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Abstract. In this paper, we study Weyl type theorems for f(T ), where T is alge-
braically class p-wA(s, t) operator with 0 < p ≤ 1 and 0 < s, t, s + t ≤ 1 and f is an
analytic function defined on an open neighborhood of the spectrum of T . Also we show
that if A,B∗ ∈ B(H) are class p-wA(s, t) operators with 0 < p ≤ 1 and 0 < s, t, s+t ≤ 1,
then generalized Weyl’s theorem , a-Weyl’s theorem, property (w), property (gw) and
generalized a-Weyl’s theorem holds for f(dAB) for every f ∈ H(σ(dAB), where dAB

denote the generalized derivation δAB : B(H)→ B(H) defined by δAB(X) = AX−XB
or the elementary operator ∆AB : B(H)→ B(H) defined by ∆AB(X) = AXB −X.
Keywords: class p-wA(s, t) operator, polaroid operator, Bishop’s property (beta),
Weyl type theorems, elementary operator.

1. Introduction and Preliminaries

Let B(H) be the algebra of all bounded linear operators acting on infinite
dimensional separable complex Hilbert space H. Throughout this paper R(T ),
ker(T ), σ(T ) denotes range, null space and spectrum of T ∈ B(H) respectively.
Every operator T can be decomposed into T = U |T | with a partial isometry U,
where |T | is the square root of T ∗T. If U is determined uniquely by the kernel
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condition kerU = ker |T |, then this decomposition is called the polar decomposi-
tion, which is one of the most important results in operator theory. In this pa-
per, T = U |T | denotes the polar decomposition satisfying the kernel condition
kerU = ker |T | . An operator T ∈ B(H) is said to be hyponormal if T ∗T ≥ TT ∗.

The Aluthge transformation introduced by Aluthge[5] is defined by T̃ = |T | 12U |T | 12
where T = U |T | be the polar decomposition of T ∈ B(H). The generalized
Aluthge transformation T (s, t) ( s, t > 0) is given by T (s, t) = |T |sU |T |t. Re-
call that an operator T ∈ B(H) is said to be p-hyponormal if (T ∗T )p ≥ (TT ∗)p

(0 < p ≤ 1), w-hyponormal if |T̃ | ≥ |T | ≥ |T̃ ∗|, class A if |T 2| ≥ |T |2, class A(s, t) if

(|T ∗|t|T |2s|T ∗|t)
t

s+t ≥ |T ∗|2t ([13]) and class wA(s, t) if (|T ∗|t|T |2s|T ∗|t)
t

s+t ≥ |T ∗|2t
and |T |2s ≥ (|T |s|T ∗|2t|T |s)

s
s+t ([16]). Prasad and Tanahashi [19] introduced class

p-wA(s, t) operators as follows:

Definition 1.1. ([19]) Let T = U |T | be the polar decomposition of T and let
s, t > 0 and 0 < p ≤ 1. T is called class p-wA(s, t) if

(|T ∗|t|T |2s|T ∗|t)
tp
s+t ≥ |T ∗|2tp and (|T |s|T ∗|2t|T |s)

sp
s+t ≤ |T |2sp.

In general the following inclusions hold:
p-hyponormal ⊆ w-hyponormal ⊆ class wA(s, t) ⊆ class p-wA(s, t).

Many interesting results for class p-wA(s, t) has been studied in [10, 11, 19, 20,
21, 22, 24].

Let α(T ) and β(T ) denote the nullity and the deficiency of T ∈ B(H), defined by
α(T )= dim(ker(T )) and β(T )=dim(ker(T ∗). An operator T is said to be upper semi-
Fredholm (resp.,lower semi- Fredholm) if R(T ) of T ∈ B(H) is closed and α(T ) <∞
(resp., β(T ) < ∞). Let SF+(H) (resp., SF−(H)) denote the semigroup of upper
semi-Fredholm (resp., lower semi-Fredholm) operators onH. An operator T ∈ B(H)
is said to be semi-Fredhom, T ∈ SF (H), if T ∈ SF+(H) ∪ SF−(H) and Fredholm,
T ∈ F (H), if T ∈ SF+(H) ∩ SF−(H). The index of semi-Fredholm operator T is
defined by ind (T ) = α(T )−β(T ). Recall[14], the ascent of an operator T ∈ B(H),
a(T ), is the smallest non negative integer p such that ker(Tp) = ker(T (p+1)). Such
p does not exist, then p(T ) = ∞. The descent of T ∈ B(H), d(T ), is defined as
the smallest non negative integer q such that R(Tq) = R(T (q+1)). An operator
T ∈ B(H) is Weyl, T ∈ W (H) it is Fredholm of index zero and Browder if T is
Fredholm of finite ascent and descent. The Weyl spectrum of T , denoted by σW (T ),
is given by

σW (T ) = {λ ∈ C : T − λ /∈W (H)}.

We say that T ∈ B(H) satisfies Weyl’s theorem if

σ(T ) \ σW (T ) = E0(T ).

where E0(T ) denote the set of eigenvalues of T of finite geometric multiplicity iso-
lated in σ(T ). Let SF−+ (H) = {T ∈ SF+(H) : ind(T) ≤ 0}. essential approximate
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point spectrum σSF−
+

(T ) of T is defined by

σSF−
+

(T ) = {λ ∈ C : T − λ /∈ SF−+ (H)}.

Let σa(T ) denote the approximate point spectrum of T ∈ B(H). An operator
T ∈ B(H) holds a-Weyl’s theorem if,

σSF−
+

(T ) = σa(T ) \ Ea0 (T ),

where Ea0 (T ) = {λ ∈ C : λ ∈ iso σa(T ) and 0 < α(T − λ) < ∞}. We say that
an operator T ∈ B(H) satisfies a-Browder’s theorem if σSF−

+
(T ) = σa(T ) \ Πa

0(T ),

where Πa
0(T ) denote the set the left poles of T of finite rank. An operator T ∈ B(H)

is called B-Fredholm, T ∈ BF (H) if there exist a non negative integer n for which
the induced operator

T[n] : R(T[n])→ R(T[n])( in particular T[0] = T ).

is Fredholm in the usual sense (see [7]). An operator T ∈ B(H) is called B-Weyl,
T ∈ BW (H), if it is B-Fredholm with ind(T[n]) = 0. The B-Weyl spectrum σBW (T )
is defined by σBW (T ) = {λ ∈ C : T − λ /∈ BW (H)} (see [7]). Let E(T ) is the set of
all eigenvalues of T which are isolated in σ(T ). We say that T satisfies generalized
Weyl’s theorem if σBW (T ) = σ(T )\E(T ). A bounded operator T ∈ B(H) is said to
satisfy generalized Browders’s theorem if σ(T )\σBW (T ) = Π(T ), where Π(T ) is the
set of poles of T ( See [8]). We refer the readers to [1], where Weyl type theorems
are extensively treated.

Recall that an operator T ∈ B(H) is said to have the single-valued extension
property (SVEP) if for every open subset U of C and any analytic function f : U →
H such that (T−z)f(z) ≡ 0 on U , we have f(z) ≡ 0 on U . A Hilbert space operator
T ∈ B(H) satisfies Bishop’s property (β) if for every open subset U of C and every
sequence fn : U −→ H of analytic functions with (T − z)fn(z) converges uniformly
to 0 in norm on compact subsets of U , fn(z) converges uniformly to 0 in norm on
compact subsets of U . For T ∈ B(H) and x ∈ H, the local resolvent set of T at
x ρT (x) is defined to consist of elements z0 ∈ C such that there exists an analytic
function f(z) defined in a neighborhood of z0, with values in H, which verifies (T −
z)f(z) = x. We denote the complement of ρT (x) by σT (x) , called the local spectrum
of T at x. For each subset F of C, the local spectral subspace of T , HT (F ), is given
byHT (F ) = {x ∈ H : σT (x) ⊆ F} . An operator T ∈ B(H) is said to have Dunford’s
property (C) if HT (F ) is closed for each closed subset F of C. It is well known that

Bishop’s property (β) ⇒ Dunford’s property (C) ⇒ SVEP.
See [1, 17] for more details.

Weyl’s theorem for class p-wA(s, t) has been studied in [22]. In this paper, we
focus Weyl type theorems for algebraically class p-wA(s, t) operators and elementary
operator with class p-wA(s, t) operator entries.
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2. algebraically class p-wA(s, t) operators and Weyl type theorem

We say that T ∈ B(H) is algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s + t ≤ 1 if there exists a non- constant complex polynomial q such
that q(T ) is class p-wA(s, t) operator with 0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1.

In general, the following inclusions hold:
p-hyponormal ⊂ class p-wA(s, t) ⊂ algebraically class p-wA(s, t) .

Lemma 2.1. [20] Let T ∈ B(H) be a class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s+ t ≤ 1 and σ(T ) = {λ}. Then T = λ.

Theorem 2.1. Let T ∈ B(H) be a quasinilpotent algebraically class p-wA(s, t)
operator with 0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1. Then T is nilpotent.

Proof. Suppose T ∈ B(H) is algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s+t ≤ 1. Then there exists a non- constant complex polynomial q such
that q(T ) is class p-wA(s, t) operator with 0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1. Since
σ(q(T )) = q(σ(T )) and σ(T ) = {0}, the operator q(T )− q(0) is quasinilpotent. By
Lemma 2.1, σ(q(T ) − q(0)) = {0} implies that q(T ) − q(0) = 0. Hence it follows
that,

0 = q(T )− q(0) = cTm(T − λ1I)(T − λ2I) · · · (T − λnI)

where m ≥ 1. Since T−λiI is invertible for every λi 6= 0, we must have Tm = 0.

It is well known that if both ascent and descent of T are finite then they are
equal (see, [14, Proposition 38.3]). Moreover, 0 < a(T − µI) = d(T − µI) < ∞
precisely when µ is a pole of the resolvent of T (see, [14, Proposition 50.2]).

An operator T ∈ B(H) is polaroid if the isolated points of the spectrum of T
are poles of the resolvent T . Evidently, T is polaroid implies T is isoloid (ie., every
isolated point of σ(T ) is an eigenvalue of T ).

Theorem 2.2. Let T ∈ B(H) be an algebraically class p-wA(s, t) operator with
0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1. Then T is polaroid.

Proof. Assume that T ∈ B(H) is algebraically class p-wA(s, t) operator with 0 <
p ≤ 1 and 0 < s, t, s+ t ≤ 1 and let µ be an isolated point of σ(T ). To prove that
T is polaroid, it is enough to show that a(T − µI) < ∞ and d(T − µI) < ∞. Let
Eµ denote the spectral projection associated with λ. Then the Riesz idempotent E
of T with respect to z is defined by

Eµ :=
1

2πi

∫
∂D

(zI − T )−1dz,

whereD is a closed disk centered at µ which contains no other points of the spectrum
of T . We can represent T on H = R(Eµ)⊕ ker(Eµ) as follows(

A 0
0 B

)
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where σ(A) = {µ} and σ(B) = σ(T ) \ {µ}.
Since T ∈ B(H) is algebraically class p-wA(s, t) operator with 0 < p ≤ 1 and 0 <

s, t, s+ t ≤ 1, q(T ) is class p-wA(s, t) operator with 0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1
for some non constant complex polynomial q. Thus, σ(q(A)) = q(σ(A)) = q(µ).
Therefore, q(A) − q(µ) is quasi nilpotent. Then by Lemma 2.1, q(A) − q(µ) = 0.
Put r(z) = q(A) − q(µ), then r(A) = 0 and so A is algebraically class p-wA(s, t)
operator with 0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1 . Since σ(A) = {µ}, it follows from
Theorem 2.1 that A− µI is nilpotent and so a(A− µI) <∞ and d(A− µI) <∞.
Also, a(B − µI) <∞ and d(B − µI) <∞ follows from the invertibility of B − µI.
Consequently, T − µI has finite ascent and descent. This completes the proof.

Theorem 2.3. Let T be an algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s+ t ≤ 1. Then T satisfies generalized Weyl’s theorem.

Proof. Suppose that T is algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s + t ≤ 1. From Theorem 2.2, T is polaroid . Since T is algebraically
class p-wA(s, t) with s, t ≤ 1, p(T ) is class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s+ t ≤ 1 for some nonconstant polynomial q, it follows that q(T ) has
Bishop’s property (β) by [24, Theorem 2.4 ] or [22]. Therefore, q(T ) has SVEP.
Then by [17, Theorem 3.3.9] T has SVEP . Hence the required result follows from
[3, Theorem 4.1].

Corollary 2.1. Let T ∈ B(H) be an algebraically class p-wA(s, t) operator with
0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1. Then T satisfies Weyl’s theorem.

According to Berkani and Koliha [8], an operator T ∈ B(H) is said to be Drazin
invertible if T has finite ascent and descent. The Drazin spectrum of T ∈ B(H),
denoted by σD(T ), is defined σD(T ) = {λ ∈ C : T − λ is not Drazin invertible}
(See, [7]). Let H(σ(T )) denote the set of analytic functions which are defined on
an open neighborhood of σ(T ).

Theorem 2.4. Let T be an algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s+ t ≤ 1. Then the equality σBW (f(T )) = f(σBW (T )) holds for every
f ∈ H(σ(T )).

Proof. Since T is algebrically class p-wA(s, t) with 0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1,
T has SVEP. Hence, f(T ) satisfies generalized Browder’s theorem. Then by [12,
Theorem 2.1] we have

σBW (f(T )) = σD(f(T )).

By [12, Theorem 2.7]), σD(f(T )) = f(σD(T )) and hence σBW (f(T )) = f(σD(T )).
Since T is algebraically class p-wA(s, t) with 0 < s, t, s + t ≤ 1, T satisfies gen-
eralized Weyl’s theorem. Thus, T satisfies generalized Browder’s theorem and so
f(σD(T )) = f(σBW (T )). Therefore, σBW (f(T )) = f(σBW (T )). This completes
the proof.
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Theorem 2.5. Let T be an algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s + t ≤ 1. Then f(T ) satisfies generalized Weyl’s theorem for every
f ∈ H(σ(T )).

Proof. Suppose T is algebraically class p-wA(s, t) operator with 0 < p ≤ 1 and
0 < s, t, s + t ≤ 1 s. Since the equality σBW (f(T )) = f(σBW (T )) holds for every
f ∈ H(σ(T )) by Theorem 2.4, it follows that f(T ) satisfies generalized Weyl’s
theorem for every f ∈ H(σ(T )).

Theorem 2.6. Let T ∗ be an algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s+ t ≤ 1. Then a-Weyl’s theorem holds for T .

Proof. Since T ∗ is algebraically class p-wA(s, t) operator with 0 < p ≤ 1 and
0 < s, t, s + t ≤ 1 , q(T ∗) is class p-wA(s, t) operator with 0 < p ≤ 1 and 0 <
s, t, s + t ≤ 1 for some nonconstant polynomial q. It follows from [22] that q(T ∗)
has SVEP. Therefore, T ∗ has SVEP by [17, Theorem 3.3.9]. By Theorem 2.2, T ∗

is polaroid. Since T ∗ is polaroid, T is polaroid. By applying [4, Theorem 3.10], it
follows that a-Weyl’s theorem holds for T .

Theorem 2.7. Let T be an algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s+ t ≤ 1 . Then σSF−

+
(f(T )) = f(σSF−

+
(T )) for every f ∈ H(σ(T )).

Proof. Let f ∈ H(σ(T )). Recall that for every T ∈ B(H), the following inclusion

σSF−
+

(f(T )) ⊆ f(σSF−
+

(T ))

is always true. Now it suffices to show that σSF−
+

(f(T )) ⊇ f(σSF−
+

(T )). Let λ /∈
σSF−

+
(f(T )). Then f(T )− λI ∈ SF+

− (H). Let

f(T )− λI = c(T − µ1)(T − µ2)....., (T − µn)g(T ),(2.1)

where c, µ1, µ2...., µn ∈ C and g(T ) is invertible. Since T is algebraically class p-
wA(s, t) operator with 0 < p ≤ 1 and 0 < s, t, s + t ≤ 1, T has SVEP. It follows
from [1, Corollary 3.19] that ind(T − µ) ≤ 0 for all µ for which T − µ is Fredholm,
T − µi is Fredholm of index zero for each i = 1, 2, .., n. Therefore, µi /∈ σSF−

+
(T )

for all 1 ≤ i ≤ n. Hence,

λ = f(µi) /∈ f(σSF−
+

(T )).

This completes the theorem.

Recall that an operator T ∈ B(H) is said to be a-isoloid if every isolated point
of σa(T ) is an eigenvalue of T . Evidently, if T is a-isoloid, then it is isoloid.

Theorem 2.8. Let T ∗ be an algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s+t ≤ 1. Then a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).
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Proof. Suppose T ∗ is algebraically class p-wA(s, t) operator with 0 < p ≤ 1 and
0 < s, t, s + t ≤ 1 . From Theorem 2.6, a-Weyl’s theorem holds for T . Hence, T
satisfies a-Browder’s theorem. Since T ∗ is algebraically class p-wA(s, t) operator
with 0 < p ≤ 1 and 0 < s, t, s + t ≤ 1 , T ∗ has SVEP. If f ∈ H(σ(T )), then
by [17, Theorem 3.3.9], f(T ), or f(T ) satisfies the SVEP. Applying [18, Theorem
2.4], it follows that f(T ) satisfies a- Browder’s theorem. To prove a-Weyl’s theorem
holds for f(T ) it is enough to show that Ea0 (f(T )) = Πa

0(f(T )). The inclusion
Πa

0(f(T )) ⊆ Ea0 (f(T )) is trivial. To prove the reverse inclusion let λ ∈ Ea0 (f(T )).
Then λ is an isolated point of σa(f(T )) and α(f(T )−λI) <∞. Since λ is an isolated
point of f(σa(T )), if µi ∈ σa(T ), then µi is an isolated point of σa(T ) by (2.1). That
is, T is a-isoloid. Thus, 0 < α(f(T ) − µiI) < ∞ for each i = 1, 2, ..., n. Since T
satisfies a-Weyl’s theorem , T − µiI ∈ SF−+ (H)for each i = 1, 2, ..., n. Therefore
f(T )− λI ∈ SF+(H) and

ind(f(T )− λI) =

n∑
i=1

ind(f(T )− µiI) ≤ 0.

Hence, λ /∈ σSF−
+

(f(T )). Since f(T ) satisfies a-Browder’s theorem, λ ∈ Πa
0(f(T )).

This completes the proof.

Theorem 2.9. Let T be an algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s + t ≤ 1 . Then Weyl’s theorem holds for T + R for any finite rank
operator F ∈ B(H) commuting with T .

Proof. Suppose T is algebraically class p-wA(s, t) operator with 0 < p ≤ 1 and
0 < s, t, s + t ≤ 1. Then from Theorem 2.2, isolated point of spectrum of T are
eigenvalues. By Theorem 2.1, T satisfies Weyl’s theorem. Then it follows that
Weyl’s theorem holds for T + R for any finite rank operator R ∈ B(H) by [15,
Theorem 3.3],.

Theorem 2.10. Let T be an algebraically class p-wA(s, t) operator with 0 < p ≤ 1
and 0 < s, t, s + t ≤ 1 . Then for any function f ∈ H(σ(T )) and any finite rank
operator R ∈ B(H) commuting with T , Weyl’s theorem holds for f(T ) +R.

Proof. Suppose T is algebraically class p-wA(s, t) operator with 0 < p ≤ 1 and
0 < s, t, s + t ≤ 1. Then T is polaroid by Theorem 2.2 and hence T is isoloid.
Therefore, f(T ) is isoloid for any function f analytic on a neighborhood of σ(T )
by [15, Lemma 3.6]. Then f(T ) obeys generalized Weyl theorem for any function
f ∈ H(σ(T )) by Theorem 2.5. Then from [15, Theorem 3.3], it follows that Weyl’s
theorem holds for f(T ) +R for any finite rank operator R.

3. elementary operator dAB and Weyl type theorem

Let dAB denote the generalized derivation δAB : B(H)→ B(H) defined by δAB(X) =
AX −XB or the elementary operator ∆AB : B(H)→ B(H) defined by ∆AB(X) =
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AXB −X. In this section we show that if A,B∗ ∈ B(H) are class p-wA(s, t) op-
erator with 0 < p ≤ 1 and 0 < s, t, s + t ≤ 1, then generalized Weyl’s theorem ,
a-Weyl’s theorem, property (w), property (gw) and generalized a-Weyl’s theorem
holds for f(dAB) for every f ∈ Hσ(dAB). Recall that an operator T ∈ B(H)
is said to have the property (δ) if for every open covering (U, V ) of C, we have
H = HT (Ū) +HT (V̄ ).

Lemma 3.1. Let A,B ∈ B(H). If A and B∗ are class p-wA(s, t) operators with
0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1, then dAB has SVEP.

Proof. Suppose that A and B∗ are class p-wA(s, t) operators with 0 < p ≤ 1 and
0 < s, t, s+ t ≤ 1. Then A and B∗ satisfies Bishop’s property (β) by [24, Theorem
2.4 ] or [22]. Hence B satisfies property (δ) by [17, Theorem 2.5.5]. Since both
AX and XB satisfies property (C) by Corollary 3.6.11of [17]. Then SVEP holds
for both AX − XB and AXB − X by [17, Theorem 3.6.3] and [17, Note 3.6.19].
Then, dAB has SVEP.

Lemma 3.2. Let A,B ∈ B(H). If A and B∗ are class p-wA(s, t) operators with
0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1, then dAB is polaroid.

Proof. Since A and B∗ are class p-wA(s, t) operators with 0 < p ≤ 1 and 0 <
s, t, s + t ≤ 1, A and B∗ are polaroid by Proposition 2.2. It is known that if B∗

is polaroid then B is polaroid. Hence the required result follows by [26, Lemma
4.1]

Theorem 3.1. If A,B∗ ∈ B(H) are class p-wA(s, t) operators with 0 < p ≤ 1 and
0 < s, t, s+ t ≤ 1, then generalized Weyl’s theorem holds for dAB.

Proof. Since A and B∗ are class p-wA(s, t) operators with 0 < p ≤ 1 and 0 <
s, t, s+ t ≤ 1, dAB has SVEP by Lemma 3.1. By Lemma 3.2, dAB is polaroid. Then
by applying [4, theorem 3.10], it follows that generalized Weyl’s theorem holds for
dAB

Theorem 3.2. If A,B∗ ∈ B(H) are class p-wA(s, t) operators with 0 < p ≤ 1
and 0 < s, t, s+ t ≤ 1, then generalized Weyl’s theorem holds for f(dAB) for every
f ∈ H(σ(dAB)).

Proof. Since A and B∗ are class p-wA(s, t) operators with 0 < p ≤ 1 and 0 <
s, t, s + t ≤ 1, dAB has SVEP by Lemma 3.1. By Lemma 3.2 the operator dAB is
polaroid and so dAB is isoloid. Then by applying [25, theorem 2.2], it follows that
generalized Weyl’s theorem holds for f(dAB) for every f ∈ Hσ(dAB).

We say that T ∈ B(H) possesses property (w) if σa(T ) \ σSF−
+

(T ) = E0(T ) [23]. In

Theorem 2.8 of [2], it is shown that property (w) implies Weyl’s theorem, but the
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converse is not true in general. We say that T ∈ B(H) possesses property (gw) if
σa(T ) \ σSBF−

+
(T ) = E(T ). Property (gw) has been introduced and studied in [6].

Property (gw) extends property (w) to the context of B-Fredholm theory, and it is
proved in [6] that an operator possessing property (gw) possesses property (w) but
the converse is not true in general.

Theorem 3.3. Let A,B∗ ∈ B(H) are class p-wA(s, t) operators with 0 < p ≤ 1
and 0 < s, t, s + t ≤ 1. Then a-Weyl’s theorem, property (w), property (gw) and
generalized a-Weyl’s theorem hold for every f ∈ H(σ(dAB)).

Proof. By Lemma 3.1, the operator dAB has SVEP. The operator dAB is polaroid by
Lemma 3.2,. Then by applying [4, theorem 3.12], it follows that a-Weyl’s theorem,
property (w), property (gw) and generalized a-Weyl’s theorem hold for every f ∈
H(σ(dAB)).
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