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Abstract. The objective of the present research article is to study the δ-Lorentzian
trans-Sasakian manifolds concidering the η-Ricci solitons and gradient Ricci soliton.
We have shown that a symmetric second order covariant tensor in a δ-Lorentzian trans-
Sasakian manifold is a constant multiple of metric tensor. Also, we have provided an
example of η-Ricci soliton on 3-diemsional δ-Lorentzian trans-Sasakian manifold in the
region where δ-Lorentzian trans-Sasakian manifold is expanding. Furthermore, we have
discussed the results based on gradient Ricci solitons on 3-dimensional δ- Lorentzian
trans-Sasakian manifold.
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ifolds, Einstein manifolds

1. Introduction

In geometrical analysis, a differentiable manifolds endowed Lorentzian metric having
signature (−,+,+, · · · ,+) is a absolutely fascinating topic in Lorentzian geometry.
Matsumoto [19] popularized the study of Lorentzian para-contact manifolds with
Lorentzian metric. Ikawa and Erdogan [16] discussed Lorentzian Sasakian manifold.
In [38], Yildiz et al. studied Lorentzian α-Sasakian manifold and Lorentzian β-
Kenmotsu manifold studied by Funda et al. in [37]. After that, Pujar and Khairnar

Received October 10, 2020. accepted December 10, 2020.
Communicated by Uday Chand De
Corresponding Author: Mohd Danish Siddiqi, Faculty of Science, Department of Mathematics,
Jazan University, Jazan, Kingdom of Saudi Arabia | E-mail: msiddiqi@jazanu.edu.sa
2010 Mathematics Subject Classification. Primary 53C15, 53C25; Secondary 53C55, 53D25
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[22] have initiated the notion of Lorentzian trans-Sasakian manifolds and studied
some basic results with some of its properties. Before that, Pujar had initiated
the study of δ-Lorentzian α−Sasakian manifolds and δ-Lorentzian β−Kenmotsu
manifolds ([22], [23]). In [11], De also studied properties of curvatures in Lorentzian
trans-Sasakian manifolds which is closely related to this subject.

The interplay between manifolds and indefinite metrics is of interest from the
overview of physics and relativity. In 1969, Takahashi [32] introduced the notion of
almost contact metric manifolds equipped with pseudo-Riemannian metric. These
indefinite almost contact metric manifolds and indefinite Sasakian manifolds are
known as (ε)-almost contact metric manifolds [36]. The concept of (ε)-Sasakian
manifolds was initiated by Bejancu and Duggal [3]. De and Sarkar [9] studied the
notion of (ε)-Kenmotsu manifolds. Shukla and Singh [25] extended the study to (ε)-
trans-Sasakian manifolds with indefinite metric. The semi-Riemannian manifolds
has the index 1 and the structure vector field ξ is always a timelike. This motivated
the Tripathi et al. [33] to introduce (ε)-almost para contact structure where the
vector field ξ is spacelike or timelike according to (ε) = 1 or (ε) = −1.

If M has a Lorentzian metric g, that is, a symmetric non degenerate (0, 2) tensor
field of index 1, then M is called a Lorentzian manifold. Since the Lorentzian metric
is of index 1, Lorentzian manifold M has not only spacelike vector fields but also
timelike and lightlike vector fields. This difference with the Riemannian case give
interesting properties on the Lorentzian manifold. A differentiable manifold M has
a Lorentzian metric if and only if M has a 1-dimensional distribution. Since odd
dimensional manifold is able to have a Lorentzian metric. Inspired from the previous
results, Bhati [1] developed the notion of δ-Lorentzian trans-Sasakian manifolds.

On the other hand, in 1982, Hamilton [14] introduced that the Ricci solitons
move under the Ricci flow simply by diffeomorphisms of the initial metric, which
means they are stationary points of the Ricci flow is given by

∂g

∂t
= −2S(g).(1.1)

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

LV g + 2S + 2λ = 0,(1.2)

where S is the Ricci tensor, LV is the Lie derivative along the vector field V on
M and λ is a real scalar. Ricci soliton is said to be shrinking, steady or expanding
according as λ < 0, λ = 0 and λ > 0, respectively.

If the vector field V is the gradient of a potential function ψ , then g is called a
gradient Ricci soliton and equation 1.2 assumes the form ∇∇ψ = S + λg.

The roots of contact geometry lie in differential equations as in 1872 Sophus Lie in-
troduced the notion of contact transformation as a geometric tool to study systems
of differential equations. This subject has manifold connections with the other fields
of pure mathematics, and substantial applications in applied areas such as mechan-
ics, optics, phase space of dynamical system, thermodynamics and control theory.
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In 1925, Levy [17] obtained the necessary and sufficient conditions for the exis-
tence of such tensors. Later on, R. Sharma [24] initiated the study of Ricci solitons in
contact Riemannian geometry. Bagewadi et al. [15] extensively studied Ricci soliton
in almost (ε, δ)-trans-Sasakian manifolds. In 2009, Cho and Kimura [8] introduced
the notion of η-Ricci solitons and gave a classification of real hypersurfaces in non-
flat complex space forms admitting η-Ricci solitons. In addition, η-Ricci solitons
with various structures have been studied by various geometers such as Calin and
Crasmareanu [7] and Blaga ([4], [5]). Recently, Venu at al. [35] study the η-Ricci
soliton in trans-Sasakian manifold. The first author of the paper also studied some
properties of η-Ricci solitons on (ε, δ)-trans-Sasakian manifold and normal almost
contact manifolds which is merely connected to this topic (for more details see [27],
[28], [29], [30], [31]). Therefore, it is natural and interesting to study η-Ricci soliton
on δ-Lorentzian trans-Sasakian manifolds. In this paper, we derive the condition for
a 3 dimensional δ-Lorentzian trans-Sasakian manifold whose metric as an η-Ricci
soliton and derive expression for the scalar curvature.

2. Preliminaries

Let M be an δ-almost contact metric manifold equipped with δ-almost contact
metric structure (φ, ξ, η, g, δ) consisting of a (1, 1) tensor field φ, a vector field ξ, a
1-form η and an indefinite metric g such that

φ2 = X + η(X)ξ, η(ξ) = −1, η ◦ φ = 0, φξ = 0,(2.1)

g(φX, φY ) = g(X,Y ) + δη(X)η(Y ), η(X) = δg(X, ξ), g(ξ, ξ) = −δ,(2.2)

for all X,Y ∈M , where δ is such that δ2 = 1 so that δ = ±1. The above structure
(φ, ξ, η, g, δ) on M is called the δ−Lorentzian structure on M . If δ = 1 and this
is usual Lorentzian structure [34] on M , the vector field ξ is the timelike that is
M contains a timelike vector field. In [34], Tanno classified the connected almost
contact metric manifold. For such a manifold the sectional curvature of the plane
section containing ξ is constant, say c. He showed that they can be divided into
three classes. (1) homogeneous normal contact Riemannian manifolds with c > 0.
Other two classes can be seen in Tanno [34].

Gray and Harvella [13] introduced the classification of almost Hermitian man-
ifolds, there appears a class W4 of Hermitian manifolds which are closely related
to the conformal Kahler manifolds. The class C6 ⊕C5 [13] coincides with the class
of trans-Sasakian structure of type (α, β). In fact, the local nature of the two sub
classes, namely C6 and C5 of trans-Sasakian structures are characterized completely.

An almost contact metric structure on M is called a trans-Sasakian [21] if
(M × R, J,G) belongs to the class W4, where J is almost complex structure on
M × R defined by

J

(
X,ψ

d

dt

)
=

(
φ(X)− ψξ, η(X)

d

dt

)
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for all vector fields X on M and smooth functions ψ on M×R and G is the product
metric on M × R. This may be expressed by the condition

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX)(2.3)

for any vector fields X and Y on M , ∇ denotes the Levi-Civita connection with
respect to g, α and β are smooth functions on M . The existence of condition (2.3)
is ensure by the above discussion.

With the above literature now we define the δ-Lorentzian trans-Sasakian mani-
folds as follows.

Definition 2.1. A δ-Lorentzian manifold with structure (φ, ξ, η, g, δ) is said to be
δ-Lorentzian trans-Sasakian manifold of type (α, β) if it satisfies the condition

(∇Xφ)Y = α(g(X,Y )ξ − δη(Y )X) + β(g(φX, Y )ξ − δη(Y )φX)(2.4)

for any vector fields X and Y on M .

If δ = 1, then the δ-Lorentzian trans-Sasakian manifold is the usual Lorentzian
trans-Sasakian manifold of type (α, β) [11]. δ-Lorentzian trans-Sasakian manifold
of type (0, 0), (0, β) (α, 0) are the Lorentzian cosymplectic, Lorentzian β-Kenmotsu
and Lorentzian α-Sasakian manifolds respectively. In particular if α = 1, β = 0 and
α = 0, β = 1, the δ-Lorentzian trans-Sasakian manifolds reduces to δ-Lorentzian
Sasakian and δ-Lorentzian Kenmotsu manifolds respectively.

From (2.4), we have

∇Xξ = δ {−αφ(X)− β(X + η(X)ξ} ,(2.5)

and
(∇Xη)Y = αg(φX, Y ) + β[g(X,Y ) + δη(X)η(Y )].(2.6)

In a δ-Lorentzian trans-Sasakian manifold M , we have the following relations:

R(X,Y )ξ = (α2 + β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )φX − η(X)φY ](2.7)

+δ[(Y α)φX − (Xα)φY + (Y β)φ2X − (Xβ)φ2Y ]

S(X, ξ) = [((n− 1)(α2 + β2)− (ξβ)]η(X) + δ((φX)α) + (n− 2)δ(Xβ),(2.8)

Qξ = δ(n− 1)(α2 + β2)− (ξβ))ξ + δφ(gradα)− δ(n− 2)(gradβ),(2.9)

where R is curvature tensor, while Q is the Ricci operator given by S(X,Y ) =
g(QX,Y ).
Further in an δ-Lorentzian trans-Sasakian manifold, we have

δφ(gradα) = δ(n− 2)(gradβ)(2.10)

and
2αβ − δ(ξα) = 0.(2.11)
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By using (2.7) and (2.10), for constants α and β, we have

R(ξ,X)Y = (α2 + β2)[δg(X,Y )ξ − η(Y )X],(2.12)

R(X,Y )ξ = (α2 + β2)[η(Y )X − η(X)Y ],(2.13)

η(R(X,Y )Z) = δ(α2 + β2)[g(Y,Z)η(X)− g(X,Z)η(Y )],(2.14)

S(X, ξ) = [((n− 1)(α2 + β2)− δ(ξβ)]η(X),(2.15)

Qξ = [(n− 1)(α2 + β2)− (ξβ)]ξ.(2.16)

An important consequence of (2.5) is that ξ is a geodesic vector field

∇ξξ = 0.(2.17)

For arbitrary X vector field, we have that

dη(ξ,X) = 0.(2.18)

The ξ-sectional curvature Kξ of M is the sectional curvature of the plane spanned
by ξ and a unit vector field X. From (2.13), we have

Kξ = g(R(ξ,X), ξ,X) = (α2 + β2)− δ(ξβ).(2.19)

It follows from (2.19) that ξ-sectional curvature does not depend on X.

3. η-Ricci solitons on (M,φ, ξ, η, g, δ)

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel with
respect to the Levi-Civita connection ∇ that is ∇h = 0. Applying the Ricci com-
mutation identity [12],

∇2h(X,Y ;Z,W )−∇2h(X,Y ;W,Z) = 0,(3.1)

we obtain the relation

h(R(X,Y )Z,W ) + h(Z,R(X,Y )W ) = 0.(3.2)

Replacing Z = W = ξ in (3.2) and using (2.7) and also use the symmetry of h, we
have

2(α2 + β2)[η(Y )h(X, ξ)− η(X)h(Y, ξ)] + 2δ[(Y α)h(φX, ξ)− (Xα)h(φY, ξ)](3.3)

+2δ[(Y β)h(φ2X, ξ)− (Xβ)h(φ2Y, ξ)] + 4αβ[η(Y )h(φX, ξ)− η(X)h(φY, ξ)].

Adopting X = ξ in (3.3) and by virtue of (2.1), we turn up

−2[(δξα− 2αβ]h(φY, ξ) + 2[(α2 + β2)− δ(ξβ)][η(Y )h(ξ, ξ)− h(Y, ξ)] = 0.(3.4)
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By adopting (2.11) in (3.4), we have

[(α2 + β2)− δ(ξβ)][η(Y )h(ξ, ξ)− h(Y, ξ)] = 0.(3.5)

Suppose (α2 + β2)− δ(ξβ) 6= 0, it results

h(Y, ξ) = η(Y )h(ξ, ξ).(3.6)

Now, we call a regular δ-Lorentzian trans-Sasakian manifold with (α2 + β2) −
δ(ξβ) 6= 0, where regularity, means the non-vanishing of the Ricci curvature with
respect to the generator of δ-Lorentzian trans-Sasakian manifolds.

Differentiating (3.6) covariantly with respect to X, we have

(∇Xh)(Y, ξ) + h(∇XY, ξ) + h(Y,∇Xξ) = [δg(∇XY, ξ) + δg(Y,∇Xξ)]h(ξ, ξ)(3.7)

+η(Y )[(∇Xh)(Y, ξ) + 2h((∇Xξ, ξ)].
By adopting the parallel condition ∇h = 0, η(∇Xξ) = 0 and by the virtue of (3.6)
in (3.7), we get

h(Y,∇Xξ) = δg(Y,∇Xξ)h(ξ, ξ).

Now adopting (2.5) in the above equation, we turn up

−αh(Y, φX) + βδh(Y,X) = −αg(Y, φX)h(ξ, ξ) + βδg(Y,X)h(ξ, ξ).(3.8)

Replacing X = φX in (3.8) and after simplification, we turn up

h(X,Y ) = δg(X,Y )h(ξ, ξ),(3.9)

which together with the standard fact that the parallelism of h implies that h(ξ, ξ)
is a constant, via (3.6). Now by considering the above equations, we can gives the
conclusion:

Theorem 3.1. Let (M,φ, ξ, η, g, δ) be an δ-Lorentzian trans-Sasakian manifold
with non-vanishing ξ-sectional curvature and endowed with a tensor field h ∈ Γ(T 0

2 (M))
which is symmetric and φ-skew-symmetric. If h is parallel with respect to ∇ then it
is a constant multiple of the metric tensor g.

Definition 3.1. Let (M,φ, ξ, η, g, δ) be an δ-almost contact metric manifold. Con-
sider the equation

Lξg + 2S + 2λg + 2µη ⊗ η = 0,(3.10)

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci
curvature tensor field of the metric g and λ and µ are real constants. Writing Lξg
in terms of the Levi-Civita connection ∇, we obtain:

2S(X,Y ) = −g(∇Xξ, Y )− g(X,∇Xξ)− 2λg(X,Y )− 2µη(X)η(Y ),(3.11)

for any X,Y ∈ χ(M).
The data (g, ξ, λ, µ) which satisfies the equation (3.10) is said to be η-Ricci

soliton on M [5]; in particular if µ = 0 then (g, ξ, λ) is Ricci soliton [5] and its called
shrinking, steady or expanding according as λ < 0, λ = 0 or λ > 0 respectively [5].
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Now, from (2.5), the equation (3.10) becomes:

S(X,Y ) = −(λ+ βδ)g(X,Y ) + (βδ − µ)η(X)η(Y ).(3.12)

The above equations yields

S(X, ξ) = −(λ+ µ)η(X)(3.13)

QX = −(λ+ βδ)X + (βδ − µ)ξ(3.14)

Qξ = −(λ+ µ)ξ(3.15)

r = −λn− (n− 1)βδ − µ,(3.16)

where r is the scalar curvature. Of the two natural situations regarding the vector
field V such that V ∈ span {ξ} and V⊥ξ, we investigate only the case for V = ξ.

Our interest is in the expression for Lξg + 2S + 2µη ⊗ η. A direct computation
gives

Lξg(X,Y ) = 2βδ[g(X,Y ) + η(X)η(Y )].(3.17)

In 3-dimensional δ-Lorentzian trans-Sasakian manifold the Riemannian curvature
tensor is given by

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y,Z)X − S(X,Z)Y

− r2 [g(Y, Z)X − g(X,Z)Y ].

Putting Z = ξ in (3.18) and using (2.7) and (2.8) for 3-dimensional δ-Lorentzian
trans-Sasakian manifold, we get

(α2 + β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )φX − η(X)φY ](3.18)

+δ[(Y α)φX − (Xα)φY ] + δ[(Y β)φ2X − (Xβ)φ2Y ]

= [(α2 + β2)− (ξβ)][η(Y )X − η(X)Y ]

+δη(Y )QX − δη(X)QY − δ[((φY )α)X + (Y β)X]

+δ[((φX)α)Y + (Xβ)Y ].

Again, putting Y = ξ in the (3.19) and using (2.1) and (2.11), we turn up

QX =
[r

2
+ (ξβ)− (α2 + β2)

]
X +

[r
2

+ (ξβ)− 3(α2 + β2)
]
η(X)ξ.(3.19)

From (3.20), we have

S(X,Y ) =
[r

2
+ (ξβ)− (α2 + β2)

]
g(X,Y )(3.20)
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+
[r

2
+ (ξβ)− 3(α2 + β2)

]
δη(X)η(Y ).

Equation (3.21) shows that a 3-dimensional δ-Lorentzian trans-Sasakian manifold
is η-Einstein.
Next, we consider the equation

h(X,Y ) = (Lξg)(X,Y ) + 2S(X,Y ) + 2µη(X)η(Y ).(3.21)

By using (3.17) and (3.21) in (3.22), we have

h(X,Y ) =
[
r − 4(α2 + β2) + 2βδ

]
g(X,Y )(3.22)

+
[
8(α2 + β2)− 2βδ − r

]
δη(X)η(Y ) + 2µη(X)η(Y ).

Setting X = Y = ξ in (2.3), we turn up

h(ξ, ξ) = 2[2δ(α2 + β2)− 2µ].(3.23)

Now, (3.9) becomes

h(X,Y ) = 2[2δ(α2 + β2)− 2µ]δg(X,Y ).(3.24)

From (3.22) and (3.25), it follows that g is an η-Ricci soliton.
Therefore, we can state as:

Theorem 3.2. Let (M,φ, ξ, η, g, δ) be a 3-dimensional δ-Lorentzian trans-Sasakian
manifold, then (g, ξ, µ) yields an η-Ricci soliton on M .

Let V be pointwise collinear with ξ. i.e., V = bξ, where b is a function on the
3-dimensional δ-Lorentzian trans-Sasakian manifold. Then

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0

or

bg((∇Xξ, Y ) + (Xb)η(Y ) + bg(∇Y ξ,X) + (Y b)η(X)

+2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0.

By using (2.5), we obtain

bg(−δαφX − βδ(X + η(X)ξ, Y ) + (Xb)η(Y ) + bg(−δαφY − βδ(Y + η(Y )ξ,X)

+(Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0

which yields
−2bβδg(X,Y )− 2bβδη(X)η(Y ) + (Xb)η(Y )(3.25)



η-Ricci Solitons and gradient Ricci solitons... 537

+(Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0.

Replacing Y by ξ in (3.26), we get

(Xb) + (ξb)η(X) + 2[2(α2 + β2)− (ξβ) + λ+ µ− 2bβδ]η(X).(3.26)

Again putting X = ξ in (3.27), we obtain

ξb = −2(α2 + β2) + (ξβ)− λ− µ+ 2bβδ.

Plugging this in (3.27), we get

(Xb) + 2[2(α2 + β2)− (ξβ) + λ+ µ− 2bβδ]η(X) = 0

or
db = −

{
λ+ µ− (ξβ) + 2(α2 + β2)− 2bβδ

}
η.(3.27)

Applying d on (3.28), we get
{
λ+ µ− (ξβ) + 2(α2 + β2)− 2bβδ

}
dη. Since dη 6= 0

we have
λ+ µ− (ξβ) + 2(α2 + β2)− 2bβδ = 0.(3.28)

Equation (3.29) in (3.28) yields b as a constant. Therefore, from (3.26), it follows
that

S(X,Y ) = −(λ+ 2bβδ)g(X,Y ) + (2bβδ − µ)η(X)η(Y ),

which implies that M is of constant scalar curvature for constant 2βδ. This leads
to the following:

Theorem 3.3. If in a 3-dimensional δ-Lorentzian trans-Sasakian manifold the
metric g is an η-Ricci soliton and V is positive collinear with ξ, then V is a constant
multiple of ξ and g is of constant scalar curvature provided βδ is a constant.

Ranking X = Y = ξ in (3.9) and (3.21) and comparing, we get

λ = −2(α2 + β2)− (ξβ) + µ− 2bβδ = −2Kξ − µ.(3.29)

From (3.16) and (3.30), we obtain

r = 6(α2 + β2)− 3(ξβ)− 2βδ + 2µ.(3.30)

Since λ is a constant, it follows from (3.30) that Kξ is a constant.

Theorem 3.4. Let (g, ξ, µ) be an η-Ricci soliton in (M,φ, ξ, η, g, δ) a 3-dimensional
δ-Lorentzian trans Sasakian manifold. Then the scalar λ + µ = −2Kξ, r = 6Kξ +
2µ− 3(ξβ)− 2bβδ.

Remark 3.1. For µ = 0, (3.30) reduces to λ = −2Kξ, so Ricci soliton in 3-dimensional
δ-Lorentzian trans-Sasaakian manifold is shrinking.
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Example 3.1. Consider the three dimensional manifold M =
{

(x, y, z) ∈ R3|z 6= 0|
}

,
where (x, y, z) are the Cartesian coordinates in R3 and let the vector fields are

e1 =
ex

z2
∂

∂x
, e2 =

ey

z2
∂

∂y
, e3 =

−(δ)

2

∂

∂z
,

where e1, e2, e3 are linearly independent at each point of M . Let g be the Rieman-
nain metric defined by
g(e1, e1) = g(e2, e2) = g(e3, e3) = −δ, g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,
where δ is such that δ2 = 1 so that δ = ±1.

Let η be the 1-form defined by η(X) = δg(X, ξ) for any vector field X on M ,
let φ be the (1,1) tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0.
Then by using the linearity of φ and g, we have φ2X = −X + η(X)ξ, with ξ = e3.
Further g(φX, φY ) = g(X,Y ) + δη(X)η(Y ) for any vector fields X and Y on M .
Hence for e3 = ξ, the structure defines an (δ)-almost contact structure in R3.

Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z])

−g(Y, [X,Z]) + g(Z, [X,Y ]),

which is know as Koszul’s formula. Now we have

∇e1e3 = − (δ)

z
e1, ∇e2e3 = − (δ)

z
e2, ∇e1e2 = 0,

by using the above relation, for any vector X on M , we have

∇Xξ = δ[−αφX − β(X + η(X)ξ)],

where α = 1
z and β = − 1

z . Hence (φ, ξ, η, g, δ) structure defines the δ-Lorentzian
trans-Sasakian structure in R3.

Here ∇ be the Levi-Civita connection with respect to the metric g, then we have

[e1, e2] = 0, [e1, e3] = − (δ)

z
e1, [e2, e3] = − (δ)

z
e2.

due to g(e1, e2) = 0. Thus we have

∇e1e3 = − (δ)

z
e1 + e2, ∇e1e2 = 0

∇e2e1 = 0, ∇e2e2 = − (δ)

z
e2, ∇e2e3 = − (δ)

z
e2 − e1 ∇e3e1 = 0

∇e3e2 = 0, ∇e3e3 = − (δ)

z
e1 + e2.

The manifold M satisfies (2.5) with α = 1
z and β = − 1

z . Hence M is an δ-Lorentzian
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trans-Sasakian manifolds. Then the non-vanishing components of the curvature ten-
sor fields are computed as follows:

R(e1, e3)e3 =
(δ)

z2
e1, R(e3, e1)e3 = − (δ)

z2
e1,

R(e2, e3)e3 =
(δ)

z2
e1, R(e3, e2)e3 = − (δ)

z2
e1.

From the above expression of the curvature tensor we can also obtain

S(e1, e1) = S(e2, e2) = S(e3, e3) =
(δ2)

z2

since g(e1, e3) = g(e1, e2) = 0.
Therefore, we have

S(ei, ei) =
(δ)

z2
g(ei, ei),

for i = 1, 2, 3 , and α = 1
z , β = − 1

z . Hence M is also an Einstein manifold. In

this case, from (3.11), we find λ = (1+zδ)
z2 and µ = (δ)2

z , the data (g, ξ, λ, µ) is an
expanding η-Ricci soliton on (M,φ, ξ, η, g).

4. Gradient Ricci Solitons in 3-dimensional δ-Lorentzian

trans-Sasakian manifold

If the vector field V is the gradient of a potential function ψ then g is called a
gradient Ricci soliton and (1.2) assume the form

∇∇ψ = S + λg.(4.1)

This reduces to
∇YDψ = QY + λY,(4.2)

where D denoted the gradient operator of g. From (4.2) it follows

R(X,Y )Dψ = (∇̄XQ)Y − (∇̄YQ)X.(4.3)

Differentiating (3.20) we get

(∇WQ)X =
dr(W )

2
(X − η(X)ξ))− (

r

2
− 3(α2 + β2))(α(g(φW,X)(4.4)

+βδg(W,X)− δβη(X)η(W )) + η(X)∇W ξ.

In (4.4) replacing W = ξ, we obtain

(∇ξQ)X =
dr(ξ)

2
(X − η(X)ξ)).(4.5)



540 M. D. Siddiqi and M. A. Akyol

Then we have

g(∇ξQ)X − (∇̄XQ)(ξ, ξ) = g(
dr(ξ)

2
(X − η(X)ξ, ξ))(4.6)

=
dr(ξ)

2
(g(X, ξ)− η(X))) = 0.

Using (4.6) and (4.5), we obtain

g(R(ξ,X)Dψ, ξ) = 0.(4.7)

From (2.12), we find

g(R̄(ξ, Y )Dψ, ξ) = (α2 + β2)(g(Y,Dψ)− η(Y )η(Dψ)).

Using (11.7), we get

(α2 + β2)(g(Y,Dψ)− η(Y )η(Dψ)) = 0

(α2 + β2)(g(Y,Dψ)− η(Y )g(Dψ, ξ)) = 0,

or

(g(Y,Dψ)− g(Y, ξ)g(Dψ, ξ)) = 0,

which implies

Dψ = (ξψ)ξ, since α2 + β2 6= −δ(ξβ).(4.8)

Now, using (4.8) and (4.2), we get

S(X,Y ) + λg(X,Y ) = g(∇YDψ,X) = g(∇Y (ξψ)ξ,X)

= (ξψ)g(∇̄Y ξ,X) + Y (ξψ)η(X)

= (ξψ)g(−δαφY − δβY − δβη(Y )ξ,X) + Y (ξψ)η(X)

S(X,Y ) + λg(X,Y ) = −δα(ξψ)g(φY,X)− δβ(ξψ)g(Y,X)(4.9)

−δβ(ξψ)η(Y )η(X) + Y (ξψ)η(X).

Putting X = ξ in (4.9) and using (2.15) we get

S̄(Y, ξ) + λη(Y ) = Y (ξψ) = [λ+ 2δβ + 2(α2 + β2 − δ(ξβ))]η(Y ).(4.10)
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Interchanging X and Y in (4.9), we get

S(X,Y ) + λg(X,Y ) = −δα(ξψ)g(Y, φX)− δβ(ξψ)g(X,Y )(4.11)

−δβ(ξψ)η(Y )η(X) +X(ξψ)η(Y ).

Adding (4.9) and (4.11) we get

2S(X,Y ) + 2λg(X,Y ) = −2δβ(ξψ)g(X,Y ) + Y (ξψ)η(X)(4.12)

−2δβ(ξψ)η(X)η(Y ) +X(ξψ)η(Y ).

Using (4.10) in (4.12) we have

S(X,Y ) + λg(X,Y ) = −δβ(ξψ)[g(X,Y )− η(X)η(Y )](4.13)

+[λ+ δβ + 2(α2 + β2 − δ(ξβ))]η(X)η(Y ).

Then using (4.2) we have

∇YDψ = −δβ(ξψ)(Y − η(Y )ξ)(4.14)

+[λ+ δβ + 2(α2 + β2 − δ(ξβ))]η(Y )ξ.

Using (11.14) we calculate

R(X,Y )Dψ = ∇X∇YDψ −∇Y∇XDψ −∇[X,Y ]Dψ

= −δβX(ξψ)Y + δβY (ξψ)X(4.15)

−δβY (ξψ)η(X)ξ + δβX(ξψ)η(Y )ξ

+[λ+ δβ + 2(α2 + β2 − δ(ξβ))]((∇Xη)(Y )ξ − (∇Y η)(X)ξ)

+[λ+ δβ + 2(α2 + β2 − δ(ξβ))]((∇Xξ)η(Y )ξ − (∇Y ξ)η(X)).

Taking inner product with ξ in (4.15), we get

0 = g((X,Y )Dψ, ξ) = 2δα[λ+ δβ + 2(α2 + β2 − δ(ξβ))]g(φY,X).(4.16)

Thus we have 2δα[λ+ δβ + 2(α2 + β2 − δ(ξβ))] = 0.

Now we consider the following cases:

Case (i) δα = 0, or
Case (ii) [λ+ δβ + 2(α2 + β2 − δ(ξβ))] = 0,
Case (iii) α = 0 and [λ+ δβ + 2(α2 + β2 − δ(ξβ))] = 0.
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In this case, we have the following;

Case (i) If α = 0, the manifold reduces to a δ-Lorentzian β-Kenmotsu manifold.

Case (ii) Let [λ+ δβ + 2(α2 + β2 − δ(ξβ))] = 0. If we use this in (4.10) we get
Y (ξψ) = −δβ(ξψ)η(Y ). Substitute this value in (11.12) we obtain

S(X,Y ) + λg(X,Y ) = −δβ(ξψ)g(X,Y )− 2δβη(X)η(Y ).(4.17)

Now, contracting (4.17), we get

r + 3λ = −3δβ(ξψ)− 2δβ,(4.18)

which implies

(ξψ) =
r

−3δβ
+

λ

−δβ
+

2

−3
.(4.19)

If r = constant, then (ξψ) = constant = k(say). Therefore from (4.8) we have
Dψ = (ξψ)ξ = kξ. This we can write this equation as

g(Dψ,X) = kη(X),(4.20)

which means that dψ(X) = kη(X). Applying d this, we get kdη = 0. Since dη 6= 0,
we have k = 0. Hence we get Dψ = 0. This means that ψ = constant Therefore
equation (11.1) reduces to

S(X,Y ) = 2(α2 + β2 − δ(ξβ))g(X,Y ),

that is M is an Einstein manifold.
Case (iii) Using α = 0 and [λ+ δβ + 2(α2 + β2 − δ(ξβ))] = 0. in (4.10) we obtain
Y (ξψ) = −δβ(ξψ)η(Y ). Now as in Case (ii) we conclude that the manifold is an
Einstein manifold.

Thus we have the following :

Theorem 4.1. If a 3-dimensional δ-Lorentzian trans-Sasakian manifold with con-
stant scalar curvature admits gradient Ricci soliton, then the manifold is either a δ-
Lorentzian β-Kenmotsu manifold or an Einstein manifold provided α, β = constant.

In [9], it was proved that if a 3-dimensional compact connected trans-Sasakian
manifold is of constant curvature, then it is either α-Sasakian or β-Kenmotsu. Since
for a 3-dimensional Riemannian manifold constant curvature and Einstein manifold
are equivalent, therefore from the Theorem 3 we state the following:

Corollary 4.1. If a compact 3-dimensional δ-Lorentzian trans-Sasakian manifold
with constant scalar curvature admits Ricci soliton, then the manifold is either δ-
Lorentzian α-Sasakian or δ-Lorentzian β-Kenmotsu.



η-Ricci Solitons and gradient Ricci solitons... 543

Also in [13], authors proved that a 3-dimensional connected trans-Sasakian manifold
is locally φ-symmetric if and only if the scalar curvature is constant provided α and
β are constants. Hence, from Theorem 3 we obtain the following:

Corollary 4.2. If a locally φ-symmetric 3-dimensional connected δ-Lorentzian
trans-Sasakian manifold its admits gradient Ricci soliton, then manifold is either
δ-Lorentzian β-Kenmotsu or Einstein manifold provided α, β = constant.
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