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Abstract. The rapid development of digital computer hardware and software has had
a dramatic influence on mathematics, and vice versa. The advanced hardware and
modern sophisticated software such as computer visualization, symbolic computation,
computer-assisted proofs, multi-precision arithmetic and powerful libraries, have pro-
vided resolution to many open problems, very difficult mathematical problems, and
discovering new patterns and relationships, far beyond a human capability. In the first
part of the paper, we give a short review of some typical mathematical problems solved
by computer tools. In the second part we present some new original contributions, such
as an intriguing consequence of the presence of roundoff errors, distribution of zeros of
random polynomials, dynamic study of zero-finding methods, a new three-point family
of methods for solving nonlinear equations and two algorithms for the inclusion of a
simple complex zero of a polynomial.
Keywords: Experimental mathematics, computer graphics, symbolic computation,
visualization of iterative processes, interval arithmetic, roundoff error.

1. Introduction

The advance of digital computer hardware and software, circa 1970, has had a
remarkable impact on almost every part of scientific disciplines such as mathema-
tics, engineering disciplines, physics, chemistry, communication, biology, education,
astronomy, geology, banking, business, insurance, health care, social science, as well
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as many other fields of human activities. At present, computers are playing an
increasingly central role in mathematics; they have found the application in almost
every branch of mathematics. Many practical problems are solved by numerical
methods of various types, for instance, simulating dynamical systems and deter-
mining their global properties, or calculating approximate solutions to nonlinear
equations where no closed-form solution is available. Symbolic computation, a part
of computer algebraic systems, is manipulating, simplifying, factorizing, and ex-
panding complicated expressions that contain variables and non-numerical values.
This powerful tool is very useful for solving very difficult mathematical problems
producing, in addition, exact computation. Graphical representations can visualize
complex objects to a good extent and thereby comprehend their properties, see [1].

For a long time (many decades and even centuries) a lot of mathematical prob-
lems remained unsolved. Simply, “paper-and-pencil methods”, human-memory lim-
itation, impossibility to handle lengthy expressions, primitive computer tools (log-
arithmic tables, abacus, slide rule) and other objective obstacles, were insufficient
to solve them. These problems resisted until the digital computer era emerged. In
this paper, we present a short review of some typical mathematical problems solved
by computer tools (Section 2) and some new original contributions (Section 3).

2. Computers in mathematical research - a review

First applications of computers in mathematics were restricted to the calculation of
complicated numerical expressions and the verification of some particular mathe-
matical identities, relations and other issues. The brutal force of computers was
used to suggest or test general claims and to pose hypotheses based on a finite
number of patterns.

Let us mention some well-known examples concerned with the application of
computers. The first calculation of the number π happened in 1949, when the out-
standing scientist John von Neumann and his team used a room-sized digital com-
puter with vacuum tubes ENIAC (Electronic Numerical Integrator And Computer)
to compute 2 037 digits of π. The time of calculation: 70 hours. Computer-assisted
proof of the four-color theorem, given by Appel and Haken in 1977, is a typical
example where brute force combinatorial enumeration played an essential role in
solving this 125 years old open problem (posed by F. Francis Guthrie in 1852).
A similar combinatorial enumeration method (combined with interval arithmetic)
was used in Thomas Hales’s proof of the Kepler conjecture (posed in 1611), which
asserts that the optimal density of packing equal spheres is achieved by the familiar
face-centered cubic packing (see, e.g., [2], [3], and pretty interesting, on the markets
where oranges are packed).

Today, computers are employed in mathematical research in a number of ways;
one of the simplest ways is the implementation of proof-by-exhaustion: posting a
proof so that a statement is valid for a large but finite number of cases and then
check all the cases by a suitable program using a computer. More sophisticated use
of computers is to discover and analyze interesting patterns in data, which then



Computer Tools for Solving Mathematical Problems: A Review 207

serve to state conjectures. Helping to find conjectures is the first step, a proper
advance is a rigorous proof of them.

Extensive development of computer algebra systems (briefly CAS), such as
Mathematica and Maple, provides very fast manipulations with complex mathemat-
ical expressions, a work beyond human ability. Can you check that the sequence
“0123456789” appears in the decimal expansion of π? Using a computer, Yasumasa
Kanada of the University of Tokyo found in 1997 that this sequence begins at po-
sition 17 387 594 880. Advance versions of CAS deliver new improvements and very
powerful algorithms. Evaluating the infinite product

∞∏
n=2

n4 − 1

n4 + 1
,

Mathematica 6 (issued 2007) gives the result involving the Gamma function. Ma-
thematica 10 (2014) delivers the answer directly:

∞∏
n=2

n4 − 1

n4 + 1
=

π sinhπ

cosh(π
√

2)− cos(π
√

2)
.

Both tasks are obviously missions impossible for humans.

Symbolic computation, embedded in computer algebra systems like Mathematica
or Maple, was a great advance in manipulating very complicated expressions of more
variables. Suitable algorithms implemented on current powerful computers can
solve problems whose answers are algebraic expressions tens or thousands of terms
long. David Bailey, a mathematician and computers scientist at Lawrence Berkeley
National Laboratory and one of the world leaders in experimental mathematics,
said: “The computer can then simplify this to five or 10 terms. Not only could a
human not have done that, they certainly could not have done it without errors.”
In & 3.5 we will show how to construct new iterative methods for solving nonlinear
equations and determine the order of convergence by using symbolic computation
in CAS Mathematica. Besides, CAS provides a powerful computer visualization of
data, which is a very useful tool in helping us understand the behavior of iterative
processes, as shown in & 3.5.

2.1. Short list of mathematical problems solved by computer

Below we give a list of theorems proved (completely or partially) with the help
of computer programs. It is assumed that this list is far from being exhaustive.

� Archimedes’ cattle problem, 1965 (the most famous ancient Diophantine
equation), was solved by H. C. Williams, R. A. German and C. R. Zarnke
[4] using computers).

� Euler’s wrong hypothesis, 1966. In 1769 Euler stated that there is no nth
degree which can be sum of less than n nth degrees of natural numbers. In
1966 L. L. Lander and T. R. Parker found by computer the counterexample
for n = 5 in the form of identity 275 + 845 + 1105 + 1335 = 1445.
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� Four color theorem, 1976. The four-color theorem states that any map in
a plane (divided into contiguous regions) can be colored using no more than
four colors so that no two adjacent regions have the same color. The theorem
was proved by Kenneth Appel and Wolfgang Haken (published in [5], [6]) by
inspecting reduced graph configurations by a computer program. Widely ac-
cepted proof of the four-color theorem was given in 2008 by Georges Gonthier
with general-purpose theorem-proving software [7].

� Perfect squared square of the lowest order, 1978. The task is tilling one inte-
gral square using only other integral squares of different sizes. In 1978, using
a computer program, the Dutch computer scientist A. J. W. Duijvestijn found
the perfect squared square of lowest order consisting of 21 smaller squares.

� Mitchell Feigenbaum’s universality conjecture in non-linear dynamics, 1982
(proved by O. E. Lanford using rigorous computer arithmetic);

� The non-existence of a finite projective plane of order 10, 1989 (proved by C.
W. H. Lam, L. Thiel and S. Swiercz).

� Problems solved by interval arithmetic 1993+: Kepler’s conjecture [8] (par-
tially applied), the existence of eigenvalues of the Sturm-Liouville problem
[9], the bound of Feigenbaum constant [10], the double bubble conjecture [11],
verification of chaos [12], [13], Lorenz attractor [14], etc.

� BBP (Borwein, Bailey, Plouffe) formula for π, 1996 (published in [15]):

π =

∞∑
k=0

1

16k

( 4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

BBP formula is revolutionary and fascinating since provides the determina-
tion, for example, the one-billionth hexadecimal digit (or the four billionth
binary digit) of π without needing to compute any of the previous digits.
Practical BBP algorithm for computing the requested individual digit of π
was described in [16, pp. 121–125].

� Robbins conjecture, 1996: All Robbins algebra, supplied with a single bi-
nary operation denoted by ∨ (OR) and a single unary operation denoted by
¬ (NEGATION) are Boolean algebras. This conjecture was proved by W.
McCune in 1996.

� Kepler conjecture (from 1611) on the most density package of identical spheres
in three-dimensional Euclidean space, 2000. The measure of the density δ =
Vs/Vc is the total volume Vs of all packed spheres divided by the total volume
Vc of the container in the form of a cube assuming that the cube edge is
infinitely large. In 2000 Tomas Hales completed the solution proving that the
so-called face-centered cubic packing has the maximum density δmax = π/

√
18,

just as Kepler assumed (see the book [3, pp. 137–147] for details). Hales’ proof,
published in [8], combines methods from the theory of global optimization,
linear programming and interval arithmetic.
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� Lorenz attractor, 2002, known as 14th of Smale’s problem. It is the solution
of Lorenz’s system that describes chaotic behavior. Its existence was shown by
W. Tucker [14] using validated interval arithmetic and normal forms; he also
proved that Lorenz attractor is so-called strange attractor. Lorenz attractor
appears in fluid dynamics and illustrates the phenomenon now known as the
butterfly effect which demonstrates sensitive dependence on initial conditions.

� NP-hardness of minimum-weight triangulation. The minimum-weight trian-
gulation problem belongs to computational geometry and computer science
that asks for the minimal sum of the length of perimeters which make a tri-
angulation (subdivision by triangles) of a given polygon or the convex hull.
In 2008 W. Mulzer and G. Rote proved that this problem is NP-hard.

� Optimal solutions for Rubik’s Cube can be obtained in at most 20 face moves
starting from arbitrary initial position, 2010 (computer-assisted proof was
given by T. Rokicki, H. Koceimba, M. Davidson, J. Dethridge).

� The primality test of very large natural numbers and the factorization of
very large numbers, 1949+. Many cryptographic protocols are based on the
difficulty of factoring large composite integers. At present, the largest prime
number is 282589933− 1 having 24 862 048 decimal digits (found by Laroche et
al. in December of 2018).

Although the computer solution of the four-color theorem (1976) and the Ke-
pler’s conjecture (2006) attracted considerable attention in mathematics, the proofs
were not accepted by all mathematicians who made a serious objection that the
presented computer-assisted proofs (better to say, the program codes) were not ver-
ifiable for a human by hand. Their reaction with many arguments against Hales’
computer-assisted proof was justified; for illustration, Hales’ computer program
consisted of 40 000 lines. Fortunately, these two stories had a happy ending. As
mentioned above, in 2008 G. Gonthier [7] delivered widely accepted proof of the
four-color theorem using general-purpose theorem-proving software. Hales started
in 2003 with a project named FlysPecK (F, P and K standing for Formal Proof of
Kepler) aiming to come up with a formal proof of the Kepler conjecture that can be
checked by automated proof verifying software. After 14 years Hales and his team
finished this challenging but very difficult project; their formal proof was published
in the journal Forum of Mathematics in 2017.

2.2. Interval arithmetic and self-validated method

An important use of computers in proving mathematical hypotheses and prob-
lems, known as self-validating numerics, is a special kind of computation that pre-
serves strong mathematical rigor. This approach uses interval arithmetic which
provides the enclosure, control, and propagation of roundoff and truncation errors
of the executed calculation. The fruitful feature of interval arithmetic is the inclu-
sion principle (essentially meaning subset property) which assures that the results of
computations or solutions of the posed mathematical problems are enclosed by the
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set-valued output. In this way, it is possible to calculate upper and lower bounds
on the sets of solutions. Therefore, self-validating numerical methods deliver true
results.

The described very useful property has provided the application of interval arith-
metic not only in mathematics but also in many scientific disciplines where the
control of a true result is of primary interest. Some of the mathematical prob-
lems solved by self-validated methods is listed above. Note that German scientist
Siegfried M. Rump (Technische Universität Hamburg) created a special software
INTLAB, based on Matlab, intended for the implementation of interval arithmetic
for solving a huge number of mathematical problems [17].

Note that Professor Urlich Kulisch, one of the greatest world experts in the field
of computer architecture and interval arithmetic, claims that further advance in
computer technology and software will lead to the weird situation that the accuracy
of results obtained by a computer can only be verified with the help of a computer
(again!) and interval arithmetic that would control the intermediate results at every
step, see his monograph Computer Arithmetic and Validity [18].

2.3. Experimental mathematics

A relatively new approach to mathematics that makes use of advanced and
powerful computing technology to investigate mathematical objects and identify
properties and patterns is called experimental mathematics, the term introduced by
J. Borwein, D. Bailey, R, Girgensohn and their contributors, see, e.g., the books [16],
[19], [20]. Experimental mathematics, a growing branch of applied mathematics,
provides computational methodologies of doing mathematics that include the use
of computations for the following activities quoted in [16]:

(1) Gaining insight and intuition.

(2) Discovering new patterns and relationships.

(3) Using graphical displays to suggest underlying mathematical principles.

(4) Testing and especially falsifying conjectures.

(5) Exploring a possible result to see if it is worth a formal proof.

(6) Suggesting approaches for formal proof.

(7) Replacing lengthy hand derivations with computer-based derivations.

(8) Confirming analytically derived results.

In the book Mathematics by Experiments [16], J. Borwain and D. Bailey, the
world-leading experts in experimental mathematics, gave the list of things comput-
ers do better than humans. We cite their list below:

� High precision integer and floating-point arithmetic;
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� Symbolic computation for algebraic and calculus manipulations;

� Formal power-series manipulation;

� Changing representations, e.g., continued fraction expansions, partial fraction
expansions, Padé approximations;

� Recursion solving (e.g., Rsolve in Mathematica);

� Integer relation algorithms, e.g., the PSLQ algorithm;

� Creative telescoping (e.g., the Gosper and Wilf-Zeilberger methods) for prov-
ing summation identities;

� Iterative approximations to continuous functions;

� Identification of functions based on graph characteristics;

� Graphics and visualization methods.

“Some of the algorithms involved in this list have had the great influence on the
development and practice of science and engineering”, wrote Dongarra and Sulli-
van in [21], and added often cited sentence: “Great algorithms are the poetry of
computation.”

2.4. Computer-assisted proofs

Attempts have been also made in the area of Artificial Intelligence research to
create new proofs of mathematical theorems using machine reasoning techniques.
A computer-assisted proof or automated theorem prover are relatively recent no-
tions which mean that a mathematical proof has been generated (at least par-
tially) by computer. The majority of computer-aided proofs of mathematical the-
orems up to now were the simple application of proofs-by-exhaustion of all items
of the problem (brute force, backtrack algorithms), for example, in searching for
counterexamples of hypotheses in Number theory or solutions of problems hav-
ing a huge outcomes/configurations. In contrast to the exhaustion method, in-
teractive proof assistants most frequently gives human-readable proofs which can
be checked for correctness; hence it is considerably preferable. The third type,
sometimes named a proper computer-aided proofs, is completely based on sets of
axioms and logical statements of computer software and gives reliable and correct
results. More details devoted to computer-assisted proofs can be found on the link
https://en.wikipedia.org/wiki/Computer-assisted proof.

As examples of important achievements in the field of computer-assisted proofs,
let us mention theorem-proving packages and algorithms of Wilf-Zeilberger’s type.
Theorem-proving package methods, such as Microsoft’s Z3 Theorem Prover (now
available under MIT Open Source), can either verify certain types of statements or
find a counterexample demonstrating that a statement is false. The Wilf-Zeilberger
method (invented by Doron Zeilberger and Herbert Wilf in 1990) can perform sym-
bolic computations working with variables instead of numbers to produce exact
results in a general form free of roundoff errors.
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2.5. Computer visualization

The development of high quality computer visualization enables entirely new
and remarkable insights into a wide variety of mathematical concepts and objects.
Today researchers are able to study the geometric aspects of many mathematical
and engineering disciplines. Computer graphics have become powerful tools for
discovering new properties on various topics of mathematics and constructing new
very efficient algorithms. Undoubtedly, computer visualization delivers modern
and novel perspectives of some mathematical topics yielding a new dimension and
a deep insight into properties and behavior of many mathematical processes, as
well as various processes and phenomena in physics, biology, chemistry, and other
scientific disciplines.

As one illustration of high sophistication of computer visualization, we present
Tupper’s astounding formula

1

2
<
⌊
mod

(⌊ y
17

⌋
2−17bxc−mod(byc,17), 2

)⌋
.

published in 2001. Here bxc denotes the floor function (the greatest integer part
of a number x) and mod(a,m) is the remainder in dividing the integer a by the
integer m (the mod function). The area of graphics is determined by 0 6 x 6 105
and k 6 y 6 k + 16 where k is the natural number with 543 digits

960 939 379 918 958 884 971 672 962 127 852 754 715 004 339 660 129 306 651 505
519 271 702 802 395 266 424 689 642 842 174 350 718 121 267 153 782 770 623 355
993 237 280 874 144 307 891 325 963 941 337 723 487 857 735 749 823 926 629 715
517 173 716 995 165 232 890 538 221 612 403 238 855 866 184 013 235 585 136 048
828 693 337 902 491 454 229 288 667 081 096 184 496 091 705 183 454 067 827 731
551 705 405 381 627 380 967 602 565 685 016 981 482 083 418 783 163 849 115 590
225 610 003 652 351 370 343 874 461 848 378 737 238 198 224 849 863 465 033 159
410 054 974 700 593 138 339 226 497 249 461 751 545 728 366 702 369 745 461 014
655 997 933 798 537 483 143 786 841 806 593 422 227 898 388 722 980 000 748 404
719

Using Tupper’s formula, a simple program in CAS Mathematica

ArrayPlot[Table[Boole[1/2 < Floor[Mod[Floor[y/17] 2^ (-17 Floor[x]-

Mod[Floor[y], 17]), 2]]], {y,n,n+16},{x,105,-2,-1}],
PixelConstrained -> True, Frame -> False, ImageSize -> 400]

gives the self-referential “plot” presented in the figure below.
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In fact, Tupper demonstrated a method of decoding a bitmap stored in the
constant k; k is a simple monochrome bitmap image of the formula treated as a
binary number and multiplied by 17. Note that Tapper’s approach is a general-
purpose method to draw any other image.

2.6. Symbolic computation

Symbolic computation, a part of Computer algebra serving as a bridge between
Mathematics and Computer science, is handling non-numerical values. Symbolic
computation is widely used to experiment in mathematics and to study and design
formulas, algorithms and software that are used in numerical programs. Computer
algebra systems that perform symbolic calculations contain a lot of routines to carry
out many operations, like polynomial factorization, solving nonlinear equations,
manipulation with very complicated expressions. They are also capable to expand or
simplify mathematical expressions with symbols, or differentiate or integrate them,
etc. It should be emphasized that, contrary to numerical computation, symbolic
computation produces exact computation with expressions containing variables that
are manipulated as symbols.

As an illustration of the use of symbolic computation we present everyday practi-
cal problem posed by George Polya, a Stanford professor, in American Mathematical
Monthly article (1956). In how many ways can you make change for a dollar? We
modify Polya’s task and consider Serbian currency assuming that there are 1, 2, 5,
10, 20, 50, 100, 200, 500, 1000, 2000 and 5000 coins or banknotes. Hence:

In how many ways can you make change for a banknote of 5000 Serbian dinars?

Problems of this type are solved by generating functions. Let Pk be the number
of all possible ways of changes. The problem reduces to the generating function
(the Serbian currency case)

∞∑
k=1

Pkx
k =

1

(1− x1)(1− x2)(1− x5)(1− x10)(1− x20) · · · (1− x2000)(1− x5000)
.

To find P5000 it is necessary to develop the expression on the right-hand side into
geometric series and sum all coefficients standing next to x5000. Using a Mathematica
command

Series[1/((1-x)*(1-x^2)*(1-x^5)* (1-x^(10))*(1-x^(20))*(1-x^(50))

*(1-x^(100))*(1-x^(200))*(1-x^(500))*(1-x^(1000))

*(1-x^(2000)*(1-x^(5000),{x,0,5000}]

computer calculates P5000 = 23 303 034 594 532. It is impossible for a human to
determine such a huge number. In the case of US currency, one obtains P100 = 292,
which is reachable for a human so that Polya’s task had a sense in 1956.

Symbolic computation has successfully substituted lengthy manual calculation
with computer-based computation and manipulation. In this paper, we concentrate
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in & 3.5 on methods and procedures for the construction, analysis and practical ap-
plication of algorithms for solving nonlinear equations with the support of symbolic
computation. We emphasize that the construction of presented root-solvers is most
likely impossible without the use of this specific computer software.

2.7. Computer-assisted proofs: how much can we trust computers

The use of computers in mathematics is undoubtedly widespread and in un-
stoppable expansion. Many mathematicians have turned to numerical experiments,
symbolic computation, computer visualization and other computer methods as their
main tools for mathematical investigation. In that way, they have achieved extraor-
dinary results. However, ignoring these advances, a number of researchers often un-
derestimate the role of computers in mathematics. In some cases, their skepticism
cannot be fully disregarded since there are some specialized fields in mathematics
that do not need the use of computers. Recall that, without using a computer,
Andrew Wiles solved the famous Fermat last theorem (stated by Fermat in 1637)
in 1995, Grigori Perelman presented a proof of Poincaré’s conjecture, one of the
most important open problems in topology, through three papers made available in
2002 and 2003 on arXiv of Cornell University. The proof of the Riemann hypothesis
on the locations of zeros of the Riemann zeta function (posed in 1859) has not yet
been given. Many mathematicians believe that the Riemann hypothesis, one of the
most important open problems in mathematics, will be proved by a human using
an analytical method, not by computer tools.

It seems that another kind of disputable question is more serious. Today, in
search for the exact result or ultimate truth, mathematicians, philosophers and
computer scientists (among them, Turing, Voevodsky, Avigard, Teleman, Kim,
Mancosu, Hanke), ask: “How much can we trust computers, whether computer-
assisted proofs have the mathematical sense, is it possible to verify so many logical
steps, how to evaluate the reliability of the data, how to check that the computer
source program is perfectly accurate, whether the researcher can fully believe in the
perfect work of hardware, what if there is a bug?, etc.” Errors of this kind could
be sometimes avoided by using different programming languages, different compil-
ers, and different computer hardware. For instance, this approach was applied to
Gonthier’s proof of the four-color theorem, see [7].

Professor Jonathan Hanke, a number theorist and skilled programmer at the
Princeton University, is quite careful; he is focused on developing and implementing
algorithms to solve concrete problems in programming language Python. To his
opinion, software should never be trusted; it should be checked. Besides, in Hanke’s
opinion, the only way to avoid false results is to use computers in the proofs of
theorems step by step very carefully, using special tests applied to separated sections
(small or large, as needed) of a global program with unmistakable logic.

The science of program proving was a formally accepted field of computer sci-
ence. Program proving, model checking, theorem solving – this is the terminology
occupying the research space of computer science devoted to making sure programs
work correctly. Computer programs analyze, check and inspect key situations and
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outcomes by sophistical algorithms, and verify the validity of the theorem using the
data collected passing through this process. David Bailey, a mathematician and
computers scientist at Lawrence Berkeley National Laboratory (now at University
of California, Davis), one of the world leaders in experimental mathematics, said:
“The time when someone can do real, publishable mathematics completely without
the aid of a computer is coming to a close. Or if you do, you are going to be
restricted into some specialized realms.”

Doron Zeilberger (1950– ), a world-renowned Israeli professor at Rutgers Uni-
versity, the winner of prestigious awards such as Ford Award, Steele Prize, Eu-
ler Medal and Robbins Prize, does not share the mentioned view of his scep-
tical colleagues. He said: “Contemporary mathematics is becoming significantly
complicated, making further progress more difficult. In many mathematical dis-
ciplines computers are so much incorporated that only at the frontiers of some
research areas of mathematics, human proofs still exist.”. Note that Zeilberger
writes his own code using a computer algebra system Maple and believes computers
are overtaking humans in their ability to discover new mathematics. See the link
www.wired.com/2013/03/computers=and=math/ .

Searching for ultimate truth in mathematics, the Field medallist Vladimir Vo-
evodsky (1966–2017) (Institute for Advanced Studies in Princeton) posed the ques-
tion: “How do mathematicians know that something they prove is actually true?”
Similarly, as Zeilberger and Bailey, he comprehended that increasing the complex-
ity of mathematics could be resolved only by the computer since a human brain
could not keep up a huge amount of data and manipulate with them. To resolve
this very hard problem, Voevodsky started, as the leader of a team, a long-term
extraordinary project to create fundamentally new computer tools to confirm the
accuracy of proofs. For this purpose, Voevodsky and his team have united different
research fields, such as homotopy theory, mathematical logic, and the theory of
programming languages, to make computer-verified proofs.

We end this section with an interesting story that tells how much Zeilberger
believes in computer-assisted proofs and other computer tools for solving mathe-
matical problems. Some thirty years ago several mysterious but excellent research
papers (77 in total) appeared in a short period in the renowned mathematical jour-
nals (co)-authored by Shalosh B. Ekhad; in addition, notable Rutgers University
(New Jersey) was marked as the affiliation. Curious mathematicians have tried to
learn anything about the personality of Ekhad for three reasons; this name was
fully unknown in the mathematical literature, nobody has ever seen him, and there
was no Professor Ekhad employed at Rutgers University. The Israeli mathemati-
cian Doron Zeilberger from Rutgers University (the affiliation was correct) resolved
the mystery admitting that Shalosh B. Ekhad is not a person but his computer.
In Hebrew the words ”Shalosh and ”Ekhad” mean THREE and ONE respectively,
and ”three B one” refers to the AT&T 3B1, the first computer that he had been
using in his work. Wishing to emphasize the great importance of computers to his
research, Zeilberger cited Shalosh B. Ekhad as his co-author of scientific papers.
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3. Computers in mathematical research - authors contributions

In this section we present some illustrative mathematical problems of dual na-
ture; they belong to numerical mathematics but also to computer science (roundoff
error analysis). An unexpected but interesting behavior of iteration procedure,
arising as a consequence of the presence of roundoff errors, are discussed in Section
2.& 3.1 and & 3.2. Strange distribution of zeros of algebraic polynomials with ran-
dom coefficients is demonstrated by two examples in & 3.3. In & 3.4 we present the
dynamic study of root-finding methods by basins of attractions and point to useful
benefits of visualization and associate data. A new three-point weighted family of
iterative methods for approximating solutions of nonlinear equations is the subject
of & 3.5. The derivation of the method and its convergence analysis are performed
using symbolic computation. This study deals with very complicated and lengthly
expressions (consists of 200 and more outcome lines) so that the construction and
analysis of the proposed family is far beyond human capability. Two self-validated
iterative methods for the inclusion of a simple zero of a given polynomial are pre-
sented and numerically tested in & 3.6.

3.1. Strange recurrent relation and roundoff errors

This example originally constructed in [22], inspired by Kahan’s recurrent re-
lations, presents in illustrative way the influence of roundoff error to the accuracy
of result of computation. Let us calculate the members of the sequence {xk} in
floating-point arithmetic of double or quadruple precision using the recurrent rela-
tion 

x0 = 1,
x1 = −5,

xk+1 = 207− 1412

xk
+

2400

xk−1xk
.

(3.1)

After a certain number of iterative steps, we observe that xk approaches 200, see
Figure 3.1. However, using methods for solving difference equations we find the
general solution of the recurrent relation (3.1) in the form

xk =
200k+1a+ 4k+1b+ 3k+1

200ka+ 4kb+ 3k
,

where a and b are arbitrary constants. For the given initial values x0 = 1 and
x1 = −5 one obtains a = 0, b = −2/3, so that the above formula reduces to the
simple form

xk =
− 2

3 · 4
k+1 + 3k+1

− 2
3 · 4k + 3k

= 4− 1

1− 2
3

(
4
3

)k .(3.2)

From (3.2) it is clear that xk → 4 when k →∞.
Incorrect result (xk → 200) is the consequence of roundoff error during calcu-

lation. Namely, the application of floating-point arithmetic does not calculate the
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theoretical value a = 0 but a = η 6= 0 and b = −2/3 + ε, where η and ε are of the
order of machine-precision, say 10−16. In this way, instead of (3.2), we have

x̂k ≈
200k+1η + (− 2

3 + ε) · 4k+1 + 3k+1

200kη + (− 2
3 + ε) · 4k + 3k

= ϕ(k, η, ε) + 200.

where

ϕ(k, η, ε) =
−49(3ε− 2) · 4k+1 − 197 · 3k+1

3η · 200k + (3ε− 2) · 4k + 3k+1
.

Since ϕ(k, η, ε)→ 0 when k →∞ independently on the value of η and ε (but having
in mind that both are of the order of machine-precision), one obtains x̂k → 200.
Observe that if η = ε = 0, then ϕ(k, η, ε)→ −196 and x̂k → 4.

Fig. 3.1: Convergence of the sequence (3.1) to (incorrect) limit 200; double-precision
arithmetic was employed.

Calculating xk by (3.1) in double -precision arithmetic and using the termination
criterion |xk−xk−1| < τ, we have found that the iterative computation breaks when
k = 36 dealing with τ = 10−12. First 36 iterations and the values of xk are given in
Figure 3.1. From this figure, we observe that, in the beginning, approximations of
xk approach the exact limit x∞ = 4 but do not reach the required precision. The
minimal error is x23 − 4 ≈ 3.55× 10−3. Then a very steep jump appears for k = 25
and through few steps xk approaches (incorrect) limit 200. This jump, in fact,
arises due to the presence of roundoff errors η and ε which make that the function
ϕ(k, η, ε) acquires a vertical asymptote. Note that this asymptote does not appear
for k > 2 if η = ε = 0.
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3.2. Power method for dominant eigenvalue – the benefit of roundoff

Let λ1, λ2, . . . , λn be the eigenvalues of an n × n matrix A. λ1 is called the
dominant eigenvalue or spectral radius of A if

|λ1| > |λi| (i = 2, . . . , n).

The eigenvector corresponding to λ1 is called dominant eigenvector of A. In the
literature, the spectral radius is most frequently denoted by ρ(A).

The power method is an iterative method which is often applied for approxi-
mating spectral radius of a given matrix A. Scaling version of the power method
can be presented in the following algorithmic form:

1. Choose starting non-zero vector y0 = {y1,0, . . . , yn,0};
2. For k = 1, 2, . . . calculate

zk = Ayk−1, yk = zk/αk,

where αk is the coordinate of the vector zk with the largest moduli.

3. Finish the iterative process when the stopping criterion is fulfilled.

(3.3)

Note that
αk → λ1 and yk →

x1

‖ x1 ‖∞
,

where x1 is the dominant eigenvector that correspond to the dominant eigenvalue
λ1. The value αk is taken to be the approximation of the spectral radius λ1 = ρ(A).

In practical problems, the presence of roundoff error can often cause inaccurate
results. Opposite to the previous request, in the application of the power method
roundoff errors can play a positive role, as mentioned by Higham [39]. Such a
situation is demonstrated by the following example.

Example 3.1. Let us determine the approximative value of the spectral radius of
the matrix

A =

 0.5 −0.8 0.3
−0.6 0.8 −0.2

0.24 0.67 −0.91


using the presented power method with scaling. First of all, note that the power
method (3.3) applied in single precision fails if we take y1 = {1, 1, 1} since in
the next step it produces the zero vector. Hence, there is no indication of the
wanted dominant eigenvalue. However, executing the first step in double-precision
arithmetic, we get

y1 = A · {1, 1, 1} = {5.55112× 10−17, 5.55112× 10−17, 0.} .

The presence of roundoff errors produces y1 6= 0.. Applying the power method
(8), after 18 iterations we obtain α18 = 1.30818 and take this value as an approx-
imation of the spectral radius. The spectral radius of A with 15 correct decimal
digits is ρ(A) = 1.308114998551363, which means that the approximation α18 has
5 significant decimal digits.
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3.3. Distribution of zeros of random polynomials

Algebraic polynomials whose coefficients are random numbers are of great impor-
tance since they appear in various problems of physics, engineering and economics
such as filtering theory, spectral analysis of random matrices, statistical communi-
cation, regression curves in statistics, characteristic equations of random matrices,
the study of random difference equations, the analysis of capital and investment in
mathematical economics. etc. For these reasons, a number of books and papers
have been devoted to the study of random polynomials, see, e.g., [23] and [24].
Working in the area of Experimental Mathematics, we have used graphical methods
to visualize an important theorem on distribution of zeros and pose a conjecture of
the symmetry of complex zeros od random polynomials.

Example 3.2. Denote a sequence of independently identically distributed (real or
complex) valued random variables with {ck}∞k=0. Let

Fn(z) = cnz
n + cn−1z

n−1 + · · ·+ c1z + c0

be a random polynomial of degree n with the zeros ζ1, ζ2, . . . , ζn of Fn. Furthermore,
for a, b (0 6 a 6 b < ∞) introduce a probability measure on the complex plane
Rn(a, b) = Nn({z : a 6 |ζi| 6 b}), where Nn(·) denotes the number of zeros that
belong to the ring {z : a 6 |ζi| 6 b} in the complex plane. Then Rn/n defines the
empirical distribution of zeros of Fn. If for any δ ∈ (0, 1) define a = 1− δ, b = 1 + δ,
then δ is called delta measure in the empirical distribution.

The following theorem has been proved in [24]:

Theorem 3.1. If and only if

E log(1 + |c0|) <∞,

then the sequence of the empirical distributions Rn/n converges to the delta measure
at 1 almost surely, that is,

1

n
Rn(1− δ, 1 + δ)

P−→ 1, n→∞

holds for any δ ∈ (0, 1).

In the above theorem, E is mathematical expectation while the denotation
P−→

denotes so-called convergence in probability. This theorem asserts that, under
some weak constraints on the coefficients of a random polynomial, almost all its
zeros “concentrate uniformly” close to the unit circle with high probability.

Using graphical tools of Mathematica we have tested a random polynomial of
degree 2000 with random coefficients belonging to the interval [−2, 2]. From Figure
3.2 we observe that almost all zeros are located in the ring {z | 1− δ < |z| < 1 + δ}
where δ ≈ 0.01, which empirically confirms Theorem 3.1 to a good extent.
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Fig. 3.2: Location of zeros of random polynomials

Example 3.3. Several years ago, on a web page concerning the distribution of
zeros of polynomials, the following question appeared: Given ten or more thousand
polynomials of degree n ∈ [n1, n2] with the leading coefficient 1 while the remaining
coefficients are chosen randomly from the set {−1,+1}. Mark the location of each
zero by a small circle in the complex point in such a way that the different zeros
of the selected polynomial are colored by different colors. Does the plotted figure
possess some specific properties?

Fig. 3.3: Distribution of zeros of a random polynomial of degree n ∈ [10, 18]

We have taken the range [10,18] for the polynomial degrees and plotted the
location of zeros of 50 000 random polynomials. The generated figure, plotted by
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using the program BWH in Mathematica and presented in Figure 3.3, is of “bagel-
with-handle” (BWH) form.

BWH PROGRAM (Mathematica)

Clear[koef]; koef := Sign[-0.5 + Random[ ]]; Clear[genP];

genP[n ] := Sum[koef x^k, {k, 0, n}]; Clear[solP];

solP[p ] := Map[x /. # &, Solve[p == 0, x] // Flatten ] // N;

Clear[graP];

graP[s ] := ListPlot[Map[{Re[#], Im[#]} &, s], Frame -> True,

AspectRatio -> 1, PlotRange -> {{-2, 2}, {-2, 2}},
PlotStyle -> {RGBColor[Random[ ], Random[ ], Random[ ]],

PointSize[0.01]}]; t = Table[genP[RandomInteger[10,18]],{50000}];
s = Map[solP, t]; g = Map[graP, s]; Show[g]

From Figure 3.3 we observe that the generated picture BWH is entirely symmet-
ric to any straight line Lα passing through the origin, where α ∈ (0, π) is the angle
related to the positive direction of abscissa axes. More precisely, any pair of the
boundaries ∂A and ∂B of exterior parts A and B bounded by two lines Lα and Lβ
are of the same shape. The same is valid for two corresponding interior boundaries.
To the authors’ hypothesis, the presented symmetry arises following the low of large
numbers, an important theorem in Probability theory. This theorem asserts that
the average of the results of performing the same experiment a large number of
times approaches the expected value, as the case in our experiments. This effect
is known in the statistics when dealing with very large randomly chosen numbers
with uniform distribution.

The second characteristic of our BWH figure is the existence of an empty space
(hole) inside BWH. What is the size of this hole? More generally, what are the
bounds of the zeros of the considered polynomials

Pn,m(z) = a
(m)
0 zn + a

(m)
1 zn−1 + · · ·+ a

(m)
n−1z + a(m)

n ,(3.4)

a
(m)
k ∈ {−1,+1}, n ∈ [10, 18], m = 1, 2, . . . , 50 000 ?

Let ζ1,k, . . . , ζn,k be the zero of the polynomial Pn,m. According to Henrici’s
result [25, p. 457], all zeros of Pn,m are contained in the disk centered at the origin
and with radius R determined as

ρ = 2 max
16j6n

∣∣∣∣a(m)
j

a
(m)
0

∣∣∣∣1/j .(3.5)

Note that this result holds for polynomials with arbitrary coefficients. According
to (3.4) and (3.5) we find |ζj,k| 6 ρ = 2. Substituting y = 1/z in (3.4) and applying
again (3.5), we determine the lower bound |ζj,k| > 1

2 . Therefore,

1

2
6 |ζj,k| 6 2 for any j ∈ {1, . . . , n} ∨ k ∈ {1, . . . , 50 000}.
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According to the last inequalities, we conclude that all zeros of all 50 000 polynomials
lie in the disk {0; 2} and there is “no zero” in the hole containing the disk {0; 0.5}.

Finally, if we deal with the polynomials of relatively low degree (as in the pre-
sented example), we can observe the holes on the real axis at the points −1 and
1, see Figure 3.3. We also see that there is no complex zeros in these holes. This
effect was noted in the book [20] but without discussion and explanation.

3.4. Dynamic study of root-finding methods

One of the most challenging tasks in the area of iterative methods for solving
nonlinear equations is to detect the best algorithm or at least the group of best
algorithms. For a long time, the comparative studies of root-finding algorithms were
based on comparisons of (i) the number of iterations needed to provide the required
accuracy of produced approximations to the solutions, (ii) the convergence rate,
(iii) the number of function evaluations per iteration, and (iv) the computational
costs of compared algorithms often measured by the consumed CPU time required
to fulfill the given stopping criterion. All of the mentioned criteria suffer from the
disadvantage consisting of the request for ideal conditions; namely, they are usable
only if the chosen initial approximation to the wanted zero of a given function is
sufficiently good to provide the convergence, which is difficult to achieve in practice.
Even in those cases when it is possible, the rank of compared methods is not reliable
since the convergence behavior of root-finding methods depends in a complicated
and unpredictable way on the starting points.

The growing development of computer hardware and computer graphics at the
end of the twentieth century has provided the significant advance of a new metho-
dology for the visual study of convergence behavior of root-finding methods. It
turned out that a realistic quality study of root-finding methods and their reliable
ranking can be successfully accomplished by plotting the basins of attraction for the
methods. Basins of attractions are the sets of points in the complex plane which
simulate the convergence to the zeros of a given function by applying the iterative
process. They are of great benefit since offer essential information and insight into
the basic features of a considered iterative method such as its convergence behavior
and domain of convergence. Also, we can apply basins of attraction to analyze the
computational advantages of one iteration function against another and to rank
root-solvers within a class of iteration functions, which is of interest for the user to
decide which iteration method is preferable for solving a concrete problem.

Definition 3.1. Let f be a given sufficiently many times differentiable function in
some complex domain R ⊆ C with simple or multiple zeros α1, α2, . . . , αλ ∈ S, and
a (convergent) root-finding iteration defined by

zk+1 = g(zk) (k = 0, 1, 2, . . .),

the basin of attraction for the zero αi is defined as follows:

Bf,g(αi) = {ζ ∈ R | the iteration zk+1 = g(zk) with z0 = ζ converges to αi}.
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The dynamic study for the comparison of root-finding algorithms for simple
zeros is based on basins of attraction for a given method and a given example. It
was launched by Stewart [26] and Varona [27] and continued in the works of Amat
et al. [28]–[30], Scott et al. [31], Chun and Neta [32], [33], Neta et al. [34], Argyros
and Magreñan [35], Kalantari [36], I. Petković and Neta [37], I. Petković and -D.
Herceg [38] and others.

In the case of algebraic polynomials, the basin of attraction for a given rectangle
R with sides parallel to coordinate axes is plotted in the following way. Let (a1, b1)
be the lower left vertex and (a2, b2) the upper right vertex (a2, b2) of this rectangle.
Using computer algebra system Mathematica by the statement

CountRoots[P[z],{z,a1+I*b1,a2+I*b2}]

we determine the number of zeros of P (z) inside the rectangle R. Analyzing con-
vergence behavior for all zeros of a polynomial of degree n, the rectangle R must be
taken so that the outcome NP of the above statement is n (= number of polynomial
zeros). Otherwise, we continue with the enlargement of the size of the rectangle R
until NP = n is satisfied.

The considered method is tested on the m1 ×m2 equally spaced points in the
rectangle R = {a1, b1}×{a2, b2} (forming an equidistant lattice LR) centered at the
origin. At the beginning we define the limit number of iterations IT ; if the iterative
process, starting from an initial point z0 ∈ LR, does not satisfy the given stopping
criterion in 6 IT iterations, then this starting point is proclaimed “divergent.”
For each basin we record the CPU time in seconds for all m1 ×m2 points, average
number of iterations (for all points of the lattice LR) required to satisfy the stopping
criterion |zk − α| < τ (τ defines the accuracy of approximations, say, τ = 10−5 or
τ = 10−6) and the number of black (divergent) points for each method and each
example. We associate exactly one color to each attraction basin of a root following
two rules: 1) each basin will have a different color and 2) the shading is darker if
the number of iterations is higher. Starting points which do not fulfill the stopping
criterion after IT iterations are colored black.

The basin of attraction is a kind of computer visualization that provides visual
insight into convergence behavior of a root-finding method but it also delivers some
valuable qualitative data such as the CPU execution time, the average number
of iterations and function evaluations per point, and the number of “divergent”
points. These data are most frequently sufficient for deeper insight into the behavior
of an iterative method and its domain of convergence from the point of view of
dynamical systems. Obviously, a method is better if the consumed CPU time, the
average number of iterations and function evaluations per point, and the number of
“divergent” points are smaller. It is desirable that the number of divergent point is
0, which points to global convergence of the method.

Convergence behavior of any method can also be estimated to a certain extent
according to the shape of basins of attraction for the tested example. It is preferable
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that the basins of attraction for the zeros have as large as possible unvaried con-
tiguous areas, separated by the boundaries that have (approximately) straight-line
form. As small as possible blobs and fractals on the boundaries also point to good
convergence properties.

To demonstrate the dynamic study of two iterative methods for finding simple
zeros, we give three examples. In all examples we have used an equidistant lattice
made of 360 000 points, that is, the resolution is 600 × 600, the permitted number
of iterations is IT = 40, and the stopping criterion has been given by |zk − α| <
10−6 = τ.

We emphasize that the dynamic study by basins of attraction is most frequently
used in comparative study of different methods of the same order of convergence.
Since the main goal of this section is only the presentation of a graphical method for
the analysis of the quality of particular methods, any comparative study is beyond
our consideration.

We have considered the well-known Halley’s method of the third order

xk+1 = xk −
f(xk)

f ′(xk)
· 1

1− f ′′(xk)f(xk)

2f ′(xk)2

(k = 0, 1, 2, . . .),(3.6)

and the three-point-method of order eight

yk = xk −
f(xk)

f ′(xk)
,

zk = yk −
1

1− 2f(yk)
f(xk)

· f(yk)

f ′(xk)
,

xk+1 = zk −
f [zk, yk]

f [zk, xk]
· f(zk)

2f [zk, yk]− f [zk, xk]

(k = 0, 1, 2, . . .),(3.7)

proposed by Sharma and Arora in [40]. It is not difficult to show (see [41]) that
this method is a special case of the family of three-point methods constructed in
[42]. An extensive investigation presented in [43] and [41] shown that the method
(3.7) possesses the best convergence characteristics among three-point methods of
the (maximal) order eight in the class of algebraic polynomials.

Example 3.4. We have plotted two basins of attraction applying the methods
(3.6) and (3.7) to the polynomial

P1(z) = z5 − 1

and the square R = {z = x + iy | − 3 6 x 6 3,−3 6 y 6 3}. The basins are given
in Figures 3.4 and Figure 3.5.
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Fig. 3.4: Halley’s method (3.6) Fig. 3.5: Three-point method (3.7)

Plotting these two basins of attraction we have recorded the following useful
data:

Halley’s method (3.6) Three-point method (3.7)
divergent point 12 21
average number of iterations 5.20 3.45
CPU time (in sec) 58.16 35.37

According to the above data, we conclude that both methods diverge for less than
0.006% starting points, which is rather satisfactory. The three-point method (3.7)
reaches the stopping criterion using only 3.45 iterations (in average) against 5.30 for
Halley’s method and consumes 35.37 seconds for all 360 000 starting points, which
is considerably less than Halley’s method (58.16 seconds). Regarding the shapes
of basins, we observe that in both cases particular basins are of large unvaried
size. However, the basins of Halley’s method (3.6) has a mild advantage since their
boundaries are almost straight lines and contain only a few small blobs, while the
boundaries of basins of the method (3.7) have not only larger blobs but also fractal
parts.

Example 3.5. We have plotted the basin of attraction for the method (3.7) applied
to the polynomial

P2(z) = z15 − 1.94409z14 − 1.89382z13 − 0.00444z12 − 0.51467z11 − 0.77406z10

−1.80464z9 + 1.18177z8 + 0.36718z7 + 1.31631z6 − 1.061788z5

+1.43835z41.86766z3 + 0.53726z2 + 1.72913z − 0.08069,

whose zeros are contained in the square R = {z = x+iy | −4 6 x 6 4,−4 6 y 6 4}.
This polynomial has random coefficients (except the leading coefficient) belonging
to the interval [−2, 2].
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Fig. 3.6: The basins of attraction for the method (3.7) applied to P2(z).

The basin of attraction for all 15 zeros is presented in Figure 3.6. Small circles
mark the location of zeros of the polynomial P2(z). Considering all 360 000 points
we have recorded:

� 0 divergent points,

� the average number of iterations = 6.44,

� the CPU time = 298.8 sec.

The fact that the number of divergent points is 0 points to the global conver-
gence of the method (3.7). However, the boundaries of particular basins are not
straight lines but strips (corresponding to some other zeros). This undesirable phe-
nomenon is typical for random polynomials of a high degree, which can lead to
certain problems when choosing initial approximations.

Example 3.6. The three-point method (3.7) has been applied to the polynomial

P3(z) =

13∏
m=1

(z −m).

of Wilkinson’s type. It is well-known that polynomials of this form are ill-conditioned,
causing that many root-finding methods work with big efforts in solving this class
of polynomials. However, the applied method (3.7) showed very good convergence
behavior, which is evident from the basins of attraction presented in Figure 3.7:
particular basins have large unvaried contiguous areas with regular boundaries free
of fractal parts and with very small blobs. The associated data are given below:
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� 0 divergent points (excellent outcome),

� the average iteration = 4.69,

� the CPU time = 422.7 sec.

Fig. 3.7: The basins of attraction for the method (3.7) applied to P3(z).

3.5. On a new three-point weighted method for simple zeros

We start from three-point iterative scheme

N(xk) =
f(xk)

f ′(xk)
,

yk = xk −N(xk),

zk = yk − ukH(uk)N(xk),

xk+1 = zk − wk(2wk + 1)P (uk)Q(vk)N(xk),

(3.8)

where

uk =
f(yk)

f(xk)
, vk =

f(zk)

f(yk)
, wk = ukvk.

We omit the iteration index k and define the errors

ε = x− α, εy = y − α, εz = z − α, ε̂ = x̂− α,

where x̂ is a new approximation xk+1. Introduce

cr =
f (r)(α)

r!f ′(α)
(r = 1, 2, . . .).
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We will use the following development of the function f about the zero α

f(x) = f ′(α)
(

1 + c1ε+ c2ε
2 + c3ε

3 + c4ε
4 + c5ε

5 + c6ε
6 + c7ε

7 + c8ε
8 +O(ε9)

)
,

and a program in Mathematica. As usual, in finding the weight functions H, P
and Q, we represent these functions by their Taylor’s series at the neighborhood of
u = 0 (for H and P ), and v = 0 (for Q):

H(u) = H(0) +H ′(0)u+
H ′′(0)

2
u2 +

H ′′′(0)

6
u3 + · · · ,

P (u) = P (0) + P ′(0)u+
P ′′(0)

2
u2 +

P ′′′(0)

6
u3 + · · · ,

Q(v) = Q(0) +Q′(0)v +
Q′′(0)

2
v2 +

Q′′′(0)

6
v3 + · · · .

The coefficients of Taylor’s developments of the weight functions P and Q are
determined using an interactive approach by combining the program realized in
Mathematica (two parts) and the annihilation of coefficients standing at ε of lower
degree. For simplicity, we write H0 = H(0), H1 = H ′(0), Q3 = Q′′′(0), etc, and

fa = f ′(α), fx = f(x), fy = f(y), fz = f(z), fx1 = f ′(x), newt = f(x)/f ′(x),

e = ε, ey = εy, ez = εz, e1 = ε̂.

PART I (Mathematica)

fxx = 1+c1*e+c2*e^2+c3*e^3+c4*e^4 +c5*e^5+c6*e^6+c7*e^7+ c8*e^8;

fx = fa*e*fxx; fx1 = D[fx, e]; newt = Series[fx/fx1,{e, 0, 8}];
ey = e - newt; fy = fa*ey (1+1*ey+2*ey^2+c3*ey^3+c4*ey^4);

u = fy*Series[1/fx, {e, 0, 8}];
H = H0+H1*u+H2/2*u^2+H3/6*u^3;

ez = Series[ey - u*newt*H // FullSimplify, {e, 0, 8}]

This program gives

ez = (c1 − c1H0)e2 + (−2c2(−1 +H0) + c21(−2 + 4H0 −H1))e3 +O(e4)

To annihilate coefficients by e2 and e3, it is necessary and sufficient to take

H0 = 1, H1 = 2, H2 and H3 arbitrary,

which gives
ez = (−c1c2 + c31(5−H2/2))e4 +O(e5).

The part II of the program uses previously found entries and serves for finding
additional conditions which provide optimal order eight.
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PART II - CONTINUATION (Mathematica)

fz = fa*ez*(1+c1*ez+c2*ez^2); v = fz*Series[1/fy,{e, 0, 8}];
P = P0+P1*u+P2/2*u^2+P3/6*u^3;

Q = Q0+Q1*v;

e1 = Series[ez-u*v*P*G*(2u*v+1)*newt,{e,0,8}]//FullSimplify

The error ε̂ = x̂− α (= e1) is given in the form

ε1 =

8∑
r=4

Trε
r +O

(
ε9
)

From the conditions T4 = 0, T5 = 0, T6 = 0, T7 = 0, we find the following relations
for finding the required coefficients:

H(0) = 1, H ′(0) = 2,

P ′(0) = 2P (0), P ′′(0) = P (0)(2 +H ′′(0)), P ′′′(0) = P (0)(H ′′(0) + 6H ′′(0)− 24),

Q(0) = Q′(0) =
1

P (0)
.

A natural choice P (0) = 1 gives

H(0) = 1, H(0) = 2,

P (0) = 1, P ′(0) = 2, P ′′(0) = 2 +H ′′(0), p′′′(0) = H ′′′(0) + 6H ′(0)− 24,(3.9)

Q(0) = Q′(0) = 1.

In this way we have proved the following assertion.

Theorem 3.2. If the initial approximation x0 is sufficiently close to the zero
α of f and the conditions (3.9) are valid, then the order of the three-point family
(3.8) is eight.

Kung-Traub hypotheses [44] assert that as high as possible order of convergence
of the n-point method that uses n+ 1 function evaluations per iteration is 2n. Such
methods are called optimal methods. Therefore, according to this hypothesis and
Theorem 3.2, the three-point iterative method (3.8) is optimal.

3.6. Iterative method for the inclusion of a simple complex zero

R. E. Moore, the founder of Interval analysis, introduced in his monograph [45]
the interval version of Newton’s method, often called Moore-Newton’s method. Let
f be a differentiable function on a real interval Ω and let X0 = [ x0, x0] ⊂ Ω be
a real interval containing a simple real zero η of f. An interval extension F ′(X)
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over the interval X is a real interval such that F ′(X) ⊇ f̄(X) = {x |x ∈ X}.
Moore-Newton’s method is defined by

Xk+1 =
{
m(Xk)− m(Xk)

F ′(Xk)

}
∩Xk (k = 0, 1, . . .),(3.10)

where m(Xk) = 1
2

(
[ xk, xk]

)
is the midpoint of the interval Xk. It is obvious that

this method will be defined if 0 /∈ F ′(Xk) in every iteration.

Moore-Newton’s method (3.10) can be applied only for enclosing real zeros,
which is a serious disadvantage. Here we present two simple algorithms for finding
a simple complex zero ζ of a given algebraic polynomial P that produces a disk
{c; r} := {z | |z − c| 6 r} in the complex plane such that |c − ζ| < r. In this
way, these methods provide the upper error bound (given by the radius r) of the
approximation c to the desired complex zero ζ. Recall that the inversion of a disk
{c; r} not containing 0 (that is, |c| > r holds) is defined in [46] by

{c; r}−1 =
{ c̄

|c|2 − r2
;

r

|c|2 − r2
}
.

Finding initial approximation to the sought zero of a function, sufficiently close
to this zero to provide guaranteed convergence, is an equally important task as the
construction of an efficient iterative method. This topic is beyond the main subject
of this paper and it will not be considered here. Instead, we cite the paper [47]
and the master thesis [48] where a composed search-subdividing algorithm for the
localization of all complex zeros of algebraic polynomials has been presented with
the help of CAS Mathematica. This algorithm produces arbitrary small inclusion
squares, each of which contains one and only one zero, and calculate the multiplicity
of these zeros. It can be of benefit for iterative methods implemented in ordinary
complex arithmetic and complex interval arithmetic, discussed in what follows.

Algorithm 1. Let Z0 = {a;R} = {z0; ρ} be the disk that contains one and
only one zero ζ of a polynomial P of degree n. The following iterative method was
proposed in [49]:

Zk+1 = zk −
1

{ck; ρk}
=

{
zk −

c̄k
|ck|2 − ρ2k

;
ρk

|ck|2 − ρ2k

}
(k = 0, 1, . . .),(3.11)

ck =
P ′(zk)

P (zk)
− (n− 1)(z̄k − ā)

R2 − |zk − a|2
, ρk =

(n− 1)R

R2 − |zk − a|2
, (k > 0).(3.12)

The stopping criterion was given by |P (ck)| < τ , where τ is, say, 10−16 or 10−33.

Considering the formulas (3.11) and (3.12) we observe two drawbacks of Algo-
rithm 1. To avoid the division by a zero-interval in (3.11) (which produces a disk of
infinity large radius) and negative radius (formula (3.12)), it is necessary to satisfy
two conditions in each iteration

(i) |ck| > ρk, (ii) R > |zk − a|.
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Regarding (i) we conclude that ck must be reasonably large and hence, |P (zk)|
should be rather small. Therefore, zk should be a very good approximation to the
zero ζ. Most frequently this is not the case at the beginning of any iterative process
so that the first iterations are very critical. To resolve this inconvenient situation
the only way is to choose the center a of the initial inclusion disk {a;R} very close
to the sought zero ζ, which is rather strong requirement (the first drawback). From
this discussion there follows zk ≈ a so that ρk ≈ (n− 1)/R. The choice of small R
increases ρk (see (3.12)) so that the validity of inequality (i) may be endangered.
Therefore, contrary to the usual request for as small as possible radius of initial
inclusion disk, in the case of Algorithm 1 the radius R should be relatively large.
Consequently, in this way the inequality (ii) will be ensured. On the other hand,
a large R can lead to an undesired enclosure of other zeros of P (next to the zero
ζ). It follows that the choice of R has to be refined, sometimes by trial and error
method (the second drawback).

Example 3.7. Using Algorithm 1, determine sufficiently small disk that contains
the zero ζ = 2i of the polynomial

P (z) = z9 + 3zt8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300,

starting from the inclusion disk Z0 = {0.1 + 2.1i; 1.7} and setting τ = 10−33. The
locations of all zeros of P and initial disks Z0 (containing the sought zero ζ = 2i)
are displayed in Figure 3.8.

Fig. 3.8: The locations of all zeros of P and initial disks Z0

We have used CAS Mathematica and multi-precision arithmetic (40 significant
decimal digits). The following inclusion disks have been obtained:

Z1 = {0.00473 + 1.97173 i ; 0.0856}
Z2 = {−0.00128 + 2.00249 i ; 0.00456 . . .}
Z3 = {−1.7× 10−5 + 2.00000697 i ; 3.70× 10−5}
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Z4 = {−4.33× 10−10 + 1.99999999931 i ; 1.6× 10−9}
Z5 = {1.25× 10−18 + 2.00000000000000000096 i ; 3.11× 10−18}
Z6 = {5.95× 10−36 + 2. 0000000000 · · · 0000000000︸ ︷︷ ︸

thirty six 0

74 i ; 1.18× 10−35}

Algorithm 2. We present a combined method for approximate a simple zero
of a given polynomial. This method possesses a low computation cost since it uses
Newton’s method in ordinary complex arithmetic in all iterations except the last
one, where a very simple procedure is applied to provide the upper error bound
which is involved in the following theorem due to Laguerre (see, e.g., [25, pp. 466–
468]):

Theorem 3.3. Let z be an arbitrary complex number and let P be a given
algebraic polynomial. Then the disk D = {z;n|P (z)/P ′(z)|} contains at least one
zero of P.

The disk D is usually called Laguerre’s disk. As in the case of Algorithm 1,
Algorithm 2 also requires sufficiently good initial approximation z0 to the zero.

1◦ step: Starting from z0, apply Newton’s iteration

zk+1 = zk −
P (zk)

P ′(zk)

for k = 1, 2, ...,K, where K is the iteration index of the approximation zK that fulfils
the stopping criterion given in the form |P (zK)| < τ.

2◦ step: We use the last approximation zK obtained in the first step and, using
Laguerre’s disk defined in Theorem 3.3, calculate the inclusion disk

Zk =
{
z7;n

∣∣∣ P (z7)

P ′(z7)

∣∣∣}.
The upper error bound is determined by the radius r = n|P (zK)/P ′(zK)|.

Example 3.8. Using Algorithm 2, determine the inclusion disk for the zero ζ = 2i
of the polynomial P given in Example 3.7. In contrast to Algorithm 1, the initial
approximation z0 need not to be very close to ζ and we have chosen z0 = 0.2 + 2.3i.
As in Example 3.7, we have used CAS Mathematica, multi-precision arithmetic (40
significant decimal digits) and τ = 10−33. First, we have applied Newton’s method
until the fulfilment of the stopping criterion |P (zK)| < 10−33 and obtained

z1 = 0.11848 + 2.10232 i

z2 = 0.03978 + 2.00577 i

z3 = 0.00151 + 1.99709 i

z4 = −1.97× 10−5 + 2.0000106 i
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z5 = −9.04× 10−10 + 1.99999999933 i

z6 = 2.26× 10−18 + 1.99999999999999999983 i

z7 = −4.14× 10−37 + 1. 9999999999999999999999999999999999︸ ︷︷ ︸
thirty four 9

89 i.

Since |P (z7)| < 10−33 we have stopped Newton’s method and calculated the
radius

r = n
∣∣∣ P (z7)

P ′(z7)

∣∣∣ = 9.62× 10−35.

Hence, the inclusion disk containing the zero ζ = 2i is given by

Z7 = {−4.14×10−37+1. 9999999999999999999999999999999999︸ ︷︷ ︸
thirty four 9

89 i ; 9.62×10−35}.

Considering the results of Examples 3.7 and 3.8, we observe that the upper error
bounds are very small and of the same order. Algorithm 1 finished the iterative
process through 6 iterations, while Algorithm 2 requested one more. However, the
computational cost of Algorithm 2 is considerably less than the cost of Algorithm
1.
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