whenever |x| ∧ |y| = 0 in E. Now, let’s take E as an σ-Dedekind
complete Riesz space. Then, by using [12, Thm.15.4], we have Orth(E) is an σ-Dedekind
complete, and also, Orth(E) is an unital f -algebra.

For much more examples of Riesz algebras see for example [6, 10, 12]. In this
paper, unless otherwise, we assume that all Riesz spaces are Archimedean and all
multiplications are commutative.

2. The statistical mo-convergence

We define the statistical convergence in Riesz algebras with respect to multiplica-
tive order convergence in this section. To give this notion, we use the statistical
monotonicity for real sequences that was introduced by Salat in [14]. We take the
following notions from [4] and [16].

Definition 2.1.

(a) Let (xn) be a sequence in a Riesz algebra E. Then it is called multiplica-

tive order convergent to x ∈ E whenever u · |xα − x|
o−→ 0 for every u ∈ E+.

Abbreviated as xα
mo−−→x.

(b) Let (qn) be a sequence in a Riesz space E. Then it is called statistical mono-
tone convergent to x ∈ E if there exists a subset J in N with δ(J) = 1 and
(qnk

)k ↓ x. It is abbreviated as qn ↓st x.

(c) A sequence (xn) is said to be statistical order converges to x in a vector lattice
E if there are a subset δ(J) = 1 and a sequence yn ↓st 0 with |xn − x| ≤ yn
for all n ∈ J .

We give a basic observation in the following result.

Lemma 2.1. Every order convergent monotone sequence is statistical monotone
convergent in vector lattices.
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Proof. Take an order convergent sequence xn
o−→x in a Riesz space E such that xn ↓

(i.e., xn ↓ x). Now, we can choose J in Definition 2.1(b) as N. Then we have
δ(J) = 1 and xn ↓ x on J . So, we obtain the desired, xn ↓st x, result.

Now, motivated from above definitions, we give the following crucial notion.

Definition 2.2. Let E be an l-algebra and (xn) be a sequence in E. Then (xn)
is called statistical multiplicative order convergent (or, statistical mo-convergent,
shortly) to x ∈ E if, for each positive element u ∈ E+, there exists a subset J of
the natural numbers with δ(J) = 1 and a sequence qn ↓st 0 such that

|xnj
− x| · u 6 qnj

for all nj ∈ J . We abbreviate it as xn
st-mo−−−−→x.

It can be seen that xn
st-mo−−−−→x if, for each u ∈ E+, there exists a sequence qn ↓st 0

such that the natural density of the set {n ∈ N : |xn − x| · u � qn} is equal to zero.

Proposition 2.1. The mo-convergence implies the statistical mo-convergence in
l-algebras.

Proof. Assume that a sequence (xn) is mo-convergent to x in an l-algebra E. Let’s

fix u ∈ E+. Then, following from Definition 2.1(a), we have |xn − x| · u
o−→ 0. Thus,

there is a sequence yn ↓ 0 in E such that |xn − x| · u 6 yn holds for all n ∈ N. So,
by applying Lemma 2.1, we obtain yn ↓st 0. Since u ∈ E+ is arbitrary, if we take

the subset J as N then we get the desired result, xn
st-mo−−−−→x.

It is known that the order convergence does not imply the mo-convergence in
l-algebras because l-algebras do not have the infinite distributive property, i.e., if
inf(A) exists and positive for any subset A of an l-algebra E then the infimum of
the subset u ·A exists and inf(u ·A) = u · inf(A) for every u ∈ E+ (see, [4, p.2] and
[6, Thm.12]). By the way, the order and the statistical order convergences do not
imply the statistical mo-convergent, in general. But, we have a positive implication
in the following work.

Theorem 2.1. If (xn) in a d-algebra is order or statistical order convergent se-
quence then it is statistical mo-convergent to their order or statistical order limit
points.

Proof. Assume that (xn) statistical order converges to x in a d-algebra E. We show
that (xn) is statistical mo-convergent to x. Similarly, one can show the other case.
Following from Definition 2.1(c), there exists a sequence qn ↓st 0 and a subset J of
the natural numbers with δ(J) = 1 such that |xnj

− x| 6 qnj
for all nj ∈ J . On

the other hand, there is a subset δ(K) = 1, and also, (qnk
) is decreasing to zero
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because of qn ↓st 0. Next, consider the set M = J ∩ K. Hence, following from
the inequality δ(J) + δ(K) ≤ 1 + δ(J ∩ K), we have δ(M) = 1. As a result, we
obtain that |xnm − x| 6 qnm ↓ 0. Therefore, we get |xnm − x| · u 6 (qnm · u) ↓ 0
for all u ∈ E+ because every d-algebra having infinite distributive properties; see
[6, Thm.12.]. Thus, for every u ∈ E+, we can obtain a sequence wn = (qn · u) ↓st 0,

and also, |xn − x| · u 6 wn holds on M , i.e., we get xn
st-mo−−−−→x.

In the following result, we give a partial answer for the converse implication of
Theorem 2.1

Proposition 2.2. Every statistical mo-convergent sequence in an unital f -algebra
is statistical order convergent to its statistical mo-limit.

Proof. Let (xn) be a statistical mo-convergent sequence in an unital f -algebra E
with the multiplicative unit e. Then there exists a sequence qn ↓st 0 such that the
natural density of the subset {n ∈ N : |xn − x| · u � yn,∀u ∈ E+} is equal to zero.
By applying [18, Thm.142.1(v)], in view of e = e ·e = e2 ≥ 0, one clearly can obtain
that unit element is positive in E. Thus, in a special case, we can take u = e ∈ E+.
Then we have

δ
(
{n : |xn − x| � yn}

)
= δ

(
{n : |xn − x| · e � yn}

)
= 0.

Therefore, we obtain that (xn) statistical order converges to x.

3. Main Results of the Statistical mo-Convergence

In this section, we give the main results and properties of the statistical mo-
convergence. First of all, to mention the uniqueness of the statistical mo-limit,
we need the notion of semiprime l-algebra. Consider an element x in a Riesz alge-
bra E with xn = 0 for some natural numbers n ∈ N then it is said to be a nilpotent
element. Moreover, if the only nilpotent element of a Riesz algebra E is zero element
then E is called semiprime (cf., [9, 10, 12, 18]).

Lemma 3.1. Let (xn) be a sequence of nilpotent elements of an f -algebra E. If

xn
st-mo−−−−→x then x is a nilpotent element of E.

Proof. Suppose xn
st-mo−−−−→x. Fix a positive element u ∈ E+. Then there exists a

sequence qn ↓st 0 and a subset δ(J) = 1 such that |xnj
− x| · u 6 qnj

for all nj ∈ J .
Now, following from [12, Prop.10.2(iii)] and [18, Thm.142.1(ii)], we have

qnj
≥ |xnj

− x| · u = |xnj
· u− x · u| = |x · u|

because (xn) consists of nilpotent elements. Thus, we obtain |x · u| = 0, i.e., we
have x · u = 0 for every u ∈ X+ because of qnj

↓ 0. Then x · y = 0 for each y ∈ E
because of y = y+ − y− and y+, y− ∈ E+. Therefore by using [9, p.157], one can
see that x is also a nilpotent element.
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Proposition 3.1. The limit of a statistically mo-convergent sequence is uniquely
determined in semiprime f -algebras.

Proof. Suppose that (xn) is a statistically mo-convergent to x and y sequence in
a semiprime f -algebra E. Fix u ∈ E+. Then there exists sequences qn ↓st 0 and
pn ↓st 0, and subsets J and K of the natural numbers with δ(J) = δ(K) = 1 such
that |xnj − x| · u 6 qnj and |xnk

− y| · u 6 pnk
for all nj ∈ J and nk ∈ K. Choose

M = J ∩K. Thus, we have δ(M) = 1, |xnm
− x| · u 6 qnm

and |xnm
− y| · u 6 pnm

for every nm ∈M . Now, it follows that

|x− y| · u ≤ |xnm
− x| · u+ |xnm

− y| · u

satisfies for every m ∈ N. Thus, we obtain |x− y| · u = 0. Since u is arbitrary, one
can see that |x − y| is a nilpotent element in E (cf. [9, p.157]). Therefore, we get
|x− y| = 0, i.e., we have x = y because of E is semiprime.

Next, we give several results that are parallel to some kinds of statistical con-
vergence such as [3, Thm.2.2.] and [1, Thm.2.17.].

Theorem 3.1. If xn
st-mo−−−−→x and yn

st-mo−−−−→ y in an l-algebra E then the following
holds:

(i) The lattice operations are statistical mo-order continuous;

(ii) xn
st-mo−−−−→x iff (xn − x)

st-mo−−−−→ 0 iff |xn − x|
st-mo−−−−→ 0;

(iii) The statistical mo-limit is linear;

(iv) xnk

st-mo−−−−→x for any subsequence (xnk
) of (xn);

(v) E+ that is the positive cone of E is closed under the statistical mo-convergence
whenever E is semiprime f -algebra.

Proof. (i) It is enough to show that (xn∨yn) statistical mo-converges to x∨y. Take

fixed u ∈ E+. Since xn
st-mo−−−−→x and yn

st-mo−−−−→ y, by the same argument in the proof
of Proposition 3.1, there exists a subset of the natural numbers with δ(M) = 1 and
sequences qn ↓st 0 and pn ↓st 0 such that |xnm−x| ·u 6 qnm and |xnm−y| ·u 6 pnm

for every nm ∈M . By using [2, Thm.1.2(2)], we have

|xnm ∨ ynm − x ∨ y| · u ≤ |xnm − x| · u+ |ynm − y| · u ≤ qnm + pnm

for each m ∈ N. Hence, if we denote a sequence rn := qn + pn then we have

|xnm
∨ ynm

− x ∨ y| · u ≤ rnm
and rn ↓st 0. Hence, we obtain xn ∨ yn

st-mo−−−−→x ∨ y in
E.

One can get (ii) and (iv) directly from the definition of the statistical mo-
convergence. Also, (iii) is similar to (i).
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(v) Suppose that (xn) is non-negative and statistical mo-converges to x ∈ E. It

follows from (i) that xn = x+n
st-mo−−−−→x+, and also, following from Proposition 3.1,

we obtain x = x+. So, we get the desired, x ∈ E+, result.

In the following result, we give a positive answer for the converse of Theorem 2.1.

Proposition 3.2. Ever monotone statistical mo-convergent sequence in a semiprime
f -algebra order converges to its statistical mo-limit.

Proof. Suppose that a sequence (xn) in a semiprime f -algebra E is increasing and
statistical mo-convergent to x ∈ E. It is enough to show xn ↑ x. Let’s fix an index
n0. It is clear that xn − xn0

∈ X+ for each n > n0. Now, by using linearity of

statistical mo-limit, we have xn − xn0

st-mo−−−−→x − xn0
. Since xn − xn0

∈ E+, by
applying Theorem 3.1(v), we can obtain x− xn0

∈ E+, i.e., x ≥ xn0
. Thus, x is an

upper bound of (xn) because xn0 is arbitrary. Take another upper bound y of (xn),

i.e., y ≥ xn for all n. Then we obtain y − xn
st-mo−−−−→ y − x ∈ E+, or equivalently, we

get y > x. Thus, xn ↑ x.

Proposition 3.3. If 0 ≤ yn ≤ xn holds for every natural number n ∈ N and

xn
st-mo−−−−→ 0 in an l-algebra E then we have yn

st-mo−−−−→ 0 in E.

Proof. Fix u ∈ E+. Since xn
st-mo−−−−→ 0, there exist a subset δ(J) = 1 and a sequence

qn ↓st 0 such that xnj
· u 6 qnj

for every nj ∈ J . So, we have 0 ≤ ynj
≤ xnj

, and
so, following from the inequality ynj

· u ≤ xnj
· u for all j, we obtain the desired,

yn
st-mo−−−−→ 0, result.

Recall that every order convergent sequence in a d-algebra is statisticalmo-convergent
(see, Theorem 2.1). But, for the general case, we give the following notions.

Definition 3.1. Assume (xn) is a sequence in a Riesz algebra E. Then

(a) (xn) in E is called statistical mo-Cauchy whenever the sequence
(xn − xm)(m,n)∈N×N statistical mo-converges to 0;

(b) E is said to be statistical mo-complete whenever each statistical mo-Cauchy
sequence is statistical mo-convergent;

(c) E is called statistical mo-continuous whenever every order convergent se-
quence is statistical mo-convergent.

Proposition 3.4. The following statements are equivalent for arbitrary Riesz al-
gebra E.

(i) E is statistical mo-continuous;
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(ii) xn ↓ 0 in X implies xn
st-mo−−−−→ 0.

Proof. We show the implication (ii) ⇒ (i) because the converse is trivial. Take a

sequence xn
o−→x in E. Thus, there exists a sequence yn ↓ 0 in E such that |xn−x| ≤

yn for every n ∈ N. Moreover, by using (ii), we have yn
st-mo−−−−→ 0 because of yn ↓ 0.

So, it follows from Proposition 3.3 that |xα − x| is also statistical mo-converges to

zero. Therefore, by considering Theorem 3.1(ii), we have xn
st-mo−−−−→x.

Theorem 3.2. Let E be a statistical mo-continuous and mo-complete semiprime
f -algebra. Then E is σ-order complete.

Proof. Consider a sequence 0 ≤ xn ↑≤ x in E. Thus, by considering [1, Lem.1.39.],
it is enough to show the existence of supxn. Now, by [2, Lem.4.8.], we have a new
sequence (yn) in E with (yn − xn) ↓ 0. Then it follows from Proposition 3.4 that

(yn − xn)
st-mo−−−−→ 0 because E is statistical mo-continuous. Next, by considering the

linearity of statistical mo-limit, Proposition 3.3 and the following inequality

|xn − xm| ≤ |xn − yn|+ |yn − xm|,

we obtain that the sequence (xn) is a statistical mo-Cauchy. Thus, there is some

x ∈ E such that xn
st-mo−−−−→x because E is statistical mo-complete. Now, by applying

Proposition 3.2, since we have xn ↑ x, we obtain the σ-order completeness of E.

Proposition 3.5. If every increasing order bounded sequence in a semiprime f -
algebra E is statistical mo-convergent then E is statistical mo-continuous.

Proof. Suppose xn ↓ 0. So, we show that it is statistical mo-convergent to 0.
Let’s fix an index n0 and consider a sequence yn := xn0

− xn for n > n0. It
is clear that 0 ≤ yn ↑6 xn0 . Therefore, we see that (yn) is increasing and order
bounded sequence. Thus, by our assumption, one can say that (yn) is statistical mo-
convergent to some y ∈ E. Since (yn) is increasing and statistical mo-convergent,
Proposition 3.2 gives the following equality

y = sup
n>n0

yn = sup
n>n0

(xn0
− xn) = xn0

.

Therefore, we have yn = xn0 − xn
st-mo−−−−→xn0 , or xn

st-mo−−−−→ 0. So by Proposition 3.4,
E is statistical mo-continuous.
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