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Abstract. In this paper, we investigate generalized helices in the sense of Hayden in
(2n+1)-dimensional Euclidean space E

2n+1. We obtain some results for such curves in
E

2n+1. Thereafter, we obtain two families of generalized helices which are hyperspher-
ical and hypercylindrical generalized helices in the sense of Hayden. In addition, we
give examples of hyperspherical and hypercylindrical generalized helices in the sense of
Hayden in E

5. Finally, we give examples of hyperspherical and hypercylindrical gener-
alized helices in the sense of Hayden in E

3 and plot the graphics of these curves with
Mathematica 10.0.
Keywords: generalized helices, global submanifolds, Euclidean space

1. Introduction

Helical structures have many applications to the various branches of science
such as biology, architecture, engineering, etc. [1]. One of the important research
problem for differential geometry is helices. The notion of helix is stated in 3-
dimensional Euclidean space by M. A. Lancret in 1802. Helix is a curve whose
tangent vector field makes a constant angle with a fixed direction called the axis of
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the helix. The necessary and sufficient condition for a curve to be a general helix
is that the ratio of curvature to torsion should be constant, which is given by B. de
Saint Venant in 1845 [2, 4]. If both curvature and torsion are non-zero constants,
then the curve is called circular helix [2]. Also, in the n-dimensional Euclidean
space, a general helix is defined similarly i.e., whose tangent vector field makes a
constant angle with a fixed direction [9].

In [6], generalized helix notion is more restrictive in the n-dimensional Euclidean
space for n > 3; a fixed direction makes a constant angle with all Frenet vector fields
of the curve. This type of curves are called the generalized helix in the sense of
Hayden [4]. In [6], the generalized helix in the sense of Hayden has the property that
the ratios κ1

κ2
, κ3

κ4
, . . . ,

κn−4

κn−3
,
κn−2

κn−1
are constants if n is odd, where κi (1 6 i 6 n− 1)

denote ith curvature function of the curve. In this work, we study generalized
helices in the sense of Hayden. For the sake of brevity, we call them generalized
helices.

Notice that, a curve β is called a W -curve, if the curve has constant curvatures.
Also, W -curves in E

2n+1 are generalized helices [4].

This study is organized as follows: In section 2, we review differential geometry
of regular curves in E

n. In Section 3, we give a theorem for generalized helix. Af-
ter that, we obtain some results for generalized helices based on angles which are
between the Frenet vector fields of the curve and a fixed direction. In Section 4, we
show that the family of curves in [2] are hyperspherical generalized helices. There-
after, we obtain hypercylindrical generalized helices in E

2n+1 by using a different
method from [2]. Finally we give examples for such curves in E

5 and E
3.

2. Preliminary

In this section, we give the basic theory of local differential geometry of curves in
the n-dimensional Euclidean space. For more detail and background about this
space, see [3, 5].

Let α : I ⊂ R → E
n be an arbitrary curve in the n-dimensional Euclidean space

denoted by E
n. Recall that 〈, 〉 denotes the standard inner product of Rn given by

〈x, y〉 =

n
∑

i=1

xiyi(2.1)

for each x = (x1, x2, x3, . . . xn) , y = (y1, y2, y3, . . . yn) ∈ R
n. The norm of a vector

x ∈ R
n is defined by ‖x‖ =

√

〈x, x〉. Let {V1, V2, V3, . . . Vn} be the moving Frenet
frame along the arbitrary curve α, where Vi (1 6 i 6 n) is Frenet vector field. Then,
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the matrix form of Frenet formulas are given by



















V ′
1

V ′
2

V ′
3
...

V ′
n−1

V ′
n



















=



















0 νκ1 0 · · · 0 0
−νκ1 0 νκ2 · · · 0 0
0 −νκ2 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 −νκn−1

0 0 0 · · · −νκn−1 0





































V1

V2

V3

...
Vn−1

Vn



















(2.2)

where ν = 〈α′, α′〉 and κi (1 6 i 6 n− 1) denote the ith curvature function of
the curve α [1]. To obtain V1, V2, V3, . . . Vn it is sufficient to apply the Gramm-
Schmidt orthogonalization process to α′ (t) , α′′ (t) , . . . , α(n) (t). More precisely,
Vi (1 6 i 6 n) and κi (1 6 i 6 n− 1) are determined by the following formulas [8]:

F1 (t) = α′ (t) ,

Fi (t) = αi (t)−
i−1
∑

j=1

〈

αi (t) , Fj (t)
〉

〈Fj (t) , Fj (t)〉
Fj (t) for 2 6 i 6 n,

κi (t) =
‖Fi+1 (t)‖

‖F1 (t)‖ ‖Fi (t)‖
for 1 6 i 6 n,

Vi =
Fi

‖Fi‖
for 1 6 i 6 n

where α′, α′′, . . . , α(n) are linearly independent. Let β : I → Sn be a unit speed
hyperspherical curve in E

n+1 where I is an open interval in R. In [10], Izumiya and
Nagai defined generalized Sabban frame {β, t,n1,n2, . . . ,nn−1} of the unit speed
curve β which is determined by the following formulas:

n1 =
t′ + β

‖t′ + β‖
,

k1 = ‖t′ + β‖,

n2 =
n′
1 + k1β

′

‖n′
1 + k1β′‖

,

k2 = ‖n′
1 + k1β

′‖,

ki =
∥

∥n′
i−1 + ki−1ni−2

∥

∥ ,

ni =
n′
i−1 + ki−1ni−2

∥

∥n′
i−1 + ki−1ni−2

∥

∥

,

for 3 6 i 6 n− 2 and ki 6= 0 for all i and

nn−1 =
β × t′ × n1 × · · · × nn−2

‖β × t′ × n1 × · · · × nn−2‖
,

kn−1 =
〈

n′
n−2,nn−1

〉
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where ki (1 6 i 6 n− 1) denote ith curvature function of the curve β. Also, in the
same paper, Izumiya and Nagai gave the following Frenet-Serret type formula for
the generalized Sabban frame of the spherical curve β.



















β′

t′

n′
1
...

n′
n−2

n′
n−1



















=



















0 1 0 · · · 0 0
−1 0 k1 · · · 0 0
0 −k1 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 kn−1

0 0 0 · · · kn−1 0





































β

t

n1

...
nn−2

nn−1



















.(2.3)

Definition 2.1. A Frenet curve of rank r for which κ1, κ2, . . . , κr are constants is
called W -curve [7].

A unit speed W -curve of rank 2n has the parameterization of the form

β (s) = a0 +

n
∑

i=1

(ai cosµis+ bi sinµis)(2.4)

and a unit speed W -curve of rank 2n+ 1 has the parameterization of the form

β (s) = a0 + b0s+

n
∑

i=1

(ai cosµis+ bi sinµis)(2.5)

where a0, b0, a1, . . . , ak, b1, . . . , bk are constant vectors in R
n and µ1 < µ2 < . . . < µn

are positive real numbers. So, a W -curve of rank 1 is a straight line, a W -curve of
rank 2 is a circle, a W -curve of rank 3 is a right circular helix [8].

3. Generalized Helix in E
2n+1

Hayden gave the following theorems in [6].

Theorem 3.1. Let α be a curve in a Riemannian (2n+ 1)-space, the Frenet vector
fields V3, V5, . . . , V2n+1 of the curve make constant angle with a parallel vector-field
along the curve, then the curve α is generalized helix; moreover, V1 also make a
constant angle with the given vector-field, and V2, V4, . . . , V2n are each perpendicular
to the given vector-field [6].

Theorem 3.2. Let α be a curve in a Riemannian (2n+ 1)-space, the Frenet vector
fields V1, V3, . . . , V2n−1 of the curve make constant angle with a parallel vector-field
along the curve, then the curve α is generalized helix; moreover, V2n+1 also make a
constant angle with the given vector-field, and V2, V4, . . . , V2n are each perpendicular
to the given vector-field [6].

In the light of the theorems mentioned above, we can give the following theorem.
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Theorem 3.3. Let α be a curve in E
2n+1. If the Frenet vector fields

V1, V3, V5, . . . , V2j−1, V2j+3, . . . , V2n+1, (1 6 j 6 n) of the curve α make constant an-
gle with a unit vector U , then the curve α is generalized helix; moreover, the vector
field V2j+1 makes a constant angle with the given vector U , and V2, V4, . . . , V2n are
each perpendicular to the given vector U .

Proof. Assume that the Frenet vector fields V1, V3, V5, . . . , V2j−1, V2j+3, . . . , V2n+1,
(1 6 j 6 n) of the curve α make constant angle with a unit vector U . Then, we
have

〈Vi, U〉 = cos θi, i = 1, 3, 5, . . . , 2j − 1, 2j + 1, . . . , 2n+ 1.(3.1)

If we take the derivative of 3.1 for i = 1 by using Frenet formulas in 2.2, we obtain
that V2 is perpendicular to U .

If we take the derivative of 3.1 for i = 3 by using Frenet formulas in 2.2 and the
fact that V2⊥U , we obtain that V4 is perpendicular to U .

Similarly, we take the derivative of 3.1 for i = 5, 7, ..., 2j−1 we obtain V6, V8, . . . V2j

each are perpendicular to U .

If we take the derivative of 3.1 for i = 2n+ 1 by using Frenet formulas in 2.2, we
get V2n is perpendicular to U .

If we take the derivative of 3.1 for i = 2n− 1 by using Frenet formulas in 2.2 and
the fact that V2n⊥U , we obtain that V2n−2 is perpendicular to U .

Similarly, we take the derivative of 3.1 for i = 2n − 3, 2n− 5, ..., 2j + 3 we obtain
V2n−4, V2n−6, . . . V2j+2 each are perpendicular to U .

Finally, for i = 2j + 1 from 2.2 we have

〈V2j+1, U〉′ = κ2j+1 〈V2j+2, U〉 − κ2j 〈V2j , U〉 = 0(3.2)

since 〈V2j+2, U〉 = 0 and 〈V2j , U〉 = 0. So, 〈V2j+1, U〉 is a constant. Therefore, V2j

makes a constant angle with U .

The vector U is called the axes of generalized helix. It is obvious; if we take the
derivative of 3.1 for i = 2, 4, . . . 2n by using 2.2 we have

κ2

κ1
=

cos θ1
cos θ3

,
κ4

κ3
=

cos θ3
cos θ5

, . . . ,
κ2n

κ2n−1
=

cos θ2n−1

cos θ2n+1
.(3.3)

From 3.3, we give the following corollary.

Corollary 3.1. Let α be a generalized helix with curvatures κ1, κ2, . . . , κ2n in
E
2n+1. Then,

κ2κ4 . . . κ2n

κ1κ3 . . . κ2n−1
=

cos θ1
cos θ2n+1

,
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cos θj =
κj+1

κj
cos θj+2 for j = 1, 3, 5, . . . , 2n− 1

and the axis of a generalized helix has the form

U = cos θ1V1 + cos θ3V3 + · · ·+ cos θ2n+1V2n+1.

Theorem 3.4. Let α be a generalized helix with curvatures κ1, κ2, . . . κ2n in E
2n+1.

Then,

U = cos θ1

(

V1 +

n
∑

i=1

κ1κ3 . . . κ2i−1

κ2κ4 . . . κ2i
V2i+1

)

and

tan2θ1 =

n
∑

i=1

(

κ1κ3 . . . κ2i−1

κ2κ4 . . . κ2i

)2

where θ1 is the angle between V1 and U .

Proof. It is clear from equation 3.3 and Corollary 3.1.

Similarly, we have the following theorem.

Theorem 3.5. Let α be a generalized helix with curvatures κ1, κ2, . . . κ2n in E
2n+1.

Then,

U = cos θ2n+1

(

V2n+1 +

n
∑

i=1

κ2κ4 . . . κ2i

κ1κ3 . . . κ2i−1
V2i−1

)

(3.4)

and

tan2θ2n+1 =
n
∑

i=1

(

κ2κ4 . . . κ2i

κ1κ3 . . . κ2i−1

)2

(3.5)

where θ2n+1 is the angle between V2n+1 and U .

Proof. It is clear from equation 3.3 and Corollary 3.1.

4. Families of Generalized Hypercylindrical and Hyperspherical

Generalized Helices in E
2n+1

In this section, we show that the curve in [2] is a hyperspherical generalized helix.
Also, we used a W -curve to obtain a hypercylindrical generalized helix.

Lemma 4.1. β : I ⊂ R → S2n,

β(t) = (β1(t), β2(t), . . . , β2n+1(t))
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is given by

β2i−1(t) =

(

1− ci
2
)

sin (ciλt)
(

n
∑

k=1

ck4 − ck2
)1/2

,

β2i(t) =

(

1− ci
2
)

cos (ciλt)
(

n
∑

k=1

ck4 − ck2
)1/2

,

for i = 1, 2, . . . n and

β2n+1(t) =









n
∑

k=1

ck
2 − n

n
∑

k=1

ck4 − ck2









1

2

where λ =





n∑

k=1

ck
4−ck

2

n∑

k=1

ck2−2ck4+ck6





1

2

is a constant. Then, β is a W -curve of rank 2n.

Proof. It is clear from equation 2.4.

Theorem 4.1. Let α : I ⊂ R → E2n+1

α(t) = (α1(t), α2(t), . . . , α2n+1(t))

be a regular curve given by

α2i−1(t) =
1

(

∑n
j=1 cj

2
)1/2

(ci cos (t) cos (cit) + sin (t) sin (cit)) ,

α2i(t) =
1

(

∑n
j=1 cj

2
)1/2

(cos (cit) sin (t)− ci cos (t) sin (cit)) ,

for i = 1, 2, . . . n and

α2n+1 (t) =









1−
n

n
∑

j=1

cj2









1/2

sin (t)

where c1, c2, . . . , cn > 1 with ci 6= cj , 1 6 i < j 6 n. Then, α is a general helix
which lies on S2n [2].

By means of the Teorem 4.1, we can give the following theorem.
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Theorem 4.2. Let α : I ⊂ R → E2n+1

α(t) = (α1(t), α2(t), . . . , α2n+1(t))

be a regular curve given by

α2i−1(t) =
1

(

n
∑

j=1

cj2

)1/2
(ci cos (λt) cos (ciλt) + sin (λt) sin (ciλt)) ,

α2i(t) =
1

(

n
∑

j=1

cj2

)1/2
(cos (ciλt) sin (λt)− ci cos (λt) sin (ciλt)) ,

for i = 1, 2, . . . n and

α2n+1 (t) =









1−
n

n
∑

j=1

cj2









1/2

sin (λt)

where c1, c2, . . . , cn > 1 with ci 6= cj , 1 6 i < j 6 n and λ =





n∑

k=1

ck
4−ck

2

n∑

k=1

ck2−2ck4+ck6





1

2

.

Then, the curve α : I ⊂ R → E2n+1 is a hyperspherical generalized helix on S2n.

Proof. After straightforward calculations, we obtain

||α(t)|| = 1, α′ (t) = ω cos t β(t),

where ω =





n∑

k=1

ck
4−ck

2

n∑

k=1

ck2





1

2

and β is the W -curve in Lemma 4.1. Since ||α(t)|| = 1

the curve α lies on S2n. If we apply the Gramm-Schmidt orthogonalization process
to the curve α

F1(t) = ω cos t β(t),

F2(t) = ω cos t t(t),

Fi(t) = ω cos t k1(t)k2(t) . . . ki−2(t)ni−2(t) for 3 6 i 6 n

where ki (1 6 i 6 n− 1) is the curvature functions of the curve β. Now, we can
calculate the curvature functions κi, (1 6 i 6 n− 1) of the curve α.

κ1(t) =
‖F2(t)‖

‖F1(t)‖
2 = ω−1 sec t,

κi(t) =
‖Fi+1(t)‖

‖F1(t)‖ ‖Fi(t)‖
= ω−1ki−1(t) sec t
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for 2 6 i 6 2n. Since the curvature functions ki are constants for 1 6 i 6 2n−1, the
ratios κ1

κ2

, κ3

κ4

, . . . ,
κ2n−1

κ2n

are constants. Therefore, α is a hyperspherical generalized

helix on S2n.

Corollary 4.1. From Theorem 4.2, the Frenet vector fields of the curve α are

V1 = β, V2 = t, V3 = n1, . . . , V2n+1 = n2n−1(4.1)

where {β, t,n1,n2, . . . ,n2n−1} is the generalized Sabban frame of the unit speed
curve β.

Example 4.1. If we choose c1 = 2 and c2 = 4 in Theorem 4.2, then

α (t) =

(

cos(λt) cos(2λt)
√

5
+ sin(2λt) sin(λt)

2
√

5
,
cos(2λt) sin(λt)

2
√

5
− cos(λt) sin(2λt)

√

5
,

2 cos(λt) cos(4λt)
√

5
+ sin(4λt) sin(λt)

2
√

5
,
cos(4λt) sin(λt)

2
√

5
− 2 cos(λt) sin(4λt)

√

5
,
3 sin(λt)

√

10

)

where λ =
√

7
101

.

After straightforward calculations, we obtain the Frenet vector fields of the curve α

V1(t) =

(

−
sin (2λt)

2
√
7

,−
cos (2λt)

2
√
7

,−
5 sin (4λt)

2
√
7

,−
5 cos (4λt)

2
√
7

,
1

√
14

)

,

V2(t) =

(

−
cos (2λt)
√
101

,
sin (2λt)
√
101

,−
10 cos (4λt)

√
101

,
10 sin (4λt)

√
101

, 0

)

,

V3(t) =

(

−
73 sin (2λt)

2
√
7189

,−
73 cos (2λt)

2
√
7189

,
55 sin (4λt)

2
√
7189

,
55 cos (4λt)

2
√
7189

,
101

√
14378

)

,

V4(t) =

(

−
10 cos (2λt)

√
101

,
10 sin (2λt)

√
101

,
cos (4λt)
√
101

,−
sin (4λt)
√
101

, 0

)

,

V5(t) =

√

2

1027

(

20 sin (2λt) , 20 cos (2λt) ,− sin (4λt) ,− cos (4λt) ,
15

√
2

2

)

.

It is clear that the Frenet vector fields V1, V3 and V5 of the curve α make constant angles
θ1 = arccos 1

√

14
, θ3 = arccos 101

√

14378
and θ5 = arccos 15

√

1027
with vector U = (0, 0, 0, 0, 1),

respectively.

Also, after straightforward calculations, we have the curvatures of the curve α

κ1(t) =
1

21

√
505 sec (λt) , κ2(t) =

1

21

√

5135

101
sec (λt) , κ3(t) = 40

√

5

103727
sec (λt)

and

κ4(t) =
4

3

√

1010

7189
sec (λt) .

Since, α lies on hypersphere S4 =

{

(x1, x2, x3, x4, x5) ∈ E
5
∣

∣

5
∑

i=1

x2
i = 1

}

, then α is a hy-

perspherical generalized helix in E
5.

Now, we have the following theorem for a curve γ which is integration of the curve
β in Lemma 4.1.
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Theorem 4.3. Let γ : I ⊂ R → E2n+1

γ(t) = (γ1(t), γ2(t), . . . , γ2n+1(t))

be a regular curve given by

γ2i−1(t) =

(

ci
2 − 1

)

(

n
∑

k=1

ck
2 − 2ck

4 + ck
6

)
1

2

ci

(

n
∑

k=1

ck4 − ck2
) cos (ciλt) ,

γ2i(t) =

(

1− ci
2
)

(

n
∑

k=1

ck
2 − 2ck

4 + ck
6

)
1

2

ci

(

n
∑

k=1

ck4 − ck2
) sin (ciλt) ,

for i = 1, 2, . . . n and

γ2n+1(t) =









n
∑

k=1

ck
2 − n

n
∑

k=1

ck4 − ck2









1

2

t

where λ =





n∑

k=1

ck
4−ck

2

n∑

k=1

ck2−2ck4+ck6





1

2

and c1, c2, . . . , cn > 1 with ci 6= cj , 1 6 i < j 6 n.

Then, γ is a generalized helix which lies on hypercylinder

1

nλ2
n
∑

k=1

ck4 − ck2







x2
1 + x2

2
(

c2
1
−1
c1

)2 +
x2
3 + x2

4
(

c2
2
−1
c2

)2 + · · ·+
x2
2n−1 + x2

2n
(

c2
n
−1
cn

)2






= 1.

Proof. After straightforward calculations, we have γ′ (t) = β (t) where β is a W -
curve in Lemma 4.1. If we apply the Gramm-Schmidt orthogonalization process to
the curve γ, we have

F1(t) = β (t) ,

F2(t) = t (t) ,

Fi(t) = k1(t)k2(t) . . . ki−2(t)ni−2(t) for 3 6 i 6 2n− 1,

where ki (1 6 i 6 n− 1) is the curvature functions of the curve β. Now, we can
calculate the curvature functions κi, (1 6 i 6 n− 1) of the curve γ.
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κ1 =
‖F2‖

‖F1‖
2 = 1,

κi =
‖Fi+1‖

‖F1‖ ‖Fi‖
= ki−1,

for 2 6 i 6 2n. Since the curvature functions ki are constants for 1 6 i 6 2n−1, the
ratios κ1

κ2

, κ3

κ4

, . . . ,
κ2n−1

κ2n

are constants. Therefore, γ is a hypercylindrical generalized
helix.

Corollary 4.2. From Theorem 4.3, the Frenet vector fields of the curve γ are

V1 = β, V2 = t, V3 = n1, . . . , V2n+1 = n2n−1(4.2)

where {β, t,n1,n2, . . . ,n2n−1} is the generalized Sabban frame of the unit speed
curve β.

Example 4.2. If we choose c1 = 3 and c2 = 4 in Theorem 4.3, then

γ (t) =





4
√

29
39

cos
(√

39
√

58
t
)

,− 4
√

29
39

sin
(√

39
√

58
t
)

,

15
√

29
104

cos
(

2
√

26
√

87
t
)

,− 15
√

29
104

sin
(

2
√

26
√

87
t
)

,
√

23

2
√

78
t





After straightforward calculations, we obtain the Frenet vector fields of the curve γ

V1(t) =





−2
√

2
√

39
sin
(√

39
√

58
t
)

, −2
√

2
√

39
cos
(√

39
√

58
t
)

,

−5
√

3

2
√

26
sin
(

2
√

26
√

87
t
)

, −5
√

3

2
√

26
cos
(

2
√

26
√

87
t
)

,
√

23

2
√

78



 ,

V2(t) =





−2
√

29
cos
(√

39
√

58
t
)

, 2
√

29
sin
(√

39
√

58
t
)

,

−5
√

29
cos
(

2
√

26
√

87
t
)

, 5
√

29
sin
(

2
√

26
√

87
t
)

, 0



 ,

V3(t) =





−19
√

2
√

4043
sin
(√

39
√

58
t
)

, −19
√

2
√

4043
cos
(√

39
√

58
t
)

,

85

2
√

8086
sin
(

2
√

26
√

87
t
)

, 85

2
√

8086
cos
(

2
√

26
√

87
t
)

, 29
√

23

2
√

8086



 ,

V4(t) =





− 5
√

29
cos
(√

39
√

58
t
)

, 5
√

29
sin
(√

39
√

58
t
)

,

2
√

29
cos
(

2
√

26
√

87
t
)

,− 2
√

29
sin
(

2
√

26
√

87
t
)

, 0



 ,

V5(t) =





5
√

23
√

933
sin
(√

39
√

58
t
)

, 5
√

23
√

933
cos
(√

39
√

58
t
)

,

−

√

69

2
√

311
sin
(

2
√

26
√

87
t
)

, −

√

69

2
√

311
cos
(

2
√

26
√

87
t
)

, 35

2
√

933



 .

It is clear that the Frenet vector fields V1, V3 and V5 of the curve γ make constant angles

θ1 =
√

23

2
√

78
, θ3 = 29

√

23

2
√

8086
and , θ5 = 35

2
√

933
with vector U = (0, 0, 0, 0, 1), respectively.

Also, after straightforward calculations, we have the curvatures of the curve γ

κ1 = 1, κ2 =

√
311

29
√
3
, κ3 =

455

29
√
933

, κ4 =

√

299

622
.

Since, γ lies on the hypercylinder
{

(x1, x2, x3, x4, x5) ∈ E
5
∣

∣

x2

1
+x2

2
16

351

+
x2

3
+x2

4
150

1664

= 1
}

, then γ

is a hypercylindrical generalized helix in E
5.
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Remark 4.1. Even if the curve α and γ have different curvatures, they have same Frenet
vectors.

Example 4.3. If we choose c1 = 2 and in Theorem 4.2, then

α (t) =

(

2 cos t
√

3
cos 2t

√

3
+ sin t

√

3
sin 2t

√

3

2
,
cos 2t

√

3
sin t

√

3
− 2 cos t

√

3
sin 2t

√

3

2
,

√

3

4
sin

t
√
3

)

After straightforward calculations, we obtain the Frenet vector fields of the curve α

Tα(t) =

(

−

√
3

2
sin

2t
√
3
,−

√
3

2
cos

2t
√
3
,
1

2

)

,

Nα(t) =

(

− cos
2t
√
3
, sin

2t
√
3
, 0

)

,

Bα(t) =

(

1

2
sin

2t
√
3
,
1

2
cos

2t
√
3
,

√
3

2

)

.

It is clear that the Frenet vector fields Tα and Bα of the curve α make constant angles

θ1 = arccos 1
2

and θ3 = arccos
√

3
2

with vector U = (0, 0, 1), respectively. Also, after
straightforward calculating, we have the curvatures of the curve α

κ1 = sec
t
√
3
, κ2 =

1
√
3
sec

t
√
3
.

Since, α lies on S2 =

{

(x1, x2, x3) ∈ E
3
∣

∣

3
∑

i=1

x2
i = 1

}

, then α is a spherical generalized

helix in E
3.

Example 4.4. If we choose c1 = 2 and in Theorem 4.3, then

γ (t) =

(

3

4
cos

2t
√
3
,−

3

4
sin

2t
√
3
,
t

2

)

.

After straightforward calculations, we obtain the Frenet vector fields of the curve γ

Tγ(t) =

(

−

√
3

2
sin

2t
√
3
,−

√
3

2
cos

2t
√
3
,
1

2

)

,

Nγ(t) =

(

− cos
2t
√
3
, sin

2t
√
3
, 0

)

,

Bγ(t) =

(

1

2
sin

2t
√
3
,
1

2
cos

2t
√
3
,

√
3

2

)

.

It is clear that the Frenet vector fields Tγ and Bγ of the curve makes constant angles

θ1 = arccos 1
2

and θ3 = arccos
√

3
2

with vector U = (0, 0, 1), respectively. Also, after
straightforward calculating, we have the curvatures of γ

κ1 = 1, κ2 =
1
√
3
.

Since, γ lies on
x2

1
+x2

2

( 3

4
)2

= 1, then α is a circular helix in E
3.
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Fig. 4.1: Frenet vectors of the curves α and γ for t = π
6 in Example 4.3 and 4.4.
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