HYPERSPHERICAL AND HYPERCYLINDRICAL GENERALIZED HELICES IN THE SENSE OF HAYDEN IN $\mathbb{E}^{2 n+1}$

Hasan Altınbass ${ }^{1}$, Bülent Altunkaya ${ }^{2}$ and Levent Kula ${ }^{1}$
${ }^{1}$ Kırşehir Ahi Evran University, The Faculty of Arts and Sciences Department of Mathematics, P. O. Box 40100, 40100 Kırşehir, Turkey
${ }^{2}$ Kırşehir Ahi Evran University, Faculty of Education
Department of Mathematics, P.O. Box 73, 40100 Kırşehir, Turkey

Abstract

In this paper, we investigate generalized helices in the sense of Hayden in $(2 n+1)$-dimensional Euclidean space $\mathbb{E}^{2 n+1}$. We obtain some results for such curves in $\mathbb{E}^{2 n+1}$. Thereafter, we obtain two families of generalized helices which are hyperspherical and hypercylindrical generalized helices in the sense of Hayden. In addition, we give examples of hyperspherical and hypercylindrical generalized helices in the sense of Hayden in \mathbb{E}^{5}. Finally, we give examples of hyperspherical and hypercylindrical generalized helices in the sense of Hayden in \mathbb{E}^{3} and plot the graphics of these curves with Mathematica 10.0.

Keywords: generalized helices, global submanifolds, Euclidean space

1. Introduction

Helical structures have many applications to the various branches of science such as biology, architecture, engineering, etc. [1]. One of the important research problem for differential geometry is helices. The notion of helix is stated in 3dimensional Euclidean space by M. A. Lancret in 1802. Helix is a curve whose tangent vector field makes a constant angle with a fixed direction called the axis of

[^0](C) 2021 by University of Niš, Serbia \| Creative Commons License: CC BY-NC-ND
the helix. The necessary and sufficient condition for a curve to be a general helix is that the ratio of curvature to torsion should be constant, which is given by B. de Saint Venant in 1845 [2, 4]. If both curvature and torsion are non-zero constants, then the curve is called circular helix [2]. Also, in the n-dimensional Euclidean space, a general helix is defined similarly i.e., whose tangent vector field makes a constant angle with a fixed direction [9].

In [6], generalized helix notion is more restrictive in the n-dimensional Euclidean space for $n>3$; a fixed direction makes a constant angle with all Frenet vector fields of the curve. This type of curves are called the generalized helix in the sense of Hayden [4]. In [6], the generalized helix in the sense of Hayden has the property that the ratios $\frac{\kappa_{1}}{\kappa_{2}}, \frac{\kappa_{3}}{\kappa_{4}}, \ldots, \frac{\kappa_{n-4}}{\kappa_{n-3}}, \frac{\kappa_{n-2}}{\kappa_{n-1}}$ are constants if n is odd, where $\kappa_{i}(1 \leqslant i \leqslant n-1)$ denote i th curvature function of the curve. In this work, we study generalized helices in the sense of Hayden. For the sake of brevity, we call them generalized helices.

Notice that, a curve β is called a W-curve, if the curve has constant curvatures. Also, W-curves in $\mathbb{E}^{2 n+1}$ are generalized helices [4].

This study is organized as follows: In section 2, we review differential geometry of regular curves in \mathbb{E}^{n}. In Section 3, we give a theorem for generalized helix. After that, we obtain some results for generalized helices based on angles which are between the Frenet vector fields of the curve and a fixed direction. In Section 4, we show that the family of curves in [2] are hyperspherical generalized helices. Thereafter, we obtain hypercylindrical generalized helices in $\mathbb{E}^{2 n+1}$ by using a different method from [2]. Finally we give examples for such curves in \mathbb{E}^{5} and \mathbb{E}^{3}.

2. Preliminary

In this section, we give the basic theory of local differential geometry of curves in the n-dimensional Euclidean space. For more detail and background about this space, see $[3,5]$.

Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}^{n}$ be an arbitrary curve in the n-dimensional Euclidean space denoted by \mathbb{E}^{n}. Recall that \langle,$\rangle denotes the standard inner product of \mathbb{R}^{n}$ given by

$$
\begin{equation*}
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i} \tag{2.1}
\end{equation*}
$$

for each $x=\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right), y=\left(y_{1}, y_{2}, y_{3}, \ldots y_{n}\right) \in \mathbb{R}^{n}$. The norm of a vector $x \in \mathbb{R}^{n}$ is defined by $\|x\|=\sqrt{\langle x, x\rangle}$. Let $\left\{V_{1}, V_{2}, V_{3}, \ldots V_{n}\right\}$ be the moving Frenet frame along the arbitrary curve α, where $V_{i}(1 \leqslant i \leqslant n)$ is Frenet vector field. Then,
the matrix form of Frenet formulas are given by

$$
\text { 2) }\left(\begin{array}{c}
V_{1}^{\prime} \tag{2.2}\\
V_{2}^{\prime} \\
V_{3}^{\prime} \\
\vdots \\
V_{n-1}^{\prime} \\
V_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & \nu \kappa_{1} & 0 & \cdots & 0 & 0 \\
-\nu \kappa_{1} & 0 & \nu \kappa_{2} & \cdots & 0 & 0 \\
0 & -\nu \kappa_{2} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & -\nu \kappa_{n-1} \\
0 & 0 & 0 & \cdots & -\nu \kappa_{n-1} & 0
\end{array}\right)\left(\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
\vdots \\
V_{n-1} \\
V_{n}
\end{array}\right)
$$

where $\nu=\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle$ and $\kappa_{i}(1 \leqslant i \leqslant n-1)$ denote the i th curvature function of the curve α [1]. To obtain $V_{1}, V_{2}, V_{3}, \ldots V_{n}$ it is sufficient to apply the GrammSchmidt orthogonalization process to $\alpha^{\prime}(t), \alpha^{\prime \prime}(t), \ldots, \alpha^{(n)}(t)$. More precisely, $V_{i}(1 \leqslant i \leqslant n)$ and $\kappa_{i}(1 \leqslant i \leqslant n-1)$ are determined by the following formulas [8]:

$$
\begin{aligned}
& F_{1}(t)=\alpha^{\prime}(t), \\
& F_{i}(t)=\alpha^{i}(t)-\sum_{j=1}^{i-1} \frac{\left\langle\alpha^{i}(t), F_{j}(t)\right\rangle}{\left\langle F_{j}(t), F_{j}(t)\right\rangle} F_{j}(t) \text { for } 2 \leqslant i \leqslant n, \\
& \kappa_{i}(t)=\frac{\left\|F_{i+1}(t)\right\|}{\left\|F_{1}(t)\right\|}\left\|F_{i}(t)\right\| \\
& \text { for } 1 \leqslant i \leqslant n, \\
& V_{i}=\frac{F_{i}}{\left\|F_{i}\right\|} \text { for } 1 \leqslant i \leqslant n
\end{aligned}
$$

where $\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(n)}$ are linearly independent. Let $\beta: I \rightarrow S^{n}$ be a unit speed hyperspherical curve in \mathbb{E}^{n+1} where I is an open interval in \mathbb{R}. In [10], Izumiya and Nagai defined generalized Sabban frame $\left\{\beta, \mathbf{t}, \mathbf{n}_{1}, \mathbf{n}_{2}, \ldots, \mathbf{n}_{n-1}\right\}$ of the unit speed curve β which is determined by the following formulas:

$$
\begin{aligned}
\mathbf{n}_{1} & =\frac{\mathbf{t}^{\prime}+\beta}{\left\|\mathbf{t}^{\prime}+\beta\right\|}, \\
k_{1} & =\left\|\mathbf{t}^{\prime}+\beta\right\|, \\
\mathbf{n}_{2} & =\frac{\mathbf{n}_{1}^{\prime}+k_{1} \beta^{\prime}}{\left\|\mathbf{n}_{1}^{\prime}+k_{1} \beta^{\prime}\right\|}, \\
k_{2} & =\left\|\mathbf{n}_{1}^{\prime}+k_{1} \beta^{\prime}\right\|, \\
k_{i} & =\left\|\mathbf{n}_{i-1}^{\prime}+k_{i-1} \mathbf{n}_{i-2}\right\|, \\
\mathbf{n}_{i} & =\frac{\mathbf{n}_{i-1}^{\prime}+k_{i-1} \mathbf{n}_{i-2}}{\left\|\mathbf{n}_{i-1}^{\prime}+k_{i-1} \mathbf{n}_{i-2}\right\|},
\end{aligned}
$$

for $3 \leqslant i \leqslant n-2$ and $k_{i} \neq 0$ for all i and

$$
\begin{aligned}
\mathbf{n}_{n-1} & =\frac{\beta \times \mathbf{t}^{\prime} \times \mathbf{n}_{1} \times \cdots \times \mathbf{n}_{n-2}}{\left\|\beta \times \mathbf{t}^{\prime} \times \mathbf{n}_{1} \times \cdots \times \mathbf{n}_{n-2}\right\|}, \\
k_{n-1} & =\left\langle\mathbf{n}_{n-2}^{\prime}, \mathbf{n}_{n-1}\right\rangle
\end{aligned}
$$

where $k_{i}(1 \leqslant i \leqslant n-1)$ denote i th curvature function of the curve β. Also, in the same paper, Izumiya and Nagai gave the following Frenet-Serret type formula for the generalized Sabban frame of the spherical curve β.

$$
\left(\begin{array}{c}
\beta^{\prime} \tag{2.3}\\
\mathbf{t}^{\prime} \\
\mathbf{n}_{1}^{\prime} \\
\vdots \\
\mathbf{n}_{n-2}^{\prime} \\
\mathbf{n}_{n-1}^{\prime}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
-1 & 0 & k_{1} & \cdots & 0 & 0 \\
0 & -k_{1} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & k_{n-1} \\
0 & 0 & 0 & \cdots & k_{n-1} & 0
\end{array}\right)\left(\begin{array}{c}
\beta \\
\mathbf{t} \\
\mathbf{n}_{1} \\
\vdots \\
\mathbf{n}_{n-2} \\
\mathbf{n}_{n-1}
\end{array}\right) .
$$

Definition 2.1. A Frenet curve of rank r for which $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{r}$ are constants is called W-curve [7].

A unit speed W-curve of rank $2 n$ has the parameterization of the form

$$
\begin{equation*}
\beta(s)=a_{0}+\sum_{i=1}^{n}\left(a_{i} \cos \mu_{i} s+b_{i} \sin \mu_{i} s\right) \tag{2.4}
\end{equation*}
$$

and a unit speed W-curve of rank $2 n+1$ has the parameterization of the form

$$
\begin{equation*}
\beta(s)=a_{0}+b_{0} s+\sum_{i=1}^{n}\left(a_{i} \cos \mu_{i} s+b_{i} \sin \mu_{i} s\right) \tag{2.5}
\end{equation*}
$$

where $a_{0}, b_{0}, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$ are constant vectors in \mathbb{R}^{n} and $\mu_{1}<\mu_{2}<\ldots<\mu_{n}$ are positive real numbers. So, a W-curve of rank 1 is a straight line, a W-curve of rank 2 is a circle, a W-curve of rank 3 is a right circular helix [8].

3. Generalized Helix in $\mathbb{E}^{2 n+1}$

Hayden gave the following theorems in [6].
Theorem 3.1. Let α be a curve in a Riemannian $(2 n+1)$-space, the Frenet vector fields $V_{3}, V_{5}, \ldots, V_{2 n+1}$ of the curve make constant angle with a parallel vector-field along the curve, then the curve α is generalized helix; moreover, V_{1} also make a constant angle with the given vector-field, and $V_{2}, V_{4}, \ldots, V_{2 n}$ are each perpendicular to the given vector-field [6].

Theorem 3.2. Let α be a curve in a Riemannian $(2 n+1)$-space, the Frenet vector fields $V_{1}, V_{3}, \ldots, V_{2 n-1}$ of the curve make constant angle with a parallel vector-field along the curve, then the curve α is generalized helix; moreover, $V_{2 n+1}$ also make a constant angle with the given vector-field, and $V_{2}, V_{4}, \ldots, V_{2 n}$ are each perpendicular to the given vector-field [6].

In the light of the theorems mentioned above, we can give the following theorem.

Theorem 3.3. Let α be a curve in $\mathbb{E}^{2 n+1}$. If the Frenet vector fields
$V_{1}, V_{3}, V_{5}, \ldots, V_{2 j-1}, V_{2 j+3}, \ldots, V_{2 n+1},(1 \leqslant j \leqslant n)$ of the curve α make constant angle with a unit vector U, then the curve α is generalized helix; moreover, the vector field $V_{2 j+1}$ makes a constant angle with the given vector U, and $V_{2}, V_{4}, \ldots, V_{2 n}$ are each perpendicular to the given vector U.

Proof. Assume that the Frenet vector fields $V_{1}, V_{3}, V_{5}, \ldots, V_{2 j-1}, V_{2 j+3}, \ldots, V_{2 n+1}$, $(1 \leqslant j \leqslant n)$ of the curve α make constant angle with a unit vector U. Then, we have

$$
\begin{equation*}
\left\langle V_{i}, U\right\rangle=\cos \theta_{i}, \quad i=1,3,5, \ldots, 2 j-1,2 j+1, \ldots, 2 n+1 \tag{3.1}
\end{equation*}
$$

If we take the derivative of 3.1 for $i=1$ by using Frenet formulas in 2.2, we obtain that V_{2} is perpendicular to U.
If we take the derivative of 3.1 for $i=3$ by using Frenet formulas in 2.2 and the fact that $V_{2} \perp U$, we obtain that V_{4} is perpendicular to U.
Similarly, we take the derivative of 3.1 for $i=5,7, \ldots, 2 j-1$ we obtain $V_{6}, V_{8}, \ldots V_{2 j}$ each are perpendicular to U.
If we take the derivative of 3.1 for $i=2 n+1$ by using Frenet formulas in 2.2 , we get $V_{2 n}$ is perpendicular to U.
If we take the derivative of 3.1 for $i=2 n-1$ by using Frenet formulas in 2.2 and the fact that $V_{2 n} \perp U$, we obtain that $V_{2 n-2}$ is perpendicular to U.
Similarly, we take the derivative of 3.1 for $i=2 n-3,2 n-5, \ldots, 2 j+3$ we obtain $V_{2 n-4}, V_{2 n-6}, \ldots V_{2 j+2}$ each are perpendicular to U.
Finally, for $i=2 j+1$ from 2.2 we have

$$
\begin{equation*}
\left\langle V_{2 j+1}, U\right\rangle^{\prime}=\kappa_{2 j+1}\left\langle V_{2 j+2}, U\right\rangle-\kappa_{2 j}\left\langle V_{2 j}, U\right\rangle=0 \tag{3.2}
\end{equation*}
$$

since $\left\langle V_{2 j+2}, U\right\rangle=0$ and $\left\langle V_{2 j}, U\right\rangle=0$. So, $\left\langle V_{2 j+1}, U\right\rangle$ is a constant. Therefore, $V_{2 j}$ makes a constant angle with U.

The vector U is called the axes of generalized helix. It is obvious; if we take the derivative of 3.1 for $i=2,4, \ldots 2 n$ by using 2.2 we have

$$
\begin{equation*}
\frac{\kappa_{2}}{\kappa_{1}}=\frac{\cos \theta_{1}}{\cos \theta_{3}}, \quad \frac{\kappa_{4}}{\kappa_{3}}=\frac{\cos \theta_{3}}{\cos \theta_{5}}, \quad \ldots, \quad \frac{\kappa_{2 n}}{\kappa_{2 n-1}}=\frac{\cos \theta_{2 n-1}}{\cos \theta_{2 n+1}} \tag{3.3}
\end{equation*}
$$

From 3.3, we give the following corollary.
Corollary 3.1. Let α be a generalized helix with curvatures $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{2 n}$ in $\mathbb{E}^{2 n+1}$. Then,

$$
\frac{\kappa_{2} \kappa_{4} \ldots \kappa_{2 n}}{\kappa_{1} \kappa_{3} \ldots \kappa_{2 n-1}}=\frac{\cos \theta_{1}}{\cos \theta_{2 n+1}}
$$

$$
\cos \theta_{j}=\frac{\kappa_{j+1}}{\kappa_{j}} \cos \theta_{j+2} \text { for } j=1,3,5, \ldots, 2 n-1
$$

and the axis of a generalized helix has the form

$$
U=\cos \theta_{1} V_{1}+\cos \theta_{3} V_{3}+\cdots+\cos \theta_{2 n+1} V_{2 n+1}
$$

Theorem 3.4. Let α be a generalized helix with curvatures $\kappa_{1}, \kappa_{2}, \ldots \kappa_{2 n}$ in $\mathbb{E}^{2 n+1}$. Then,

$$
U=\cos \theta_{1}\left(V_{1}+\sum_{i=1}^{n} \frac{\kappa_{1} \kappa_{3} \ldots \kappa_{2 i-1}}{\kappa_{2} \kappa_{4} \ldots \kappa_{2 i}} V_{2 i+1}\right)
$$

and

$$
\tan ^{2} \theta_{1}=\sum_{i=1}^{n}\left(\frac{\kappa_{1} \kappa_{3} \ldots \kappa_{2 i-1}}{\kappa_{2} \kappa_{4} \ldots \kappa_{2 i}}\right)^{2}
$$

where θ_{1} is the angle between V_{1} and U.
Proof. It is clear from equation 3.3 and Corollary 3.1.

Similarly, we have the following theorem.
Theorem 3.5. Let α be a generalized helix with curvatures $\kappa_{1}, \kappa_{2}, \ldots \kappa_{2 n}$ in $\mathbb{E}^{2 n+1}$. Then,

$$
\begin{equation*}
U=\cos \theta_{2 n+1}\left(V_{2 n+1}+\sum_{i=1}^{n} \frac{\kappa_{2} \kappa_{4} \ldots \kappa_{2 i}}{\kappa_{1} \kappa_{3} \ldots \kappa_{2 i-1}} V_{2 i-1}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan ^{2} \theta_{2 n+1}=\sum_{i=1}^{n}\left(\frac{\kappa_{2} \kappa_{4} \ldots \kappa_{2 i}}{\kappa_{1} \kappa_{3} \ldots \kappa_{2 i-1}}\right)^{2} \tag{3.5}
\end{equation*}
$$

where $\theta_{2 n+1}$ is the angle between $V_{2 n+1}$ and U.
Proof. It is clear from equation 3.3 and Corollary 3.1.

4. Families of Generalized Hypercylindrical and Hyperspherical Generalized Helices in $\mathbb{E}^{2 n+1}$

In this section, we show that the curve in [2] is a hyperspherical generalized helix. Also, we used a W-curve to obtain a hypercylindrical generalized helix.

Lemma 4.1. $\beta: I \subset \mathbb{R} \rightarrow S^{2 n}$,

$$
\beta(t)=\left(\beta_{1}(t), \beta_{2}(t), \ldots, \beta_{2 n+1}(t)\right)
$$

is given by

$$
\begin{aligned}
\beta_{2 i-1}(t) & =\frac{\left(1-c_{i}^{2}\right) \sin \left(c_{i} \lambda t\right)}{\left(\sum_{k=1}^{n} c_{k}^{4}-c_{k}^{2}\right)^{1 / 2}} \\
\beta_{2 i}(t) & =\frac{\left(1-c_{i}^{2}\right) \cos \left(c_{i} \lambda t\right)}{\left(\sum_{k=1}^{n} c_{k}^{4}-c_{k}^{2}\right)^{1 / 2}}
\end{aligned}
$$

for $i=1,2, \ldots n$ and

$$
\beta_{2 n+1}(t)=\left(\frac{\sum_{k=1}^{n} c_{k}^{2}-n}{\sum_{k=1}^{n} c_{k}^{4}-c_{k}^{2}}\right)^{\frac{1}{2}}
$$

where $\lambda=\left(\frac{\sum_{k=1}^{n} c_{k}{ }^{4}-c_{k}{ }^{2}}{\sum_{k=1}^{n} c_{k}{ }^{2}-2 c_{k}{ }^{4}+c_{k}{ }^{6}}\right)^{\frac{1}{2}}$ is a constant. Then, β is a W-curve of rank $2 n$.
Proof. It is clear from equation 2.4.
Theorem 4.1. Let $\alpha: I \subset R \rightarrow E^{2 n+1}$

$$
\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \ldots, \alpha_{2 n+1}(t)\right)
$$

be a regular curve given by

$$
\begin{aligned}
\alpha_{2 i-1}(t) & =\frac{1}{\left(\sum_{j=1}^{n} c_{j}^{2}\right)^{1 / 2}}\left(c_{i} \cos (t) \cos \left(c_{i} t\right)+\sin (t) \sin \left(c_{i} t\right)\right) \\
\alpha_{2 i}(t) & =\frac{1}{\left(\sum_{j=1}^{n} c_{j}^{2}\right)^{1 / 2}}\left(\cos \left(c_{i} t\right) \sin (t)-c_{i} \cos (t) \sin \left(c_{i} t\right)\right)
\end{aligned}
$$

for $i=1,2, \ldots n$ and

$$
\alpha_{2 n+1}(t)=\left(1-\frac{n}{\sum_{j=1}^{n} c_{j}^{2}}\right)^{1 / 2} \sin (t)
$$

where $c_{1}, c_{2}, \ldots, c_{n}>1$ with $c_{i} \neq c_{j}, 1 \leqslant i<j \leqslant n$. Then, α is a general helix which lies on $S^{2 n}$ [2].

By means of the Teorem 4.1, we can give the following theorem.

Theorem 4.2. Let $\alpha: I \subset R \rightarrow E^{2 n+1}$

$$
\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \ldots, \alpha_{2 n+1}(t)\right)
$$

be a regular curve given by

$$
\begin{aligned}
\alpha_{2 i-1}(t) & =\frac{1}{\left(\sum_{j=1}^{n} c_{j}^{2}\right)^{1 / 2}}\left(c_{i} \cos (\lambda t) \cos \left(c_{i} \lambda t\right)+\sin (\lambda t) \sin \left(c_{i} \lambda t\right)\right), \\
\alpha_{2 i}(t) & =\frac{1}{\left(\sum_{j=1}^{n} c_{j}^{2}\right)^{1 / 2}}\left(\cos \left(c_{i} \lambda t\right) \sin (\lambda t)-c_{i} \cos (\lambda t) \sin \left(c_{i} \lambda t\right)\right),
\end{aligned}
$$

for $i=1,2, \ldots n$ and

$$
\alpha_{2 n+1}(t)=\left(1-\frac{n}{\sum_{j=1}^{n} c_{j}^{2}}\right)^{1 / 2} \sin (\lambda t)
$$

where $c_{1}, c_{2}, \ldots, c_{n}>1$ with $c_{i} \neq c_{j}, 1 \leqslant i<j \leqslant n$ and $\lambda=\left(\frac{\sum_{k=1}^{n} c_{k}{ }^{4}-c_{k}{ }^{2}}{\sum_{k=1}^{n} c_{k}{ }^{2}-2 c_{k}{ }^{4}+c_{k}{ }^{6}}\right)^{\frac{1}{2}}$. Then, the curve $\alpha: I \subset R \rightarrow E^{2 n+1}$ is a hyperspherical generalized helix on $S^{2 n}$.

Proof. After straightforward calculations, we obtain

$$
\|\alpha(t)\|=1, \quad \alpha^{\prime}(t)=\omega \cos t \beta(t)
$$

where $\omega=\left(\frac{\sum_{k=1}^{n} c_{k}{ }^{4}-c_{k}{ }^{2}}{\sum_{k=1}^{n} c_{k}{ }^{2}}\right)^{\frac{1}{2}}$ and β is the W-curve in Lemma 4.1. Since $\|\alpha(t)\|=1$ the curve α lies on $S^{2 n}$. If we apply the Gramm-Schmidt orthogonalization process to the curve α

$$
\begin{aligned}
F_{1}(t) & =\omega \cos t \beta(t) \\
F_{2}(t) & =\omega \cos t \mathbf{t}(t) \\
F_{i}(t) & =\omega \cos t k_{1}(t) k_{2}(t) \ldots k_{i-2}(t) \mathbf{n}_{i-2}(t) \text { for } 3 \leqslant i \leqslant n
\end{aligned}
$$

where $k_{i}(1 \leqslant i \leqslant n-1)$ is the curvature functions of the curve β. Now, we can calculate the curvature functions $\kappa_{i},(1 \leqslant i \leqslant n-1)$ of the curve α.

$$
\begin{aligned}
\kappa_{1}(t) & =\frac{\left\|F_{2}(t)\right\|}{\left\|F_{1}(t)\right\|^{2}}=\omega^{-1} \sec t \\
\kappa_{i}(t) & =\frac{\left\|F_{i+1}(t)\right\|}{\left\|F_{1}(t)\right\| F_{i}(t) \|}=\omega^{-1} k_{i-1}(t) \sec t
\end{aligned}
$$

for $2 \leqslant i \leqslant 2 n$. Since the curvature functions k_{i} are constants for $1 \leqslant i \leqslant 2 n-1$, the ratios $\frac{\kappa_{1}}{\kappa_{2}}, \frac{\kappa_{3}}{\kappa_{4}}, \ldots, \frac{\kappa_{2 n-1}}{\kappa_{2 n}}$ are constants. Therefore, α is a hyperspherical generalized helix on $S^{2 n}$.

Corollary 4.1. From Theorem 4.2, the Frenet vector fields of the curve α are

$$
\begin{equation*}
V_{1}=\beta, \quad V_{2}=\mathbf{t}, \quad V_{3}=\mathbf{n}_{1}, \quad \ldots, \quad V_{2 n+1}=\mathbf{n}_{2 n-1} \tag{4.1}
\end{equation*}
$$

where $\left\{\beta, \mathbf{t}, \mathbf{n}_{1}, \mathbf{n}_{2}, \ldots, \mathbf{n}_{2 n-1}\right\}$ is the generalized Sabban frame of the unit speed curve β.

Example 4.1. If we choose $c_{1}=2$ and $c_{2}=4$ in Theorem 4.2, then

$$
\alpha(t)=\binom{\frac{\cos (\lambda t) \cos (2 \lambda t)}{\sqrt{5}(}+\frac{\sin (2 \lambda t) \sin (\lambda t)}{2}, \frac{\cos (2 \lambda t) \sin (\lambda t)}{2 \sqrt{5}}-\frac{\cos (\lambda t) \sin (2 \lambda t)}{\sqrt{5}},}{\frac{2 \cos (\lambda t) \cos (4 \lambda t)}{\sqrt{5}}+\frac{\sin (4 \lambda t) \sin (\lambda t)}{2 \sqrt{5}}, \frac{\cos (4 \lambda t) \sin (\lambda t)}{2 \sqrt{5}}-\frac{2 \cos (\lambda t) \sin (4 \lambda t)}{\sqrt{5}}, \frac{3 \sin (\lambda t)}{\sqrt{10}}}
$$

where $\lambda=\sqrt{\frac{7}{101}}$.
After straightforward calculations, we obtain the Frenet vector fields of the curve α

$$
\begin{aligned}
& V_{1}(t)=\left(-\frac{\sin (2 \lambda t)}{2 \sqrt{7}},-\frac{\cos (2 \lambda t)}{2 \sqrt{7}},-\frac{5 \sin (4 \lambda t)}{2 \sqrt{7}},-\frac{5 \cos (4 \lambda t)}{2 \sqrt{7}}, \frac{1}{\sqrt{14}}\right), \\
& V_{2}(t)=\left(-\frac{\cos (2 \lambda t)}{\sqrt{101}}, \frac{\sin (2 \lambda t)}{\sqrt{101}},-\frac{10 \cos (4 \lambda t)}{\sqrt{101}}, \frac{10 \sin (4 \lambda t)}{\sqrt{101}}, 0\right), \\
& V_{3}(t)=\left(-\frac{73 \sin (2 \lambda t)}{2 \sqrt{7189}},-\frac{73 \cos (2 \lambda t)}{2 \sqrt{7189}}, \frac{55 \sin (4 \lambda t)}{2 \sqrt{7189}}, \frac{55 \cos (4 \lambda t)}{2 \sqrt{7189}}, \frac{101}{\sqrt{14378}}\right), \\
& V_{4}(t)=\left(-\frac{10 \cos (2 \lambda t)}{\sqrt{101}}, \frac{10 \sin (2 \lambda t)}{\sqrt{101}}, \frac{\cos (4 \lambda t)}{\sqrt{101}},-\frac{\sin (4 \lambda t)}{\sqrt{101}}, 0\right), \\
& V_{5}(t)=\sqrt{\frac{2}{1027}}\left(20 \sin (2 \lambda t), 20 \cos (2 \lambda t),-\sin (4 \lambda t),-\cos (4 \lambda t), \frac{15 \sqrt{2}}{2}\right) .
\end{aligned}
$$

It is clear that the Frenet vector fields V_{1}, V_{3} and V_{5} of the curve α make constant angles $\theta_{1}=\arccos \frac{1}{\sqrt{14}}, \theta_{3}=\arccos \frac{101}{\sqrt{14378}}$ and $\theta_{5}=\arccos \frac{15}{\sqrt{1027}}$ with vector $U=(0,0,0,0,1)$, respectively.
Also, after straightforward calculations, we have the curvatures of the curve α
$\kappa_{1}(t)=\frac{1}{21} \sqrt{505} \sec (\lambda t), \quad \kappa_{2}(t)=\frac{1}{21} \sqrt{\frac{5135}{101}} \sec (\lambda t), \quad \kappa_{3}(t)=40 \sqrt{\frac{5}{103727}} \sec (\lambda t)$
and

$$
\kappa_{4}(t)=\frac{4}{3} \sqrt{\frac{1010}{7189}} \sec (\lambda t)
$$

Since, α lies on hypersphere $S^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{E}^{5} \mid \sum_{i=1}^{5} x_{i}^{2}=1\right\}$, then α is a hyperspherical generalized helix in \mathbb{E}^{5}.

Now, we have the following theorem for a curve γ which is integration of the curve β in Lemma 4.1.

Theorem 4.3. Let $\gamma: I \subset R \rightarrow E^{2 n+1}$

$$
\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t), \ldots, \gamma_{2 n+1}(t)\right)
$$

be a regular curve given by

$$
\begin{aligned}
\gamma_{2 i-1}(t) & =\frac{\left(c_{i}^{2}-1\right)\left(\sum_{k=1}^{n} c_{k}^{2}-2 c_{k}^{4}+c_{k}^{6}\right)^{\frac{1}{2}}}{c_{i}\left(\sum_{k=1}^{n} c_{k}{ }^{4}-c_{k}^{2}\right)} \cos \left(c_{i} \lambda t\right) \\
\gamma_{2 i}(t) & =\frac{\left(1-c_{i}^{2}\right)\left(\sum_{k=1}^{n} c_{k}^{2}-2 c_{k}^{4}+c_{k}{ }^{6}\right)^{\frac{1}{2}}}{c_{i}\left(\sum_{k=1}^{n} c_{k}^{4}-c_{k}^{2}\right)} \sin \left(c_{i} \lambda t\right)
\end{aligned}
$$

for $i=1,2, \ldots n$ and

$$
\gamma_{2 n+1}(t)=\left(\frac{\sum_{k=1}^{n} c_{k}^{2}-n}{\sum_{k=1}^{n} c_{k}^{4}-c_{k}^{2}}\right)^{\frac{1}{2}} t
$$

where $\lambda=\left(\frac{\sum_{k=1}^{n} c_{k}{ }^{4}-c_{k}{ }^{2}}{\sum_{k=1}^{n} c_{k}{ }^{2}-2 c_{k}{ }^{4}+c_{k}{ }^{6}}\right)^{\frac{1}{2}}$ and $c_{1}, c_{2}, \ldots, c_{n}>1$ with $c_{i} \neq c_{j}, 1 \leqslant i<j \leqslant n$.
Then, γ is a generalized helix which lies on hypercylinder

$$
\frac{1}{n \lambda^{2} \sum_{k=1}^{n} c_{k}{ }^{4}-c_{k}^{2}}\left(\frac{x_{1}^{2}+x_{2}^{2}}{\left(\frac{c_{1}^{2}-1}{c_{1}}\right)^{2}}+\frac{x_{3}^{2}+x_{4}^{2}}{\left(\frac{c_{2}^{2}-1}{c_{2}}\right)^{2}}+\cdots+\frac{x_{2 n-1}^{2}+x_{2 n}^{2}}{\left(\frac{c_{n}^{2}-1}{c_{n}}\right)^{2}}\right)=1
$$

Proof. After straightforward calculations, we have $\gamma^{\prime}(t)=\beta(t)$ where β is a W curve in Lemma 4.1. If we apply the Gramm-Schmidt orthogonalization process to the curve γ, we have

$$
\begin{aligned}
F_{1}(t) & =\beta(t) \\
F_{2}(t) & =\mathbf{t}(t) \\
F_{i}(t) & =k_{1}(t) k_{2}(t) \ldots k_{i-2}(t) \mathbf{n}_{i-2}(t) \text { for } 3 \leqslant i \leqslant 2 n-1,
\end{aligned}
$$

where $k_{i}(1 \leqslant i \leqslant n-1)$ is the curvature functions of the curve β. Now, we can calculate the curvature functions $\kappa_{i},(1 \leqslant i \leqslant n-1)$ of the curve γ.

$$
\begin{aligned}
\kappa_{1} & =\frac{\left\|F_{2}\right\|}{\left\|F_{1}\right\|^{2}}=1 \\
\kappa_{i} & =\frac{\left\|F_{i+1}\right\|}{\left\|F_{1}\right\|\left\|F_{i}\right\|}=k_{i-1}
\end{aligned}
$$

for $2 \leqslant i \leqslant 2 n$. Since the curvature functions k_{i} are constants for $1 \leqslant i \leqslant 2 n-1$, the ratios $\frac{\kappa_{1}}{\kappa_{2}}, \frac{\kappa_{3}}{\kappa_{4}}, \ldots, \frac{\kappa_{2 n-1}}{\kappa_{2 n}}$ are constants. Therefore, γ is a hypercylindrical generalized helix.

Corollary 4.2. From Theorem 4.3, the Frenet vector fields of the curve γ are

$$
\begin{equation*}
V_{1}=\beta, \quad V_{2}=\mathbf{t}, \quad V_{3}=\mathbf{n}_{1}, \quad \ldots, \quad V_{2 n+1}=\mathbf{n}_{2 n-1} \tag{4.2}
\end{equation*}
$$

where $\left\{\beta, \mathbf{t}, \mathbf{n}_{1}, \mathbf{n}_{2}, \ldots, \mathbf{n}_{2 n-1}\right\}$ is the generalized Sabban frame of the unit speed curve β.

Example 4.2. If we choose $c_{1}=3$ and $c_{2}=4$ in Theorem 4.3, then

$$
\gamma(t)=\binom{\frac{4 \sqrt{29}}{39} \cos \left(\frac{\sqrt{39}}{\sqrt{58}} t\right),-\frac{4 \sqrt{29}}{39} \sin \left(\frac{\sqrt{39}}{\sqrt{58}} t\right),}{\frac{15 \sqrt{29}}{104} \cos \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right),-\frac{15 \sqrt{29}}{104} \sin \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right), \frac{\sqrt{23}}{2 \sqrt{78}} t}
$$

After straightforward calculations, we obtain the Frenet vector fields of the curve γ

$$
\begin{aligned}
& V_{1}(t)=\binom{\frac{-2 \sqrt{2}}{\sqrt{39}} \sin \left(\frac{\sqrt{39}}{\sqrt{58}} t\right), \frac{-2 \sqrt{2}}{\sqrt{39}} \cos \left(\frac{\sqrt{39}}{\sqrt{58}} t\right),}{\frac{-5 \sqrt{3}}{2 \sqrt{26}} \sin \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right), \frac{-5 \sqrt{3}}{2 \sqrt{26}} \cos \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right), \frac{\sqrt{23}}{2 \sqrt{78}}}, \\
& V_{2}(t)=\binom{\frac{-2}{\sqrt{29}} \cos \left(\frac{\sqrt{39}}{\sqrt{58}} t\right), \frac{2}{\sqrt{29}} \sin \left(\frac{\sqrt{39}}{\sqrt{58}} t\right),}{\frac{-5}{\sqrt{29}} \cos \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right), \frac{5}{\sqrt{29}} \sin \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right), 0}, \\
& V_{3}(t)=\binom{\frac{-19 \sqrt{2}}{\sqrt{4043}} \sin \left(\frac{\sqrt{39}}{\sqrt{58}} t\right), \frac{-19 \sqrt{2}}{\sqrt{4043}} \cos \left(\frac{\sqrt{39}}{\sqrt{58}} t\right),}{\frac{85}{2 \sqrt{8086}} \sin \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right), \frac{85}{2 \sqrt{8086}} \cos \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right), \frac{29 \sqrt{23}}{2 \sqrt{8086}}}, \\
& V_{4}(t)=\binom{-\frac{5}{\sqrt{29}} \cos \left(\frac{\sqrt{39}}{\sqrt{58}} t\right), \frac{5}{\sqrt{29}} \sin \left(\frac{\sqrt{39}}{\sqrt{58}} t\right),}{\frac{2}{\sqrt{29}} \cos \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right),-\frac{2}{\sqrt{29}} \sin \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right), 0}, \\
& V_{5}(t)= \\
& =\binom{\frac{5 \sqrt{23}}{\sqrt{933}} \sin \left(\frac{\sqrt{39}}{\sqrt{58}} t\right), \frac{5 \sqrt{23}}{\sqrt{933}} \cos \left(\frac{\sqrt{39}}{\sqrt{58}} t\right),}{\frac{-\sqrt{69}}{2 \sqrt{311}} \sin \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right), \frac{-\sqrt{69}}{2 \sqrt{311}} \cos \left(\frac{2 \sqrt{26}}{\sqrt{87}} t\right), \frac{35}{2 \sqrt{933}}} .
\end{aligned}
$$

It is clear that the Frenet vector fields V_{1}, V_{3} and V_{5} of the curve γ make constant angles $\theta_{1}=\frac{\sqrt{23}}{2 \sqrt{78}}, \theta_{3}=\frac{29 \sqrt{23}}{2 \sqrt{8086}}$ and , $\theta_{5}=\frac{35}{2 \sqrt{933}}$ with vector $U=(0,0,0,0,1)$, respectively.
Also, after straightforward calculations, we have the curvatures of the curve γ

$$
\kappa_{1}=1, \quad \kappa_{2}=\frac{\sqrt{311}}{29 \sqrt{3}}, \quad \kappa_{3}=\frac{455}{29 \sqrt{933}}, \quad \kappa_{4}=\sqrt{\frac{299}{622}} .
$$

Since, γ lies on the hypercylinder $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{E}^{5} \left\lvert\, \frac{x_{1}^{2}+x_{2}^{2}}{\frac{16}{351}}+\frac{x_{3}^{2}+x_{4}^{2}}{\frac{1150}{1664}}=1\right.\right\}$, then γ is a hypercylindrical generalized helix in \mathbb{E}^{5}.

Remark 4.1. Even if the curve α and γ have different curvatures, they have same Frenet vectors.

Example 4.3. If we choose $c_{1}=2$ and in Theorem 4.2, then
$\alpha(t)=\left(\frac{2 \cos \frac{t}{\sqrt{3}} \cos \frac{2 t}{\sqrt{3}}+\sin \frac{t}{\sqrt{3}} \sin \frac{2 t}{\sqrt{3}}}{2}, \frac{\cos \frac{2 t}{\sqrt{3}} \sin \frac{t}{\sqrt{3}}-2 \cos \frac{t}{\sqrt{3}} \sin \frac{2 t}{\sqrt{3}}}{2}, \sqrt{\frac{3}{4}} \sin \frac{t}{\sqrt{3}}\right)$
After straightforward calculations, we obtain the Frenet vector fields of the curve α

$$
\begin{aligned}
\mathrm{T}_{\alpha}(t) & =\left(-\frac{\sqrt{3}}{2} \sin \frac{2 t}{\sqrt{3}},-\frac{\sqrt{3}}{2} \cos \frac{2 t}{\sqrt{3}}, \frac{1}{2}\right) \\
\mathrm{N}_{\alpha}(t) & =\left(-\cos \frac{2 t}{\sqrt{3}}, \sin \frac{2 t}{\sqrt{3}}, 0\right) \\
\mathrm{B}_{\alpha}(t) & =\left(\frac{1}{2} \sin \frac{2 t}{\sqrt{3}}, \frac{1}{2} \cos \frac{2 t}{\sqrt{3}}, \frac{\sqrt{3}}{2}\right) .
\end{aligned}
$$

It is clear that the Frenet vector fields T_{α} and B_{α} of the curve α make constant angles $\theta_{1}=\arccos \frac{1}{2}$ and $\theta_{3}=\arccos \frac{\sqrt{3}}{2}$ with vector $U=(0,0,1)$, respectively. Also, after straightforward calculating, we have the curvatures of the curve α

$$
\kappa_{1}=\sec \frac{t}{\sqrt{3}}, \quad \kappa_{2}=\frac{1}{\sqrt{3}} \sec \frac{t}{\sqrt{3}} .
$$

Since, α lies on $S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{E}^{3} \mid \sum_{i=1}^{3} x_{i}^{2}=1\right\}$, then α is a spherical generalized helix in \mathbb{E}^{3}.

Example 4.4. If we choose $c_{1}=2$ and in Theorem 4.3, then

$$
\gamma(t)=\left(\frac{3}{4} \cos \frac{2 t}{\sqrt{3}},-\frac{3}{4} \sin \frac{2 t}{\sqrt{3}}, \frac{t}{2}\right) .
$$

After straightforward calculations, we obtain the Frenet vector fields of the curve γ

$$
\begin{aligned}
& \mathrm{T}_{\gamma}(t)=\left(-\frac{\sqrt{3}}{2} \sin \frac{2 t}{\sqrt{3}},-\frac{\sqrt{3}}{2} \cos \frac{2 t}{\sqrt{3}}, \frac{1}{2}\right) \\
& \mathrm{N}_{\gamma}(t)=\left(-\cos \frac{2 t}{\sqrt{3}}, \sin \frac{2 t}{\sqrt{3}}, 0\right) \\
& \mathrm{B}_{\gamma}(t)=\left(\frac{1}{2} \sin \frac{2 t}{\sqrt{3}}, \frac{1}{2} \cos \frac{2 t}{\sqrt{3}}, \frac{\sqrt{3}}{2}\right) .
\end{aligned}
$$

It is clear that the Frenet vector fields T_{γ} and B_{γ} of the curve makes constant angles $\theta_{1}=\arccos \frac{1}{2}$ and $\theta_{3}=\arccos \frac{\sqrt{3}}{2}$ with vector $U=(0,0,1)$, respectively. Also, after straightforward calculating, we have the curvatures of γ

$$
\kappa_{1}=1, \quad \kappa_{2}=\frac{1}{\sqrt{3}} .
$$

Since, γ lies on $\frac{x_{1}^{2}+x_{2}^{2}}{\left(\frac{3}{4}\right)^{2}}=1$, then α is a circular helix in \mathbb{E}^{3}.

Fig. 4.1: Frenet vectors of the curves α and γ for $t=\frac{\pi}{6}$ in Example 4.3 and 4.4.

REFERENCES

1. B. Altunkaya and L. Kula: General helices that lie on the sphere $S^{2 n}$ in Euclidean space $E^{2 n+1}$, Universal Journal of Mathematics and Application, 1 30, (2018), 166170.
2. B. Altunkaya and L. Kula: On polynomial helices in n-dimensional Euclidean space R^{n}, Advances in Applied Clifford Algebras, 28:4, (2018) 1-12.
3. M. do Carmo: Differential Geometry of Curves and Surfaces, Prentice Hall, 1976.
4. C. Camci, K. Ilarslan, L. Kula and H. H. Hacisalihoglu: Harmonic curvatures and generalized helices in E^{n}, Chaos Solitons Fractals, 40, (2007), 2590-2596.
5. H. H. Hacisalihoglu: Diferensiyel Geometri 1, 3. Edition, 1998.
6. A. Hayden: On a generalized helix in a Riemannian n- space, Proc. London Math. Soc. 31:2, (1930), 337-345.
7. F. Klein and S. Lie: Über diejenigen ebenen Curven welche durch ein geschlossenes System von einfach unendlich vielen vertauschbaren linearen Transformationen in sich übergenen, Math. Ann., 4, (1871), 50-84.
8. G. Oztürk, K. Arslan and H. H. Hacisalihoglu: A Characterization of ccr-curves in R^{m}, Proceeding of the Estonian Academy of Science, 574, (2008), 217-224.
9. B. O'Neil: Semi-Riemannian Geometry, Academic Press, New-York, 1983.
10. S. Izumiya and T. Nagai: Generalized Sabban Curves in the Euclidean n-Sphere and Spherical Duality, Results in Mathematics, 72, (2017), 401-417.

[^0]: Received November 16, 2020, accepted: March 18, 2021
 Communicated by Mića Stanković
 Corresponding Author: Hasan Altınbaş, Kırşehir Ahi Evran University, The Faculty of Arts and Sciences, Department of Mathematics, P. O. Box 40100, 40100 Kırşehir, Turkey | E-mail: hasan.altinbas@ahievran.edu.tr
 2010 Mathematics Subject Classification. 53A04; 53C40; 53C50

