TRANSLATION-FAVORABLE FLAT SURFACES IN 3-SPACES

Alev Kelleci Akbay
Faculty of Science, Department of Mathematics
P. O. Box 60, 23200 Elazig, Turkey

Abstract

In the paper, we obtain the complete classification of Translation-Factorable (TF-) surfaces with vanishing Gaussian curvature in Euclidean and Minkowski 3-spaces. Keywords: flat surfaces, Gaussian curvatures, 3-spaces

1. Introduction

In the study of the differential geometries of surfaces in 3-spaces, it is the most popular to examine curvature properties or the relationships between the corresponding curvatures of them. Let M be a surface in 3 -spaces and (x, y, z) rectangular coordinates. It is well known that M is called as translation or factorable (homothetical) surface if it is locally described as the graph of $z=f(x)+g(y)$ or $z=f(x) g(y)$, respectively. Translation surfaces having constant mean curvature (CMC) or constant Gaussian curvature (CGC) in 3 -spaces have been studied in $[1,4,15,16,22,23]$. Furthermore, translation surfaces in 3 -spaces satisfying Weingarten condition have been studied by Dillen et. all in [10], by Sipus in [22] and also by Sipus and Dijvak in [23]. On the other hand, factorable (homothetical) surfaces whose curvatures satisfy certain conditions have been investigated in $[2,3,17]$. As an exception, surfaces with vanishing curvature have been also very much focused. It is well known that M is called as flat or minimal surface if the Gaussian curvature or the mean curvature vanishes, respectively. The study of flat or minimal surfaces have found many applications in differential geometry

[^0](C) 2021 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND
and also physics, (see in $[5,11,24,25]$). Very recently, as a generalization of these surfaces, Difi, Ali and Zoubir described a new type surfaces called with translationfactorable (TF) surfaces in Euclidean 3-space in [9]. Moreover, author investigated these surfaces in Galilean 3-spaces, in [14]. In that paper, authors studied on the position vector of this new type surface in the 3-dimensional Euclidean space and Lorentzian-Minkowski space satisfying the special condition $\Delta r_{i}=\lambda_{i} r_{i}$, where Δ denotes the Laplace operator.

The main interest of this paper is to obtain the complete classification of Transla-tion-Factorable (TF-) surfaces with vanishing Gaussian curvatures in 3 -spaces, starting from this new type of surface, called as Translation-Factorable (TF-) surfaces, defined in [9]. In Sect. 2, we introduce the notations that we are going to use and give a brief summary of basic definitions in theory of surfaces in Euclidean and Minkowski 3 -spaces. In Sect. 3 and 4, we give the complete classification of TF-flat surfaces in the Euclidean 3-space and Minkowski 3-space, respectively.

2. Preliminiaries

Let Euclidean and Minkowski 3-spaces denote with \mathbb{E}^{3} and \mathbb{E}_{1}^{3}, respectively. One may introduce an euclidean and Lorentzian inner products between $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ as

$$
\langle u, v\rangle=\left(d \xi_{0}\right)^{2}+\left(d \xi_{1}\right)^{2}+\left(d \xi_{2}\right)^{2} \quad \text { and } \quad\langle u, v\rangle_{L}=\left(d \xi_{0}\right)^{2}+\left(d \xi_{1}\right)^{2}-\left(d \xi_{2}\right)^{2} .
$$

Here $\left(\xi_{0}, \xi_{1}, \xi_{2}\right)$ is rectangular coordinate system of 3 -spaces. These inner products induce in \mathbb{E}^{3} and \mathbb{E}_{1}^{3} a norm in a natural way:

$$
\|u\|=\sqrt{|\langle u, u\rangle|} \quad \text { and } \quad\|u\|_{L}=\sqrt{|\langle u, u\rangle|_{L}}
$$

respectively. In addition, the corresponding cross products in \mathbb{E}^{3} and \mathbb{E}_{1}^{3} shall be showed here by \wedge and \wedge_{L}, respectively: notice that \wedge_{L} should be computed as

$$
u \wedge_{L} v=e_{1}\left|\begin{array}{cc}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|-e_{2}\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|-e_{3}\left|\begin{array}{cc}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|
$$

Let M^{2} be a surface in \mathbb{E}^{3} or \mathbb{E}_{1}^{3}. If M^{2} is parameterized by an immersion

$$
x\left(u^{1}, u^{2}\right)=\left(x^{1}\left(u^{1}, u^{2}\right), x^{2}\left(u^{1}, u^{2}\right), x^{3}\left(u^{1}, u^{2}\right)\right)
$$

then M^{2} is a regular surface if and only if the corresponding cross products of x_{1} and x_{2} don't vanish anywhere. Here, $x_{k}=\partial x / \partial u^{k}, k=1,2$. So, the normal vector field \mathbf{N} of a regular surface M^{2} in \mathbb{E}^{3} or \mathbb{E}_{1}^{3} is given by

$$
\begin{equation*}
\mathbf{N}=\frac{x_{1} \wedge x_{2}}{\left\|x_{1} \wedge x_{2}\right\|} \quad \text { or } \quad \mathbf{N}_{L}=\frac{x_{1} \wedge_{L} x_{2}}{\left\|x_{1} \wedge_{L} x_{2}\right\|_{L}} \tag{2.1}
\end{equation*}
$$

The first fundamental form of $x: U \longrightarrow M^{2} \subset \mathbb{E}^{3}$ (or \mathbb{E}_{1}^{3}) is defined as:

$$
\begin{equation*}
I=g_{i j} d u^{i} d u^{j}, \quad g_{i j}=\left\langle x_{i}, x_{j}\right\rangle \quad \text { or } \quad g_{i j}=\left\langle x_{i}, x_{j}\right\rangle_{L} . \tag{2.2}
\end{equation*}
$$

The second fundamental form $I I$ in simply and pseudo-isotropic spaces is with differentiable coefficients

$$
\begin{equation*}
I I=h_{i j} d u^{i} d u^{j}, \quad h_{i j}=\left\langle\mathbf{N}, x_{i j}\right\rangle \quad \text { or } \quad h_{i j}=\left\langle\mathbf{N}, x_{i j}\right\rangle_{L} . \tag{2.3}
\end{equation*}
$$

Therefore, the Gaussian curvature K and the mean curvature H of surface Σ are defined by, respectively,

$$
\begin{align*}
K & =\frac{h_{11} h_{22}-h_{12}^{2}}{W^{2}} \tag{2.4}\\
H & =\frac{g_{11} h_{22}-2 g_{12} h_{12}+g_{22} h_{11}}{2 W^{2}} \tag{2.5}
\end{align*}
$$

where $W=\sqrt{\left|g_{11} g_{22}-g_{12}^{2}\right|}$. Note that if $g_{11} g_{22}-g_{12}{ }^{2}<0$ or $g_{11} g_{22}-g_{12}{ }^{2}>0$, then the surface M^{2} in \mathbb{E}_{1}^{3} is called as time-like or space-like surface, respectively.

Now, first we would like to give the definition of the translation-factorable (TF-) surfaces in \mathbb{E}^{3} defined in [9]. And then we would like to complete the definition of translation-factorable (TF-) surfaces in \mathbb{E}_{1}^{3} given in same paper as follows:

Definition 2.1. Let M^{2} be a surface in Euclidean 3-space. Then M is called a translation-factorable (TF-) surface if it can be locally written as following:

$$
\begin{equation*}
x(s, t)=(s, t, B(f(s) g(t))+A(f(s)+g(t))) \tag{2.6}
\end{equation*}
$$

where f and g are some real functions and A, B are non-zero constants.

Definition 2.2. Let M^{2} be a surface in Minkowski 3 -space, \mathbb{E}_{1}^{3}. Then M is called a translation-factorable (TF-) surface if it can be locally written as one of the followings:

$$
\begin{equation*}
x(s, t)=(s, t, B(f(s) g(t))+A(f(s)+g(t))), \tag{2.7}
\end{equation*}
$$

or

$$
\begin{equation*}
x(s, t)=(A(f(s)+g(t))+B(f(s) g(t)), s, t)) \tag{2.8}
\end{equation*}
$$

which are called as first and second type and where f and g are some real functions and A, B are non-zero constants.

Remark 2.1. From Definition 2.2, one can be directly seen when taking $A=0$ and $B \neq 0$, then surface becomes a factorable surface studied in [17]. On the other hand, if one can take $B=0$ and $A \neq 0$, then surface is a translation surface studied in [15].

3. Classification of Translation-Factorable surfaces with vanishing Gaussian curvature in \mathbb{E}^{3}

As mentioned in the previous section, the TF-surfaces can be parametrized as in (2.6) in Euclidean 3-spaces. In this section, we calculate the Gaussian curvature for the TF-surfaces in \mathbb{E}^{3}. And then, we examine when it vanishes. Finally, we give the complete classification of of the TF-surfaces with vanishing Gaussian curvatures.

Let M^{2} be a TF-surface in Euclidean 3 -space, \mathbb{E}^{3}. Hence it can be parametrized as

$$
\begin{equation*}
x(s, t)=(s, t, B(f(s) g(t))+A(f(s)+g(t))) . \tag{3.1}
\end{equation*}
$$

Thus, the partial derivatives and \mathbf{N}, the unit normal vector field defined by (2.1) of this type surface are obtained by

$$
\begin{align*}
x_{s} & =\left(1,0,(B g(t)+A) f^{\prime}(s)\right) \tag{3.2}\\
x_{t} & =\left(0,1, g^{\prime}(t)(B f(s)+A)\right) \tag{3.3}\\
\mathbf{N} & =\frac{1}{W}\left(-f^{\prime}(s)(B g(t)+A),-g^{\prime}(t)(B f(s)+A), 1\right) \tag{3.4}
\end{align*}
$$

Here $W=\sqrt{1+g^{\prime}(t)^{2}(B f(s)+A)^{2}+f^{\prime}(s)^{2}(B g(t)+A)^{2}}$ and by I, we have denoted derivatives with respect to corresponding parameters. For readability, here and in the rest of the paper, we will lower the parameters of the $f(s)$ and $g(t)$ functions. Now, by considering the above into the second equalities in (2.2) and (2.3), respectively, we get

$$
\begin{align*}
& g_{11}=1+{f^{\prime}}^{2}(B g+A)^{2} \\
& g_{12}=g^{\prime} f^{\prime}(B f+A)(B g+A) \tag{3.5}\\
& g_{22}=1+{g^{\prime}}^{2}(B f+A)^{2}
\end{align*}
$$

and

$$
\begin{equation*}
h_{11}=\frac{f^{\prime \prime}(B g+A)}{W}, \quad h_{12}=\frac{B f^{\prime} g^{\prime}}{W}, \quad h_{22}=\frac{g^{\prime \prime}(B f+A)}{W} \tag{3.6}
\end{equation*}
$$

where $W^{2}=1+{g^{\prime}}^{2}(B f+A)^{2}+{f^{\prime}}^{2}(B g+A)^{2}$. Hence, by substituting of the last two statements into (2.4) gives

$$
\begin{equation*}
K=\frac{f^{\prime \prime} g^{\prime \prime}(B f+A)(B g+A)-B^{2}\left(f^{\prime}\right)^{2}\left(g^{\prime}\right)^{2}}{1+{g^{\prime}}^{2}(B f+A)^{2}+{f^{\prime 2}}^{2}(B g+A)^{2}} \tag{3.7}
\end{equation*}
$$

where f and g are some real functions and A, B are non-zero constants.
Now, we would like to investigate the vanishing Gaussian curvature problem for TF-surfaces in \mathbb{E}^{3}. As well known, the surfaces with vanishing Gaussian curvature are called flat. Now, we examine TF- flat surface in Euclidean 3-space, whose Gaussian curvature is identically zero. Then the following classification theorem is valid.

Theorem 3.1. Let M^{2} be a TF-surface defined by (3.1) in the Euclidean 3-space. Then, M^{2} is a flat surface if and only if it can be parametrized as one of the followings:

1. M^{2} is a part of a plane,
2. M^{2} is a regular surface in \mathbb{E}^{3} parametrized by

$$
\begin{equation*}
x(s, t)=(s, t, g(t)(B c+A)+A c) \tag{3.8}
\end{equation*}
$$

where $f=c$ is a constant function or

$$
\begin{equation*}
x(s, t)=(s, t, f(s)(B c+A)+A c) \tag{3.9}
\end{equation*}
$$

where $g=c$ is a constant function.
3. f and g are given by

$$
\begin{equation*}
f(s)=-\frac{1}{B} e^{B\left(c_{1} s+c_{2}\right)}+\frac{A}{B}, \quad g(t)=-\frac{1}{B} e^{B\left(c_{1} t+c_{2}\right)}+\frac{A}{B} . \tag{3.10}
\end{equation*}
$$

4. f and g are given by

$$
\begin{align*}
& f(s)=-\frac{A}{B}+B^{\frac{C}{C-1}}\left((C-1)\left(c_{1} s+c_{2}\right)\right)^{\frac{1}{1-C}}, \tag{3.11}\\
& g(t)=-\frac{A}{B}+B^{\frac{C}{C-1}}\left((C-1)\left(c_{1} t+c_{2}\right)\right)^{\frac{1}{1-C}} .
\end{align*}
$$

Proof. Let M^{2} be the TF- flat surface. Thus, from (3.7), it is clear that is sufficient that

$$
\begin{equation*}
f^{\prime \prime} g^{\prime \prime}(B f+A)(B g+A)-B^{2}\left(f^{\prime}\right)^{2}\left(g^{\prime}\right)^{2}=0 \tag{3.12}
\end{equation*}
$$

Let us consider on the following possibilities:
Case (1): $f^{\prime}=0$ and $g^{\prime}=0$. Then, the equation (3.12) is trivially satisfied. By considering these assumptions in (3.1), respectively, we obtain M^{2} is an open part of plane. Thus, we have Case (1) of Theorem 3.1.

Case (2): $f^{\prime}=0$ or $g^{\prime}=0$. First, assume that $f^{\prime}=0$, i.e., f be constant. In case, the equation (3.12) is trivially satisfied. But, in case g is a arbitrary smooth function. Thus, we get (3.8). Similarly, by considering the assumption of g as $g^{\prime}=0$, we can get (3.9) in Theorem 3.1.

Case (3): Let $f^{\prime \prime}=0$ or $g^{\prime \prime}=0$, but not both. First, assume that $f^{\prime \prime}=0$, i.e., f be a linear function. In this case, one get $g^{\prime}=0$ to provide the equation (3.12). Second, let $g^{\prime \prime}=0$. Then by the similar way, $f^{\prime}=0$ must be. Note that one can easily see that these cases are covered by Case (2).

Case (4): Let $f^{\prime}, g^{\prime}, f^{\prime \prime}$ and $g^{\prime \prime}$ be non-zero. Then, the equation (3.12) can be rewritten as

$$
\begin{equation*}
\frac{f^{\prime \prime}(A+B f)}{B\left(f^{\prime}\right)^{2}}=\frac{B\left(g^{\prime}\right)^{2}}{g^{\prime \prime}(A+B g)}=C \tag{3.13}
\end{equation*}
$$

for non-zero constant C. We are going to consider the following cases seperately: Case (4a): $C=1$. In this case (3.13) implies that

$$
\begin{equation*}
f^{\prime \prime}(A+B f)=B\left(f^{\prime}\right)^{2} \quad \text { and } \quad B\left(g^{\prime}\right)^{2}=g^{\prime \prime}(A+B g) \tag{3.14}
\end{equation*}
$$

from which, we get (3.10) in Case (3) in Theorem 3.1.
Case (4b): $C \neq 1$. In this case we solve (3.13) to obtain (3.11).
Conversely, a direct computation yields that the Gaussian curvature of each of surfaces given in Theorem 3.1 vanishes identically.

4. Classification of Translation-Factorable surfaces with vanishing Gaussian curvature in \mathbb{E}_{1}^{3}

In this section, we study two types of TF-surfaces in the 3-dimensional Minkowski space. Let M^{2} be a TF-surface parametrized in (2.7) or (2.8) in Minkowski 3-spaces. Namely, M^{2} can be parametrized as

$$
\begin{equation*}
x(s, t)=(s, t, A(f(s)+g(t))+B f(s) g(t)) \tag{4.1}
\end{equation*}
$$

or

$$
\begin{equation*}
x(s, t)=(A(f(s)+g(t))+B f(s) g(t), s, t)), \tag{4.2}
\end{equation*}
$$

which are called as first and second type TF-surfaces .
First, we would like to consider on the type I TF-surface parametrized as in (4.1). Thus, we have,

$$
\begin{align*}
x_{s} & =\left(1,0, f^{\prime}(A+B g)\right) \tag{4.3}\\
x_{t} & =\left(0,1, g^{\prime}(A+B f)\right) \tag{4.4}
\end{align*}
$$

Also, \mathbf{N}_{L} the unit normal vector field of M^{2} defined by (2.1) is given by

$$
\begin{equation*}
\mathbf{N}_{L}=\frac{1}{W}\left(f^{\prime}(A+B g),-g^{\prime}(A+B f), 1\right) \tag{4.5}
\end{equation*}
$$

Here with I, we have denoted derivatives with respect to corresponding parameters and

$$
\begin{equation*}
W=\sqrt{\left|1-g^{\prime 2}(A+B f)^{2}-f^{\prime 2}(A+B g)^{2}\right|} \tag{4.6}
\end{equation*}
$$

By considering (4.3), (4.4) and (4.5) into the third equalities in (2.2) and (2.3), respectively, we obtain
$g_{11}=1-{f^{\prime}}^{2}(A+B g)^{2}, \quad g_{12}=-f^{\prime} g^{\prime}(A+B f)(A+B g), \quad g_{22}=1-{g^{\prime}}^{2}(A+B f)^{2}$, and

$$
\begin{equation*}
h_{11}=\frac{f^{\prime \prime}(B g+A)}{W}, \quad h_{12}=\frac{B f^{\prime} g^{\prime}}{W}, \quad h_{22}=\frac{g^{\prime \prime}(B f+A)}{W} . \tag{4.8}
\end{equation*}
$$

Thus, by substituting of these above statements into (2.4) gives

$$
\begin{equation*}
K_{L}=\frac{f^{\prime \prime} g^{\prime \prime}(B f+A)(B g+A)-B^{2}\left(f^{\prime}\right)^{2}\left(g^{\prime}\right)^{2}}{W^{4}} \tag{4.9}
\end{equation*}
$$

where f and g are some real functions, A, B are non-zero constants and W is given as in (4.6).

Now, we would like to give the following theorem being the classification of type I TF-surfaces with vanishing Gaussian curvature in \mathbb{E}_{1}^{3}.

Theorem 4.1. Let M^{2} be a type I TF-surface defined by (4.1) in the Minkowski 3-space. Then,

1. M^{2} is a type I space-like flat surface if and only if it can be parametrized as one of the followings:
(a) M^{2} is a part of a plane,
(b) M^{2} is a space-like surface in \mathbb{E}_{1}^{3} parametrized by

$$
\begin{equation*}
x(s, t)=(s, t, g(t)(A+B c)+A c) \tag{4.10}
\end{equation*}
$$

where $f=c$ is a constant function and $\frac{-1}{A+B c}<g^{\prime}<\frac{1}{A+B c}$ or

$$
\begin{equation*}
x(s, t)=(s, t, f(s)(A+B c)+A c) \tag{4.11}
\end{equation*}
$$

where $g=c$ is a constant function and $\frac{-1}{A+B c}<f^{\prime}<\frac{1}{A+B c}$.
(c) f and g are given by

$$
\begin{equation*}
f(s)=-\frac{1}{B} e^{B\left(c_{1} s+c_{2}\right)}+\frac{A}{B}, \quad g(t)=-\frac{1}{B} e^{B\left(c_{1} t+c_{2}\right)}+\frac{A}{B} \tag{4.12}
\end{equation*}
$$

such that satisfy the condition (4.18).
(d) f and g are given by

$$
\begin{align*}
& f(s)=-\frac{A}{B}+B^{\frac{C}{C-1}}\left((C-1)\left(c_{1} s+c_{2}\right)\right)^{\frac{1}{1-C}} \tag{4.13}\\
& g(t)=-\frac{A}{B}+B^{\frac{C}{C-1}}\left((C-1)\left(c_{1} t+c_{2}\right)\right)^{\frac{1}{1-C}}
\end{align*}
$$

such that satisfy the condition (4.18).
2. M^{2} is a type I time-like flat surface if and only if it can be parametrized as one of the followings:
(a) M^{2} is a time-like surface in \mathbb{E}_{1}^{3} parametrized by

$$
\begin{equation*}
x(s, t)=(s, t, g(t)(B c+A)+A c) \tag{4.14}
\end{equation*}
$$

where $f=c$ is a constant function or

$$
\begin{equation*}
x(s, t)=(s, t, f(s)(B c+A)+A c) \tag{4.15}
\end{equation*}
$$

where $g=c$ is a constant function.
(b) f and g are given by

$$
\begin{equation*}
f(s)=-\frac{1}{B} e^{B\left(c_{1} s+c_{2}\right)}+\frac{A}{B}, \quad g(t)=-\frac{1}{B} e^{B\left(c_{1} t+c_{2}\right)}+\frac{A}{B} \tag{4.16}
\end{equation*}
$$

(c) f and g are given by

$$
\begin{align*}
& f(s)=-\frac{A}{B}+B^{\frac{C}{C-1}}\left((C-1)\left(c_{1} s+c_{2}\right)\right)^{\frac{1}{1-C}} \tag{4.17}\\
& g(t)=-\frac{A}{B}+B^{\frac{C}{C-1}}\left((C-1)\left(c_{1} t+c_{2}\right)\right)^{\frac{1}{1-C}}
\end{align*}
$$

Proof. Let M^{2} be a type I TF- flat surface. First, let M^{2} be a type I space-like surface. Then from (4.6), we have

$$
\begin{equation*}
{g^{\prime}}^{2}(A+B f)^{2}+{f^{\prime 2}}^{2}(A+B g)^{2}<1 \tag{4.18}
\end{equation*}
$$

Since M^{2} is a flat surface, then from (4.9), it is clear that is sufficient that

$$
\begin{equation*}
f^{\prime \prime} g^{\prime \prime}(A+B f)(A+B g)-B^{2}\left(f^{\prime}\right)^{2}\left(g^{\prime}\right)^{2}=0 \tag{4.19}
\end{equation*}
$$

Let us consider on the following possibilities:
Case (1): $f^{\prime}=0$ and $g^{\prime}=0$. Then, the equation (4.18) and (4.19) are trivially satisfied. By considering these assumptions in (4.1), respectively, we obtain M^{2} is an open part of plane. Thus, we have Case (1a) of Theorem 4.1.

Case (2): $f^{\prime}=0$ or $g^{\prime}=0$. First, assume that $f^{\prime}=0$, i.e., f be a constant. In case, the equation (4.19) is trivially satisfied and also from (4.18) yields g is satisfied $\frac{-1}{A+B c}<g^{\prime}<\frac{1}{A+B c}$. Thus, we get (4.10). Similarly, by considering the assumption of g as $g^{\prime}=0$, we can get (4.11) in Theorem 4.1.

Case (3): Let $f^{\prime \prime}=0$ or $g^{\prime \prime}=0$, but not both. First, assume that $f^{\prime \prime}=0$, i.e., $f^{\prime}=c_{1}$ and $f=c_{1} s+c_{2}$ be a linear function. In this case, one get $g^{\prime}=0$, namely $g=C_{1}$, to provide the equation (4.19). Thus, from (4.18), we get the condition $1<c_{1}^{2} C_{1}^{2}$. Second, let $g^{\prime \prime}=0$. Then by the similar way, $f^{\prime}=0$ must be. Note that one can easily see that these cases are covered by Case (1b).

Case (4): Let $f^{\prime}, g^{\prime}, f^{\prime \prime}$ and $g^{\prime \prime}$ be non-zero. Then, the equation (4.19) can be rewritten as

$$
\begin{equation*}
\frac{f^{\prime \prime}(A+B f)}{B\left(f^{\prime}\right)^{2}}=\frac{B\left(g^{\prime}\right)^{2}}{g^{\prime \prime}(A+B g)}=C, \tag{4.20}
\end{equation*}
$$

for non-zero constant C. We are going to consider the following cases seperately:
Case (4a): $C=1$. In this case (4.20) implies that

$$
\begin{equation*}
f^{\prime \prime}(A+B f)=B\left(f^{\prime}\right)^{2} \quad \text { and } \quad B\left(g^{\prime}\right)^{2}=g^{\prime \prime}(A+B g) \tag{4.21}
\end{equation*}
$$

from which, we get (4.12) in Case (1c) in Theorem 4.1.

Case (4b): $C \neq 1$. In this case we solve (4.20) to obtain (4.13).
Secondly, let M^{2} be a type I time-like surface in \mathbb{E}_{1}^{3}. Then from (4.6), we have

$$
\begin{equation*}
{g^{\prime}}^{2}(A+B f)^{2}+{f^{\prime 2}}^{2}(A+B g)^{2}>1 \tag{4.22}
\end{equation*}
$$

In view of this condition, the proof of the second case can be made similar to the previous case.

Conversely, a direct computation yields that the Gaussian curvature of each of surfaces given in Theorem 4.1 vanishes identically.

Now, secondly let M^{2} be a type II TF-surfaces given as in (4.2). Thus, we have,

$$
\begin{align*}
x_{s} & =\left(f^{\prime}(A+B g), 1,0\right), \tag{4.23}\\
x_{t} & =\left(g^{\prime}(A+B f), 0,1\right) . \tag{4.24}
\end{align*}
$$

Also, \mathbf{N}_{L} the unit normal vector field of M^{2} defined by (2.1) is given by

$$
\begin{equation*}
\mathbf{N}_{L}=\frac{1}{W}\left(1,-f^{\prime}(A+B g), g^{\prime}(A+B f)\right) \tag{4.25}
\end{equation*}
$$

Here with I, we have denoted derivatives with respect to corresponding parameters and

$$
\begin{equation*}
W=\sqrt{\left|1+f^{\prime 2}(A+B g)^{2}-g^{\prime 2}(A+B f)^{2}\right|} \tag{4.26}
\end{equation*}
$$

By considering (4.23), (4.24) and (4.25) into the third equalities in (2.2) and (2.3), respectively, we obtain
$g_{11}=1+{f^{\prime}}^{2}(A+B g)^{2}, \quad g_{12}=f^{\prime} g^{\prime}(A+B f)(A+B g), \quad g_{22}=g^{\prime 2}(A+B f)^{2}-1$,
and

$$
\begin{equation*}
h_{11}=\frac{f^{\prime \prime}(B g+A)}{W}, \quad h_{12}=\frac{B f^{\prime} g^{\prime}}{W}, \quad h_{22}=\frac{g^{\prime \prime}(B f+A)}{W} . \tag{4.28}
\end{equation*}
$$

Thus, by substituting of these above statements into (2.4) gives

$$
\begin{equation*}
K_{L}=\frac{f^{\prime \prime} g^{\prime \prime}(B f+A)(B g+A)-B^{2}\left(f^{\prime}\right)^{2}\left(g^{\prime}\right)^{2}}{W^{4}} \tag{4.29}
\end{equation*}
$$

where f and g are some real functions, A, B are non-zero constants and W is given as in (4.26). As well knowing that if M^{2} is a space-like surface then, from (4.26) yields

$$
\begin{equation*}
g^{\prime 2}(A+B f)^{2}-{f^{\prime}}^{2}(A+B g)^{2}<1 \tag{4.30}
\end{equation*}
$$

On the other hand, if M^{2} is a time-like surface then, from (4.26) yields

$$
\begin{equation*}
g^{\prime 2}(A+B f)^{2}-f^{\prime 2}(A+B g)^{2}>1 \tag{4.31}
\end{equation*}
$$

Now we would like to give the following theorem being the classification of type II TF-flat surfaces in \mathbb{E}_{1}^{3}.

Theorem 4.2. Let M^{2} be a type II TF-surface defined by (4.2) in the Minkowski 3-space. Then,

1. M^{2} is a type II space-like flat surface if and only if it can be parametrized as one of the followings:
(a) M^{2} is a part of a plane,
(b) M^{2} is a space-like surface in \mathbb{E}_{1}^{3} parametrized by

$$
\begin{equation*}
x(s, t)=(s, t, g(t)(A+B c)+A c) \tag{4.32}
\end{equation*}
$$

where $f=c$ is a constant function and $\frac{-1}{A+B c}<g^{\prime}<\frac{1}{A+B c}$ or

$$
\begin{equation*}
x(s, t)=(s, t, f(s)(A+B c)+A c) \tag{4.33}
\end{equation*}
$$

where $g=c$ is a constant function and $0<f^{\prime 2}(A+B c)^{2}+1$.
(c) f and g are given by

$$
\begin{equation*}
f(s)=-\frac{1}{B} e^{B\left(c_{1} s+c_{2}\right)}+\frac{A}{B}, \quad g(t)=-\frac{1}{B} e^{B\left(c_{1} t+c_{2}\right)}+\frac{A}{B} \tag{4.34}
\end{equation*}
$$

such that satisfy the condition (4.30).
(d) f and g are given by

$$
\begin{align*}
& f(s)=-\frac{A}{B}+B^{\frac{C}{C-1}}\left((C-1)\left(c_{1} s+c_{2}\right)\right)^{\frac{1}{1-C}} \tag{4.35}\\
& g(t)=-\frac{A}{B}+B^{\frac{C}{C-1}}\left((C-1)\left(c_{1} t+c_{2}\right)\right)^{\frac{1}{1-C}}
\end{align*}
$$

such that satisfy the condition (4.30).
2. M^{2} is a type I time-like flat surface if and only if it can be parametrized as one of the followings:
(a) M^{2} is a time-like surface in \mathbb{E}_{1}^{3} parametrized by

$$
\begin{equation*}
x(s, t)=(s, t, g(t)(B c+A)+A c) \tag{4.36}
\end{equation*}
$$

where $f=c$ is a constant function or

$$
\begin{equation*}
x(s, t)=(s, t, f(s)(B c+A)+A c) \tag{4.37}
\end{equation*}
$$

where $g=c$ is a constant function.
(b) f and g are given by

$$
\begin{equation*}
f(s)=-\frac{1}{B} e^{B\left(c_{1} s+c_{2}\right)}+\frac{A}{B}, \quad g(t)=-\frac{1}{B} e^{B\left(c_{1} t+c_{2}\right)}+\frac{A}{B} \tag{4.38}
\end{equation*}
$$

such that satisfy the condition (4.31).
(c) f and g are given by

$$
\begin{align*}
& f(s)=-\frac{A}{B}+B^{\frac{C}{C-1}}\left((C-1)\left(c_{1} s+c_{2}\right)\right)^{\frac{1}{1-C}}, \tag{4.39}\\
& g(t)=-\frac{A}{B}+B^{\frac{C}{C-1}}\left((C-1)\left(c_{1} t+c_{2}\right)\right)^{\frac{1}{1-C}}
\end{align*}
$$

such that satisfy the condition (4.31).
Proof. In view of the condition (4.6), the proof of this theorem can be made similar to the previous Theorem 4.1.

REFERENCES

1. M. E. Aydin: A generalization of translation surfaces with constant curvature in the isotropic space. J. Geom. 2015, DOI:10.1007/s00022-015-0292-0.
2. M. E. Aydin: Constant curvature factorable surfaces in in 3-dimensional isotropic space. J. Korean Math. Soc. 55(1) (2018), 59-71, DOI:10.4134/JKMS.j160767.
3. M. E. Aydin, M. A. Kulahci and A. O. Ogrenmis: Non-zero constant curvature factorable surfaces in pseudo-Galilean space. Commun. Korean Math. Soc. 33 (2018), No. 1, pp. 247-259.
4. M. E. Aydin, M. A. Kulahci and A. O. Ogrenmis: Constant curvature Translation surfaces in Galilean 3-space. Int. Elect. J. Geo. 12(1) (2019), 9-19.
5. M. E. Aydin, A. O. Ogrenmis and M. Ergut: Classification of factorable surfaces in pseudo-Galilean space. Glas. Mat. Ser. III 50(70) (2015), 441-451.
6. M. Dede, C. Ekici and W. Goemans: Surfaces of revolution with vanishing curvature in Galilean 3-space. J. Math. Physics Analysis Geometry (2018), 14(2), 141-152.
7. M. Dede, C. Ekici, W. Goemans and Y. Unluturk: Twisted surfaces with vanishing curvature in Galilean 3-space. Int. J. Geom. Meth. Mod. Phy. 15(1) (2018), 1850001, 13pp.
8. M. Dede: Tubular surfaces in Galilean space. Math. Commun. 18 (2013), 209-217.
9. S. A. Difi, H. Ali and H. Zoubir: Translation-Factorable (TF) surfaces in the 3dimensional Euclidean space and Lorentzian-Minkowski space satisfying $\Delta r_{i}=\lambda_{i}, r_{i}$. Elect. J. of Math. Analysis and Appl. Vol. 6(2) July 2018, pp. 227-236.
10. F. Dillen, W. Goemans and I. Van de Woestyne: Translation surface of Weingarten type in 3-space. Bull. Transilv. Univ. Brasov., 15 (2008), pp. 109-122.
11. F. Dillen, I. Van de Woestyne, L. Verstraelen and J. T. Walrave: The surface of Scherk in \mathbb{E}^{3} : a special case in the class of minimal surfaces defined as the sum of two curves. Bull. Inst. Math. Acad. Sin. 26 (1998), 257-267.
12. B. Dijvak and Z. M. Sipus: Some special surfaces in the pseudo-Galilean space. Acta Math. Hungar. 118 (2008), 209-226.
13. M. K. Karacan and Y. Tuncer: Tubular surfaces of Weingarten types in Galilean and pseudo-Galilean. Bull. Math. Anal. Appl. 5 (2013), 87-100.
14. A. Kelleci: Translation-factorable surfaces with vanishing curvatures in Galilean 3spaces. Int. J of Maps in Math.-IJMM 4(1), 14-26.
15. H. LiU: Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 64 (1-2) (1999), 141-149.
16. R. Lopez and M. Moruz: Translation and homothetical surfaces in Euclidean space with constant curvature. J. Korean Math. Soc. 52(3) (2015), 523-535.
17. H. Meng and H. Liv: Factorable surfaces in 3-Minkowski space. Bull. Korean Math. Soc. 46 (2009), 155-169.
18. D. Palman: Drehyzykliden des Galileischen Raumes G_{3}. Math. Pannon. 2(1) (1991), 98-104.
19. O. Roschel: Die Geometrie des Galileischen Raumes. Bericht der MathematischStatistischen Sektion in der Forschungsgesellschaft Joanneum, Bericht Nr. 256, Habilitationsschrift, Leoben, 1984.
20. H. Sachs: Isotrope Geometrie des Raumes. Friedr. Vieweg and Sohn (Braunschweig/Wiesbaden), 1990.
21. L. C. B. DA Silva: The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces. J. Geom. (2019) 110:31.
22. Z. M. Sipus: Translation surfaces of constant curvatures in a simply isotropic space. Period. Math. Hungar. 68 (2014), no. 2, 160-175.
23. Z. M. Sipus and B. DiJvak: Translation surfaces in the Galilean space. Glas. Mat. Ser. III 46(66) (2011), 455-469.
24. L. Verstraelen, J. Walrave and S. Yaprak: The minimal translation surfaces in Euclidean space. Soochow J. Math. 20 (1) (1994), pp. 77-82.
25. Y. Yu and H. LiU: The factorable minimal surfaces. Proceedings of the Eleventh International Workshop on Differential Geometry, 33-39, Kyungpook Nat. Univ., Taegu, (2007).

[^0]: Received November 25, 2020, accepted: August 14, 2021
 Communicated by Ljubica Velimirović
 Corresponding Author: Alev Kelleci Akbay, Faculty of Science, Department of Mathematics, P. O. Box 60, 23200 Elazig, Turkey | E-mail: alevkelleci@hotmail.com
 2010 Mathematics Subject Classification. Primary 53A35; Secondary 53A40

