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Abstract. The differential geometry of the tangent bundle is an effective domain of dif-
ferential geometry which reveals many new problems in the study of modern differential
geometry. The generalization of connection on any manifold to its tangent bundle is an
application of differential geometry. Recently a new type of semi-symmetric non-metric
connection on a Riemannian manifold has been studied and a relationship between Levi-
Civita connection and semi-symmetric non-metric connection has been established. The
various properties of a Riemannian manifold with relation to such connection have also
been discussed. The present paper aims to study the tangent bundle of a new type of
semi-symmetric non-metric connection on a Riemannian manifold. The necessary and
sufficient conditions for projectively invariant curvature tensors corresponding to such
connection are proved and show many basic results on the Riemannian manifold in the
tangent bundle. Furthermore, the properties of group manifolds of the Riemannian
manifolds with respect to the semi-symmetric non-metric connection in the tangent
bundle have been studied. Moreover, theorems on the symmetry property of Ricci ten-
sor and Ricci soliton in the tangent bundle are established.
Keywords: Tangent bundle, Vertical and complete lifts, Riemannian manifold, semi-
symmetric non-metric connection, Different curvature tensors.

1. Introduction

The concept of semi-symmetric linear connection on a differential manifold was
introduced by Friedman and Schouten [8] in 1924. Hayden introduced the notion
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of metric connection on a Riemannian manifold in 1932 and known as Hayden
connection [10].

Let Mn be a Riemannian manifold of n-dimensional with Riemannian metric g
and ∇ be Levi-Civita connection on it. A linear connection ∇̃ on Mn is said to be
symmetric connection if its torsion tensor T̃ of ∇̃ is of the form

(1.1) T̃ (X,Y ) = ∇̃XY − ∇̃YX − [X,Y ]

is zero for all X and Y on Mn; otherwise it is non-symmetric . A linear connection
∇̃ is said to be semi-symmetric connection if

(1.2) T̃ (X,Y ) = π(Y )X − π(X)Y

where

(1.3) π(X) = g(P,X)

for all X and Y on Mn and π is 1-form and P is a vector field.

In 1969, Pak [18] studied the Hayden connection ∇̃ and proved that it is a
semi-symmetric metric and a linear connection ∇̃ is said to be metric on Mn if
∇̃g = 0 otherwise it is non-metric. In 1970, Yano [23] studied some curvature
and derivational conditions for semi-symmetric connection in Riemannian man-
ifolds. Agashe et al define a linear connection on a Riemannian manifold Mn

which is semi-symmetric but non-metric in 1992 and studied some properties of
the curvature tensor with respect to semi-symmetric non-metric connection [1]. In
1994, Liang [16] studied a type of semi-symmetric non-metric connection ∇̃ which
satiesfies (∇̂Xg)(Y,Z) = 2u(X)g(Y, Z), u is 1-form and such connection called a
semi-symmetric recurrent metric connection. In 2019, Chaubey at el [3] defined
and studied a new type of semi-symmetric non-metric connection on a Riemannian
manifold. Studies of various types of semi-symmetric non-metric connection and
their properties include [2, 4, 5, 6, 9, 12, 15, 17, 19] and others.

In a Riemannian manifold of dimension n, the curvature tensor R̃ corresponding
to ∇̃ is defined by

(1.4) R̃(X,Y ) = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z

for all X,Y, Z om Mn.

The Ricci tensor S̃ with respect to semi-symmetric non-metric connection ∇̃ is
given by [3]

S̃(Y, Z) = S(Y,Z) +
1

2

n∑
i=1

{(g(Aei, Z)g(Y, ei))− θ(Y,Z)g(ei, ei)

− (g(Aei, Y )g(Z, ei)) + (g(AY, ei)g(Z, ei))}(1.5)

where S is a Ricci tensor with respect to ∇.
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The projective curvature P̃ with respect to the semi-symmetric non-metric con-
nection ∇̃ is defined as [7]

(1.6) P̃ (X,Y )Z = R̃(X,Y )Z − 1

n− 1
{S̃(Y,Z)X − S̃(X,Z)Y }

for all vector fields X,Y and Z on Mn.

The conformal curvature tensor C [22] with respect to ∇ is defined by

C(X,Y )Z = R(X,Y )Z − 1

n− 2
{S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY }+
r

(n− 1)(n− 2)
{g(Y, Z)X − g(X,Z)Y }(1.7)

for arbitrary vector fields X,Y, Z on Mn.

The concircular curvature tensor C̆ [3] on (Mn, g) with respect to ∇ is defined
by

′C̆(X,Y, Z, U) = ′R(X,Y, Z, U)

− r

(n− 1)(n− 2)
{g(Y, Z)g(X,U)− g(X,Z)g(Y, U)}(1.8)

The conharmonic curvature tensor ′L of type (0,4) [3] is defined by

′L(X,Y, Z, U) = ′R(X,Y, Z, U)− r

n− 2
{S(Y,Z)g(X,U)− S(X,Z)g(Y, U)

+ g(Y, Z)S(X,U)− g(X,Z)S(Y, U)}(1.9)

On the other hand, the differential geometry of tangent bundles is an important
domain of the differential geometry because the theory provides many new problems
in the study of modern differential geometry. The theory of vertical, complete and
horizontal lifts of geometrical structures and connections from a manifold to its
tangent bundles was developed by Yano and Ishihara [24]. They defined and studied
prolongations called vertical, complete and horizontal lifts and connections. Tani
[21] developed the theory of surfaces prolonged to tangent bundle with respect to
the metric tensor of the original manifold.

Most recently, the author [13, 14] studied tangent bundle endowed with respect
to semy-symmetric non-metric connection on Kähler manifold and tangent bundle
of an almost Hermitian manifold and an almost Kähler manifold with respect to
quarter symmetric non-metric connection. Motivated by the previously mentioned
studies, we study the tangent bundles of a new type of semi-symmetric non-metric
connection on a Riemannian manifold.

The main contributions are summarized as follows:

• A new type of semi-symmetric non-metric connection is defined and studied
on a Riemannian manifold to the tangent bundle.
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• To prove the existence of such a connection on the tangent bundle and some
theorems on it.

• Various curvature tensors such as projective, conformal and concircular cur-
vature tensors corresponding to semi-symmetric non-metric connection on the
tangent bundle are calculated.

• Symmetric property of Ricci tensor are established.

• To define Ricci soliton on the tangent bundle and discuss shrinking, steady
and expanding properties of it.

The paper is organized as follows: Section 2 deals with a brief account of tangent
bundle, vertical lift, complete lift and a new class of semi-symmetric non-metric
connection. Section 3 presents semi-symmetric non-metric connection in the tangent
bundle TMn over a Riemannian manifold Mn and proves some basic results. Section
4 discusses the relation between curvature tensors of the Levi-Civita and semi-
symmetric non-metric connections in the tangent bundle and some basic properties
of the curvature tensor of ∇̃C . It is proved that such connection on a Riemannian
manifold is projectively invariant curvature tensors under certain conditions and
also proves some results on the curvature, concircular curvature, and conharmonic
curvature tensors in the tangent bundle. Finally, Section 5 devotes the study of
a group manifold with respect to a semi-symmetric non-metric connection in the
tangent bundle. The symmetric property of Ricci tensor and Ricci soliton in the
tangent bundle are established.

2. Preliminaries

Let Mn be an n-dimensional differentiable manifold and TMn its tangent bun-
dle. The projection bundle πMn

: TMn → Mn which denotes the natural bundle
structure of TMn over Mn. Let {U ;xi} be coordinate neighborhood in Mn where
{xi} is a system of local coordinates in neighborhood U . Let {xi, yi} be a system of
local coordinates in π−1Mn

(U) ⊂ TMn i.e. {xi, yi} the induced coordinate in π−1Mn
(U).

Let ℘rs(Mn) be the set of all tensor fields of type (r, s) in Mn, namely contravariant
of degree r and covariant of degree s. If we denote by ℘(Mn) the tensor algebra as-
sociated with Mn i.e. ℘(Mn) = ℘rs(Mn). The set of tensor fields in tangent bundle
represented by ℘rs(TMn) and tensor algebra in the tangent bundle by ℘(TMn). The
set of functions, vector fields, 1-forms and tensor fields of type (1,1) are denoted by
℘0
0(TMn), ℘1

0(TMn), ℘0
1(TMn) and ℘1

1(TMn) respectively.

2.1. Vertical and complete lifts

The vertical and complete lifts of a function, a vector field, 1-form, tensor field of
type (1,1) and affine connection ∇ are given by fV , XV , ωV , FV ,∇V and fC , XC ,
ωC , FC , ∇C respectively [14, 24].
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The following properties of complete and vertical lifts are given by

(fX)V = fVXV , (fX)C = fCXV + fVXC ,(2.1)

XV fV = 0, XV fC = XCfV = (Xf)V , XCfC = (Xf)C ,(2.2)

ωV (fV ) = 0, ωV (XC) = ωC(XV ) = ω(X)V , ωC(XC) = ω(X)C ,(2.3)

FVXC = (FX)V , FCXC = (FX)C ,(2.4)

[X,Y ]V = [XC , Y V ] = [XV , Y C ], [X,Y ]C = [XC , Y C ].(2.5)

∇CXCY
C = (∇XY )C , ∇CXCY

V = (∇XY )V(2.6)

We extend the vertical and complete lifts to a linear isomorphism of tensor
algebra ℘(Mn) into ℘(TMn) concerning constant coefficient. Let PV and QV be
vertical lift and PC and QC be complete lift of arbitrary tensor fields P and Q of
℘(Mn). Then by definition

(P ⊗Q)V = PV ⊗QV , (P ⊗Q)C = PC ⊗QV + PV ⊗QC

(P +Q)V = PV +QV , (P +Q)C = PC +QC .

2.2. Semi-symmetric non-metric connection

Let Mn be a Riemannian manifold of dimension n with Riemannian metric g. A
linear connection ∇̃ on Mn given by [3]

(2.7) ∇̃XY = ∇XY +
1

2
{π(Y )X − π(X)Y }

where ∇ is a Levi-Civita connection, X,Y vector fields and π 1-form on Mn. The
metric g have the relation

(2.8) (∇̃Xg)(Y,Z) =
1

2
{2π(X)g(Y, Z)− π(Y )g(X,Z)− π(Z)g(X,Y )}

The connection ∇̃ satisfying equations (1.2), (1.3), (2.7) and (2.8) is called a semi-
symmetric non-metric connection.

3. Semi-symmetric non-metric connection of a Riemannian manifold
in the tangent bundle

Let (Mn, g) be an n-dimensional Riemannian manifold with the Riemannian
metric g and TMn its tangent bundle. Then gC is a Riemannian metric in TMn.
Taking complete lifts of equations (1.2), (1.3), (2.7) and (2.8), then obtained equa-
tions are [21]

T̃C(XC , Y C) = πC(Y C)XV + πV (Y C)XC

− πC(XC)Y V − πV (XC)Y C(3.1)
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πC(XC) = gC(XC , PC)

A linear connection ∇̃C defined by

∇̃CXCY
C = ∇CXCY

C +
1

2
{πC(Y C)XV + πV (Y C)XC

− πC(XC)Y V − πV (XC)Y C}(3.2)

is said to be a semi-symmetric non-metric connection if the torsion tensor T̃C of
TMn with respect to ∇̃C satisfies equations (3.1) and (3.2) and the Riemannian
metric gC holds the relation

(∇̃CXCg
C)(Y C , ZC) =

1

2
{2πC(XC)gC(Y V , ZC) + 2πV (XC)gC(Y C , ZC)

− πC(Y C)gC(XV , ZC)− πV (Y C)gC(XC , ZC)(3.3)

− πC(ZC)gC(XV , Y C)− πV (ZC)gC(XC , Y C)}

where ∇C is Levi-Civita connection on TMn.

In order to prove the existence of such connection on tangent bundle TMn, it
suffices to prove the following theorem:

Theorem 3.1. Let (Mn, g) be an n-dimensional Riemannian manifold and TMn

its tangent bundle with Riemannian metric gC endowed with the Levi-Civita con-
nection ∇C . Then there exists a unique linear connection ∇̃C on TMn, called a
semi-symmetric non-metric connection, given by (3.2), and it satisfies equations
(3.1) and (3.3).

Proof. Let Mn be a Riemannian manifold of dimension n equipped with a linear
connection ∇̃. Then the relation between the linear connection ∇̃ and the Levi-
Civita connection ∇ are are given by

(3.4) ∇̃XY = ∇XY + U(X,Y )

Operating complete lifts of both sides of equation (3.4), we get

(3.5) ∇̃CXCY
C = ∇CXCY

C + UC(XC , Y C)

for arbitrary vector fields XC and Y C on TMn, where UC is complete lift of a
tensor field U of type (1, 2). Using equations (1.1) and (3.5), the obtained equation
is

(3.6) T̃C(XC , Y C) = UC(XC , Y C)− UC(Y C , XC)

which gives

(3.7) gC(T̃ (XC , Y C), ZC) = gC(UC(XC , Y C)ZC)− gC(UC(Y C , XC)ZC)
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In the view of equations (3.1) and (3.7), then

gC(UC(XC , Y C), ZC) − gC(UC(Y C , XC), ZC)

= πV (Y C)gC(XC , ZC) + πC(Y C)gC(XV , ZC)

− πV (XC)gC(Y C , ZC)− πC(XC)gC(Y V , ZC)(3.8)

Making use of (3.1), the obtained equation is

∇̃CXCg
C(Y C , ZC) = −gC(∇̃CXCY

C −∇CXCY
C , ZC)

− gC(Y C , ∇̃CXCZ
C −∇CXCZ

C)

= −U ′C(XC , Y C , ZC),(3.9)

where U ′
C

(XC , Y C , ZC) = gC(UC(XC , Y C), ZC) + gC(UC(XC , ZC)Y C).

Using equations (3.6), (3.7), and (3.9), the obtained equation is

gC(T̃C(XC , Y C), ZC) + gC(T̃C(ZC , XC), Y C) + gC(T̃C(ZC , Y C), XC)

= 2gC(UC(XC , Y C), ZC)− U ′C(XC , Y C , ZC)

− U ′
C

(XC , Y C , ZC) + U ′
C

(ZC , XC , Y C)

− U ′
C

(Y C , XC , ZC)

From equations (3.3) and (3.9), the above equation becomes

2gC(UC(XC , Y C), ZC) = gC(T̃C(XC , Y C), ZC) + gC(T̃ ′
C

(ZC , XC), Y C)

+ gC(T̃ ′
C

(ZC , Y C), XC)− πV (XC)gC(Y C , ZC)

− πC(XC)gC(Y V , ZC)− πV (Y C)gC(XC , ZC)

− πC(Y C)gC(XV , ZC) + 2πV (ZC)gC(XC , Y C)

+ πC(ZC)gC(XV , Y C)(3.10)

where

gC(T̃ ′
C

(XC , Y C), ZC) = gC(T̃C(ZC , XC), Y C) = πV (XC)gC(ZC , Y C)

+ πC(XC)gC(ZV , Y C)− πV (ZC)gC(XC , Y C)

− πC(ZC)gC(XV , Y C)(3.11)

for all vector fields XC , Y C and ZC on TMn.

Making use of equation (3.11), then equation (3.10) becomes

2UC(XC , Y C) = (πC(Y C))(XV ) + (πV (Y C))(XC)

− (πC(XC))(Y V ) + (πV (XC))(Y C)(3.12)

and thus equations (3.5) and (3.12) give (3.1).

Conversely, it is easy to show that if the affine connection ∇̃C satisfies (3.2) then
it will also satisfy equations (3.1) and (3.3). Hence, the theorem is proved.
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The covariant derivative of equation (3.2) with respect to the semi-symmetric
non-metric connection ∇̃C on TMn , then the obtained equation is

(∇̃CXCπ
C)(Y C) = (∇CXCπ

C)(Y C) + πC(PC)gC(XV , Y C)

+ πV (PC)gC(XC , Y C)− πV (Y C)πC(XC)

− πC(Y C)πV (XC)(3.13)

for arbitrary vector fields XC and Y C on TMn. Using equation (3.13), then

(∇̃CXCπ
C)(Y C) − (∇̃CY Cπ

C)(XC) = (∇CXCη
C)(Y C)

− (∇CY Cη
C)(XC).(3.14)

Hence, the following theorem is obtained:

Theorem 3.2. Let (Mn, g) be an n-dimensional Riemannian manifold and TMn

its tangent bundle with Riemannian metric gC endowed with a semi-symmetric non-
metric connection ∇̃C , and then the necessary and sufficient condition for the 1-
form πC to be closed with respect to ∇̃C is that it is also closed corresponding to
the Levi-Civita connection ∇C .

Theorem 3.3. Let (Mn, g) be an n-dimensional Riemannian manifold and TMn

its tangent bundle with Riemannian metric gC endowed with a semi-symmetric non-
metric connection ∇̃C , then

′T̃C(XC , Y C , ZC) +′ T̃C(Y C , XC , ZC) = 0,

′T̃C(XC , Y C , ZC) +′ T̃C(Y C , ZC , XC) +′ T̃C(ZC , XC , Y C) = 0.

Proof: Let T̃ be the torsion tensor on TMn and define
′T̃C(XC , Y C , ZC) = gC(T̃C(XC , Y C), ZC) on TMn.

In the view of equation (3.1), then obtained equation is

′T̃C(XC , Y C , ZC) = πV (Y C)gC(XC , ZC) + πC(Y C)gC(XV , ZC)

− πV (XC)gC(Y C , ZC)

− πC(XC)gC(Y V , ZC)(3.15)

Making use of equation (3.15), it can easily prove theorem.

Theorem 3.4. Let (Mn, g) be an n-dimensional Riemannian manifold and TMn

its tangent bundle with Riemannian metric gC equipped with a semi-symmetric non-
metric connection ∇̃C , then T̃C is cyclic parallel if and only if the 1-form πC is
closed.

Proof. Operating the covariant derivative of (3.1) with respect to the semi-symmetric
non-metric connection ∇̃C , the obtained equation is

(∇̃CXC T̃
C)(Y C , ZC) = (∇̃Xπ)C(ZC)Y V + (∇̃Xπ)V (ZC)Y C
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− (∇̃Xπ)C(Y C)ZV − (∇̃Xπ)V (Y C)ZC(3.16)

The cyclic sum of (3.16) for vector fields XC , Y C and ZC gives

(∇̃CXC T̃
C)(Y C , ZC) + (∇̃CY C T̃

C)(ZC , XC) + (∇̃CZC T̃
C)(XC , Y C)

= (∇̃Xπ)C(ZC)Y V + (∇̃Xπ)V (ZC)Y C

− (∇̃Xπ)C(Y C)ZV − (∇̃Xπ)V (Y C)ZC

+ (∇̃Y π)C(XC)ZV + (∇̃Y π)V (XC)ZC

− (∇̃Y π)C(ZC)XV − (∇̃Y π)V (ZC)XC

+ (∇̃Zπ)C(Y C)XV + (∇̃Zπ)V (Y C)XC

− (∇̃Zπ)C(XC)Y V − (∇̃Zπ)V (XC)Y C

and

(∇̃CXC T̃
C)(Y C , ZC) + (∇̃CY C T̃

C)(ZC , XC) + (∇̃CZC T̃
C)(XC , Y C)

= {(∇̃Xπ)C(ZC)− (∇̃Zπ)C(XC)}Y V

+ {(∇̃Xπ)V (ZC)− (∇̃Zπ)V (XC)}Y C

+ {(∇̃Y π)C(XC)− (∇̃Xπ)C(Y C)}ZV

+ {(∇̃Y π)V (XC)− (∇̃Xπ)V (Y C)}ZC

+ {(∇̃Zπ)C(Y C)− (∇̃Y π)C(ZC)}XV

+ {(∇̃Zπ)V (Y C)− (∇̃Y π)V (ZC)}XC(3.17)

From equation (3.17) and Theorem 3.3, it can easily show that

(∇̃CXC T̃
C)(Y C , ZC) + (∇̃CY C T̃

C)(ZC , XC) + (∇̃CZC T̃
C)(XC , Y C) = 0

if and only if the 1-form πC is closed. Hence, the theorem is proved.

Theorem 3.5. Let Mn, g be an n-dimensional Riemannian manifold and TMn its
tangent bundle with Riemannian metric gC admits a semi-symmetric non-metric
connection ∇̃C , then for any arbitrary vector fields XC , Y C and the vector field PC

defined as (3.2), the following relation holds:

(£̃P g)C(XC , Y C) = (£P g)C(XC , Y C) + 2{πC(PC)gC(XV , Y C)

+ πV (PC)gC(XC , Y C)− πV (Y C)πC(XC)

− πC(Y C)πV (XC)}(3.18)

where £̃C
P and £C

P denote the Lie derivatives along the vector field PC corresponding
to ∇̃C and ∇C , respectively.

Proof. The Lie derivative along P [3],

£P g(X,Y ) = g(∇XP, Y ) + g(X,∇Y P )(3.19)



864 M. N. I. Khan

Taking complete lifts on both sides, then

(£P g)C(XC , Y C) = gC(∇CXCP
C , Y C) + gC(XC ,∇CY CP

C)(3.20)

holds for arbitrary vector fields XC and Y C on TMn. From equations (2.7) and
(3.18) and the definition of the Lie derivative, the obtained equation is

(£̃P g)C(XC , Y C) = (PC)gC(XV , Y C) + (PV )gC(XC , Y C)

− gC(∇̃CPCX
C − gC(∇̃CXCP

C , Y C)

− gC(Y C , ∇̃CPCY
C − gC(∇̃CY CP

C)

= (£P g)C(XC , Y C) + 2{πC(PC)gC(XV , Y C)

+ πV (PC)gC(XC , Y C)− πV (Y C)πC(XC)

− πC(Y C)πV (XC)}(3.21)

Hence, the theorem is proved.

If the vector field PC is Killing on (TMn, g
C), then (£P g)C = 0. From theorem

3.5, the following corollary is obtained:

Corollary 3.1. If the vector field PC defined as in (3.2) is Killing on TMn

equipped with a semi-symmetric non-metric connection ∇̃C , then

(£̃P g)C(XC , Y C) = 2{πC(PC)gC(XV , Y C) + πV (PC)gC(XC , Y C)

− πV (Y C)πC(XC)− πC(Y C)πV (XC)}(3.22)

where XC and Y C are vector fields and πC 1-form on TMn.

4. Curvature tensor with respect to the semi-symmetric non-metric
connection in the tangent bundle

Let Mn be an n-dimensional Riemannian manifold admitting a semi-symmetric
non-metric connection ∇̃. If the curvature tensor R̃ corresponding to ∇̃ then there
exists the curvature tensor R̃C corresponding to ∇̃C in TMn is defined by

R̃C(XC , Y C)ZC = ∇̃CXC ∇̃CY CZ
C − ∇̃CY C ∇̃CXCZ

C − ∇̃C[XC ,Y C ]Z
C

for arbitrary vector fields XC , Y C and ZC on (TMn, g
C), then the Riemannian

curvature tensor RC of the Levi-Civita connection ∇C is defined by

RC(XC , Y C)ZC = ∇CXC∇CY CZ
C −∇CY C∇CXCZ

C −∇C[XC ,Y C ]Z
C

for arbitrary vector fields XC , Y C , and ZC on (TMn, g
C).

Making use of equation (3.2), we have

R̃C(XC , Y C)ZC = ∇̃CXC{∇CY CZ
C +

1

2
(πC(ZC)(Y V ) + πV (ZC)(Y C)
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− πC(Y C)(ZV )− πV (Y C)(ZC)})

− ∇̃CY C{∇CXCZ
C +

1

2
(πC(ZC)(XV ) + πV (ZC)(XC)

− πC(XC)(ZV )− πV (XC)(ZC))}

− {∇C[XC ,Y C ]Z
C +

1

2
(πC(ZC)([X,Y ]V ) + πV (ZC)([X,Y ]C)

− πC([X,Y ]C)(ZV )− πV ([X,Y ]C)(ZC))}

= ∇CXC{∇CY CZ
C +

1

2
(πC(ZC)(Y V ) + πV (ZC)(Y C)

− πC(Y C)(ZV )− πV (Y C)(ZC)})

− ∇CY C{∇CXCZ
C +

1

2
(πC(ZC)(XV ) + πV (ZC)(XC)

− πC(XC)(ZV )− πV (XC)(ZC))}

− ∇C[XC ,Y C ]Z
C +

1

2
(πC(∇CY CZ

C)(XV ) + πV (∇CY CZ
C)(XC)

− πC(XC)(∇Y Z)V − πV (XC)(∇Y Z)C}

− 1

4
{πV (XC)πC(ZC)Y C) + πC(XC)πV (ZC)Y C)

+ πC(XC)πC(ZC)Y V )− πV (Y C)πC(ZC)XC)

− πC(Y C)πV (ZC)XC)− πC(Y C)πC(ZC)XV )

− πC(ZC)([X,Y ]V )− πV (ZC)([X,Y ]C)

− πC([X,Y ]C)(ZV )− πV ([X,Y ]C)(ZC)

= RC(XC , Y C)ZC +
1

2
{θC(XC , ZC)Y C − θC(Y C , ZC)XC

− (θC(XC , Y C)− θC(Y C , XC))ZC}(4.1)

for arbitrary vector fields XC , Y C and ZC on TMn, where θC is a complete lift of
a tensor field θ of type (0, 2) and is defined by

θC(XC , Y C) = gC(AX,Y )C = (∇CXCπ
C)(Y C)

− πV (XC)πC(Y C)− πC(XC)πV (Y C)(4.2)

and

(AX)C = (∇XP )C − 1

2
{πV (XC)(PC)− πC(XC)(PV )}(4.3)

for arbitrary vector fields XC and Y C on TMn.

From equation (4.2), it is obvious that the tensor field θC is symmetric if and
only if the 1-form πC is closed. Taking the inner product of (4.1) with WC and then
setting XC = WC = eCi , 1 ≤ i ≤ n, where eCi is complete lift of {ei, i = 1, 2, 3, ...., n}
which is an orthonormal basis of the tangent space at each point of the Riemannian
manifold Mn, then obtained equation is
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S̃C(Y C , ZC) = SC(Y C , ZC) +
1

2

n∑
i=1

{(g(Aei, Z)g(Y, ei))
C − θC(Y C , ZC)gC(ei, ei)

− (g(Aei, Y )g(Z, ei))
C + (g(AY, ei)g(Z, ei))

C}

= SC(Y C , ZC) +
1

2

n∑
i=1

{(g(Aei, Z)Cg(Y, ei))
V

+ (g(Aei, Z)V g(Y, ei))
C − θC(Y C , ZC)gC(ei, ei)

− (g(Aei, Y ))C(g(Z, ei))
V − (g(Aei, Y ))V (g(Z, ei))

C

+ (g(AY, ei))
C(g(Z, ei))

V + (g(AY, ei))
V (g(Z, ei))

C}

= SC(Y C , ZC)− n− 1

2
θC(Y C , ZC)

+
1

2

n∑
i=1

{(g(Aei, ei))
Cg(Z, ei))

Cg(Y, ei))
V

+ (g(Aei, ei))
Cg(Z, ei))

V g(Y, ei))
C

+ (g(Aei, ei))
V g(Z, ei))

Cg(Y, ei))
C

− (g(Aei, ei))
Cg(Z, ei))

Cg(Y, ei))
V

− (g(Aei, ei))
Cg(Z, ei))

V g(Y, ei))
C

− (g(Aei, ei))
V g(Z, ei))

Cg(Y, ei))
C}

which is equivalent to

S̃C(Y C , ZC) = SC(Y C , ZC)− n− 1

2
θC(Y C , ZC)

⇔ Q̃C(Y C) = QC(Y C)− n− 1

2
(AY )C(4.4)

for all vector fields Y C and ZC on TMn. Here Q̃C and QC are the complete lift
of Ricci operators corresponding to the Ricci tensors Q̃C and QC complete lifts S̃C

and SC Ricci tensors S̃ and S of the connections ∇̃C and ∇C , respectively; that is,
S̃C(Y C , ZC) = gC(Q̃CY C , ZC) and SC(Y C , ZC) = gC(QCY C , ZC)

Again contracting eqution (4.4) along the vector field Y C , then

(4.5) r̃ = r − (n− 1)a,

where r̃ and r denote the scalar curvatures corresponding to the semi-symmetric
non-metric connection ∇̃C and the Levi-Civita connection ∇C , respectively, and

a
def
=

1

2
trA

Here trA represents the trace of A. From equation (4.5), the following Theorem is
obtained:
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Theorem 4.1. Let (Mn, g) be n-dimensional Riemannian manifold and TMn its
tangent bundle with Riemannian metric gC endowed with a semi-symmetric non-
metric connection ∇̃C . Then the necessary and sufficient condition for the scalar
curvatures r̃ and r to coincide is that a be zero; that is, trA = 0.

Interchanging Y C and ZC in equation (4.4), the obtained equation is

(4.6) S̃C(ZC , Y C) = SC(ZC , Y C)− n− 1

2
θC(ZC , Y C).

Subtracting equation (4.6) from equation (4.4) and then using equation (4.2) and
the symmetric property of the Ricci tensor in it, the obtained equation is

S̃C(Y C , ZC)− S̃C(ZC , Y C) =
n− 1

2
{θC(ZC , Y C)− θC(Y C , ZC)}

= −n− 1

2
dπC(Y C , ZC),(4.7)

where d denotes the exterior derivative. In view of equation (4.7) and Theorem 3.2,
the following theorem is obtained:

Theorem 4.2. If an n(> 1)-dimensional Riemannian manifold (Mn, g) and TMn

its tangent bundle admits a semi-symmetric non-metric connection ∇̃C , then the
Ricci tensor S̃C corresponding to the connection ∇̃C is symmetric if and only if the
1-form πC is closed.

Theorem 4.3. Let (Mn, g) be an n(> 1)-dimensional Riemannian manifold and
TMn its tangent bundle equipped with a semi-symmetric non-metric connection ∇̃C
defined as in equation (3.1). Then the connection ∇̃C is projectively invariant; that
is, the projective curvature tensors with respect to ∇̃C and ∇C coincide if and only
if the 1-form πC is closed.

Proof. If the 1-form πC is closed and from equation (4.2) θC is symmetric. Using
these in equation (4.1), then equation (4.1) becomes

(4.8) R̃C(XC , Y C)ZC = RC(XC , Y C)ZC +
1

2
{θC(XC , ZC)Y C − θC(Y C , ZC)XC

Contracting equation (4.8) along the vector field XC , then

(4.9) S̃C(Y C , ZC) = SC(Y C , ZC)− n− 1

2
θC(Y C , ZC)

which gives

(4.10) Q̃C(Y C) = QC(Y C)− n− 1

2
(AY )C
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and

(4.11) r̃ = r − (n− 1)a.

The projective curvature tensor P̃ with respect to semi-symmetric non-metric con-
nection ∇̃ is given in equation (1.6). Taking complete lift of equation (1.6), then

P̃C(XC , Y C)ZC = R̃C(XC , Y C)ZC − 1

n− 1
{S̃C(Y C , ZC)XV

+ S̃V (Y C , ZC)XC − S̃C(XC , ZC)Y V

− S̃V (XC , ZC)Y C}(4.12)

for all vector fields XC , Y C and ZC on TMn, where P̃C is the complete lift the
projective curvature P̃ with respect to the semi-symmetric non-metric connection
∇̃C . In view of equations (4.8) and (4.9), equation (4.12) becomes

(4.13) P̃C(XC , Y C)ZC = PC(XC , Y C)ZC ,

where PC denotes the complete lift of the projective curvature tensor P with respect
to ∇C and is defined by

PC(XC , Y C)ZC = RC(XC , Y C)ZC − 1

n− 1
{S̃C(Y C , ZC)XV

+ S̃V (Y C , ZC)XC − S̃C(XC , ZC)Y V

− S̃V (XC , ZC)Y C}(4.14)

for arbitrary vector fields XC , Y C and ZC on TMn and P is given in (1.6). Con-
versely, suppose that (TMn, g

C) equipped with ∇̃C satisfies (4.13). Thus, use of
equations (4.1), (4.4), (4.10), (4.12), and (4.14) in equation (4.13) gives

{θC(XC , Y C)− θC(Y C , XC)}ZC = 0

Contracting the last equation along the vector field XC , we find

θC(XC , Y C)− θC(Y C , XC) = 0

which shows that θC(Y C , ZC) = θC(ZC , Y C).

Hence, the proof is completed.

Theorem 4.4. Let (Mn, g) be an n(> 2)-dimensional Riemannian manifold and
TMn its tangent bundle endowed with a semi-symmetric non-metric connection ∇̃C
whose curvature tensor R̃C vanishes identically, then (TMn, g

C) is projectively flat
if and only if θC is a symmetric tensor.

Proof. Suppose that the curvature tensor with respect to the semi-symmetric non-
metric connection ∇̃C vanishes on (TMn, g

C) i.e., R̃C = 0, and the tensor field θC

is symmetric. Then equation (4.8) takes the form
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(4.15) RC(XC , Y C)ZC =
1

2
{θC(Y C , ZC)XC − θC(XC , ZC)Y C}

which implies that

(4.16) SC(Y C , ZC) =
n− 1

2
θC(Y C , ZC), r = (n− 1)a.

Using of equations (4.14), (4.15) and (4.16), then PC = 0. Conversely, if the
projective curvature tensor of ∇C is zero and the curvature tensor R̃C is also zero,
then equations (4.1) and (4.14) take the form

RC(XC , Y C)ZC =
1

n− 1
{S̃C(Y C , ZC)XV + S̃V (Y C , ZC)XC

− S̃C(XC , ZC)Y V − S̃V (XC , ZC)Y C}(4.17)

and

RC(XC , Y C)ZC =
1

2
{θC(Y C , ZC)XC − θC(XC , ZC)Y C

− (θC(Y C , XC)− θC(XC , Y C))ZC}.(4.18)

Equating equations (4.17) and (4.18) and then using equation (4.4), obtained equa-
tion is

{θC(XC , Y C)− θC(Y C , XC)}ZC = 0

Contracting the above equation along the vector field ZC , then

θC(XC , Y C) = θC(Y C , XC)

Hence, the proof is completed.

Theorem 4.5. Let (Mn, g) be an n(> 2)-dimensional Riemannian manifold and
TMn its tangent bundle with Riemannian metric gC endowed with a semi-symmetric
non-metric connection ∇̃C . If the curvature tensor with respect to ∇̃C vanishes,
then the tensor field θC is symmetric if and only if

(n− 2){′CC(XC , Y C , ZC , UC) + ′C̆C(XC , Y C , ZC , UC)gC

= −2′RC(XC , Y C , ZC , UC)

Proof. Let the curvature tensor R̃C with respect to the semi-symmetric non-metric
connection ∇̃C vanish on TMn. For necessary part, consider the tensor field θC

is symmetric i.e., θC(XC , Y C) = θC(Y C , XC). The conformal curvature tensor C
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given in equation (1.7) with respect to ∇. Taking complete lift of equation (1.7),
the obtained equation is

CC(XC , Y C)ZC = RC(XC , Y C)ZC − 1

n− 2
{S̃C(Y C , ZC)XV

+ S̃V (Y C , ZC)XC − S̃C(XC , ZC)Y V

− S̃V (XC , ZC)Y C + gC(Y C , ZC)(QX)V

+ gV (Y C , ZC)(QX)C − gC(XC , ZC)(QY )V

− gV (XC , ZC)(QY )C}

+
r

(n− 1)(n− 2)
{gC(Y C , ZC)XV

+ gV (Y C , ZC)XC − gC(XC , ZC)Y V

− gV (XC , ZC)Y C}(4.19)

for arbitrary vector fields XC , Y C , ZC on TMn, where CC is the complete lift of
the conformal curvature tensor C with respect to ∇C .

The inner product of equation (4.19) with UC gives

′CC(XC , Y C , ZC , UC) = ′RC(XC , Y C , ZC , UC)

− 1

n− 1
{S̃C(Y C , ZC)gV (XV , UC)

+ S̃V (Y C , ZC)gV (XC , UC)

− S̃C(XC , ZC)gV (Y V , UC)

− S̃V (XC , ZC)gV (Y C , UC)

+ gC(Y C , ZC)S̃V (XC , UC)

+ gV (Y C , ZC)S̃C(XC , UC)

− gC(XC , ZC)S̃V (Y C , UC)

− gV (XC , ZC)S̃C(Y C , UC)}

+
r

(n− 1)(n− 2)
{gC(Y C , ZC)gV (XC , UC)

+ gV (Y C , ZC)gC(XC , UC)

− gC(XC , ZC)gV (Y C , UC)

− gV (XC , ZC)gC(Y C , UC)}(4.20)

where ′CC(XC , Y C), ZC , UC) = gC(CC(XC , Y C)ZC , UC). Using equations (4.15)
and (4.16) in equation (4.20), the obtained equation is

′CC((XC , Y C , ZC , UC) =
n

(n− 2)

′
RC(XC , Y C , ZC , UC)

− a

(n− 2)
{gC(Y C , ZC)gV (XC , UC)

+ gV (Y C , ZC)gC(XC , UC)
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− gC(XC , ZC)gV (Y C , UC)

− gV (XC , ZC)gC(Y C , UC)}(4.21)

The concircular curvature tensor C̆ is given in equation (1.8) with respect to ∇.
Taking complete lift of equation (1.8), then

′C̆C((XC , Y C , ZC , UC) = ′RC((XC , Y C , ZC , UC)

− r

(n− 1)(n− 2)
{gC(Y C , ZC)gV (XC , UC)

+ gV (Y C , ZC)gC(XC , UC)

− gC(XC , ZC)gV (Y C , UC)

− gV (XC , ZC)gC(Y C , UC)}(4.22)

for arbitrary vector fields XC , Y C , ZC , UC on TMn, where C̆C is complete lift of
the concircular curvature tensor C̆ and

′C̆C(XC , Y CZC , UC) = gC(C̆C(XC , Y C)ZC , UC).

Using equations (4.16) and (4.22) in equation (4.21), the obtained equation is

(n− 2){′CC(XC , Y CZC , UC)′C̆C(XC , Y CZC , UC)}
= −′RC(XC , Y CZC , UC).(4.23)

For the sufficient part, Suppose that the Riemannian manifold (TMn, g
C) equi-

pped with a semi-symmetric non-metric connection ∇̃C satisfies relation (4.23).
Using equations (4.1), (4.20), (4.22), and (4.23), the obtained equation is:

S̃C(Y C , ZC)XV + S̃V (Y C , ZC)XC − S̃C(XC , ZC)Y V

− S̃V (XC , ZC)Y C + gC(Y C , ZC)(QX)V

+ gV (Y C , ZC)(QX)C − gC(XC , ZC)(QY )V

− gV (XC , ZC)(QY )C}
= (n− 10{θC(Y C , ZC)XC − θC(XC , ZC)Y C

− (θC(Y C , XC)− θC(XC , Y C))ZC}.(4.24)

Contracting equation (4.24) along the vector field ZC , implies that θC(XC , Y C) =
θC(Y C , XC). Hence, the proof is completed.

Corollary 4.1. Let (Mn, g) be an n > 2-dimensional Riemannian manifold and
TMn its tangent bundle with Riemannian metric gC . The Riemannian manifold
(TMn, g

C) admits a semi-symmetric non-metric connection ∇̃C whose curvature
tensor vanishes and whose 1-form πC is closed, then

(n− 2)′LC(XC , Y C , ZC , UC) + nRC((XC , Y C , ZC , UC) = 0.
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Proof. The relation among ′C,′ C̆,′ L and ′R on a Riemannian manifold Mn is given
by [3]

′C(X,Y, Z, U) + ′C̆(X,Y, Z, U)

= ′L(X,Y, Z, U)

+ ′R((X,Y, Z, U).(4.25)

Taking complete lifts on both sides of above equation , the obtained equation is

′CC(XC , Y C , ZC , UC) + ′C̆C(XC , Y C , ZC , UC)

= ′LC(XC , Y C , ZC , UC)

+ ′RC((XC , Y C , ZC , UC).(4.26)

where ′LC is the complete lift of a conharmonic curvature tensor ′L of type (0, 4),
which is obtain by taking complete lift of equation (1.9)

′LC(XC , Y C , ZC , UC) = ′RC(XC , Y C , ZC , UC)

− 1

n− 1
{S̃C(Y C , ZC)gV (XV , UC)

+ S̃V (Y C , ZC)gV (XC , UC)

− S̃C(XC , ZC)gV (Y V , UC)

− S̃V (XC , ZC)gV (Y C , UC)

+ gC(Y C , ZC)S̃V (XC , UC)

+ gV (Y C , ZC)S̃C(XC , UC)

− gC(XC , ZC)S̃V (Y C , UC)

− gV (XC , ZC)S̃C(Y C , UC)}(4.27)

From equations (4.23) and (4.26), the statement of Corollary 4.1 is obtained.

5. Group manifolds with respect to the semi-symmetric non-metric
connection in the tangent bundle

Let (Mn, g) be n-dimensional Riemannian manifold and TMn its tangent bundle
with Riemannian metric gC endowed with a semi-symmetric non-metric connection
∇̃C is said to be a group manifold [23] if

(5.1) (∇̃CXC T̃
C)(Y C , ZC) = 0 and R̃C(XC , Y C)ZC = 0

for arbitrary vector fields XC , Y C and ZC on TMn.

Making use of equations (3.17) and (5.1), the obtained equation is

(∇̃Xπ)C(ZC)Y V + (∇̃Xπ)V (ZC)Y C − (∇̃Xπ)C(Y C)ZV

− (∇̃Xπ)V (Y C)ZC = 0
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Using equation (3.13) and n > 1, then above equation gives

(∇̃CXCπ
C)(Y C) = 0 ⇔ (∇CXCπ

C)(Y C) = πV (Y C)πC(XC)

+ πC(Y C)πV (XC)− πC(PC)gC(XV , Y C)

− πV (PC)gC(XC , Y C),(5.2)

Using equations (4.1) and (5.1), the curvature tensor RC on TMn is given by

RC(XC , Y C)ZC =
1

4
{πV (Y C)πC(ZC)XC) + πC(Y C)πV (ZC)XC)

+ πC(Y C)πC(ZC)XV )} − πV (XC)πC(ZC)Y C)

− πC(XC)πV (ZC)Y C)− πC(XC)πC(ZC)Y V )

− πC(PC)

2
{gC(Y C , ZC)XV

+ gV (Y C , ZC)XC − gC(XC , ZC)Y V

− gV (XC , ZC)Y C}

− πV (PC)

2
{gC(Y C , ZC)XV

+ gV (Y C , ZC)XC − gC(XC , ZC)Y V

− gV (XC , ZC)Y C}(5.3)

Contracting equation (5.3) along the vector field XC , then

SC(Y C , ZC) =
n− 1

4
[πV (Y C)πC(ZC) + πC(Y C)πV (ZC)

− 2πC(PC)gC(Y V , ZC)

− 2πV (PC)gC(Y C , ZC)(5.4)

QC(Y C) =
n− 1

4
{πV (Y C)(PC) + πC(Y C)(PV

− πV (PC)(Y C)− πC(PC)(Y V )}(5.5)

Changing ZC with PC in equation (5.4) and using equation (3.2) in it, obtained
equation is

SC(Y C , ZC) = −n− 1

4
[πC(PC)gC(Y V , PC)

− 2πV (PC)gC(Y C , PC).

The following theorem is obtained:



874 M. N. I. Khan

Theorem 5.1. Let (Mn, g) be n(> 1)-dimensional group manifold and TMn its
tangent bundle with Riemannian metric gC admit a semi-symmetric non-metric
connection ∇̃C . Then −n−14 πC(PC) is an eigenvalue of SC is the complete lift of
the Ricci tensor SC corresponding to the eigenvector PC .

Also contracting equation (5.5) along Y C , then

(5.6) r = − (n− 1)(2n− 1)πC(PC)

4

Using equations (5.3) and (5.4) in equation (4.14), then PC = 0. Hence, the
following theorem is obtained:

Theorem 5.2. Let (Mn, g) be an n > 1-dimensional Riemannian manifold and
TMn its tangent bundle with Riemannian metric gC . Every group manifold (Mn, g)
in TMn endowed with a semi-symmetric non-metric connection ∇̃C is projectively
flat.

Theorem 5.3. Let (Mn, g) be an n > 2-dimensional Riemannian manifold and
TMn its tangent bundle with Riemannian metric gC . equipped with a semi-symmetric
non-metric connection ∇̃C is PC-conformally flat.

Proof. From equations (5.3), (5.4), (5.5), and (5.6), then equation (4.19) takes the
form

CC(XC , Y C)ZC =
πC(PC)

4(n− 2)
{gC(Y C , ZC)XV

+ gV (Y C , ZC)XC − gC(XC , ZC)Y V

− gV (XC , ZC)Y C}

− πV (PC)

4(n− 2)
{gC(Y C , ZC)XV

+ gV (Y C , ZC)XC − gC(XC , ZC)Y V

− gV (XC , ZC)Y C}

− 1

4(n− 2)
{πV (XC)πC(ZC)Y C)

+ πC(XC)πV (ZC)Y C) + πC(XC)πC(ZC)Y V )

− πV (Y C)πC(ZC)XC)− πC(Y C)πV (ZC)XC)

− πC(Y C)πC(ZC)XV )}

− n− 1

4(n− 2)
{πC(Y C)gC(XV , ZC)

+ πV (Y C)gC(XC , ZC)− πC(XC)gC(Y V , ZC)

− πV (XC)gC(Y C , ZC)}PC
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− n− 1

4(n− 2)
{πC(Y C)gC(XV , ZC)

+ πV (Y C)gC(XC , ZC)

− πC(XC)gC(Y V , ZC)

− πV (XC)gC(Y C , ZC)}PV .(5.7)

Let (Mn, g) be an n(> 2)-dimensional Riemannian manifold and TMn its tan-
gent bundle with Riemannian metric gC . Then (TMn, g

C) is said to be PC-
conformally flat [3] if its nonvanishing conformal curvature tensor CC satisfies
CC(XC , Y C)PC = 0 for all vector fields XC and Y C on TMn. Replacing ZC

by PC in equation (5.7), it can easily show that CC(XC , Y C)PC = 0. Hence,
Theorem 5.2 is verified.

Theorem 5.4. Let (Mn, g) be an n(> 2)-dimensional Riemannian manifold and
TMn its tangent bundle with Riemannian metric gC . Every Ricci-symmetric group
manifold (Mn, g) in TMn endowed with a semi-symmetric non-metric connection
∇̃C satisfies πC(PV ) = 0 and πV (PC) = 0.

Proof. Let (Mn, g) be an n-dimensional Riemannian manifold and TMn its tangent
bundle with Riemannian metric gC equipped with a semi-symmetric non-metric
connection ∇̃C . The covariant derivative of equation (5.4) gives

(∇CXCS
C)(Y C , ZC) =

n− 1

4
[(∇CXCπ

V )(Y C)πC(ZC)

+ πV (Y C)(∇CXCπ
C)(ZC)

+ (∇CXCπ
C)(Y C)πV (ZC)

+ πC(Y C)(∇CXCπ
V )(ZC)

− 2gC(Y V , ZC)(∇CπC (PC)

− 2gC(Y V , ZC)πC(∇CXCP
C)

− 2gC(Y C , ZC)(∇CπVXC (PC)

− 2gC(Y C , ZC)πV (∇CXCP
C)](5.8)

which becomes

(∇CXCS
C)(Y C , ZC) =

n− 1

4
{2πV (XC)πC(Y C)πC(ZC)

+ 2πC(XC)πV (Y C)πC(ZC)

+ 2πC(XC)πC(Y C)πV (ZC)

− [πC(Y C)gC(XV , ZC)

+ πV (Y C)gC(XC , ZC)

− πC(XC)gC(Y V , ZC)

− πV (XC)gC(Y C , ZC)]}(5.9)

where equation (5.2) is used.
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A Riemannian manifold (Mn, g) of dimension n and TMn its tangent bundle.
Then tangent bundle TMn is said to be Ricci symmetric if and only if ∇CSC=0. If
possible, we suppose that the group manifold (Mn, g) in TMn is Ricci-symmetric,
and then the last equation gives πC(PV ) = 0 and πV (PC) = 0. Hence, the Theorem
5.3 is proved.

Theorem 5.5. Let (Mn, g) be an n(> 1)-dimensional Riemannian manifold and
TMn its tangent bundle with Riemannian metric gC . Suppose (Mn, g) is a group
manifold in TMn endowed with a semi-symmetric non-metric connection ∇̃C . A
Ricci soliton (gC , PC , λ) on (TMn, g

C) to be shrinking, steady, and expanding ac-
cording as πC(PV ) and πV (PC) are <,=, and > 0, respectively.

Proof. If (Mn, g) is a group manifold in TMn equipped with a semi-symmetric
non-metric connection ∇̃C , then equation (5.2) and Theorem 3.5 give

(£P g)C(XC , Y C) = 2{πV (Y C)πC(XC)

+ πC(Y C)πV (XC)− πC(PC)gC(XV , Y C)

− πV (PC)gC(XC , Y C)}(5.10)

for arbitrary vector fields XC and Y C on TMn. A triplet (gC , PC , λ) on an n-
dimensional Riemannian manifold (Mn, g) in TMn is said to be a Ricci soliton if it
satisfies the relation

(5.11) (£V g)C + 2SC + 2λgC = 0,

where £V g + 2S + 2λg = 0 and V is a complete vector field on Mn and λ is a
real constant [11]. A Ricci soliton (gC , PC , λ) on (TMn, g

C) is said to be shrinking,
steady, and expanding if λ is negative, zero, and positive, respectively. Changing
V with PC in equation (5.11) and then using equations (5.4) and (5.10), then the
obtained equation is

(n− 3){πV (XC)πC(Y C) + πC(XC)πV (Y C)}
− 2(n+ 1){πC(PC)gC(XV , Y C)

+ πV (PC)gC(XC , Y C)}
+ 4λgC(XC , Y C) = 0(5.12)

for arbitrary vector fields XC and Y C on TMn.

Setting Y C = PC in equation (5.12), then

{λ− n− 1

4
πC(PC)}πC(XV ) + {λ− n− 1

4
πV (PC)}πC(XC) = 0,

{λ− n− 1

4
(π(BP ))C}πC(XV ) + {λ− n− 1

4
(π(BP ))V }πC(XC) = 0,
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which shows that λ = n−1
4 (π(BP ))C and λ = n−1

4 (π(BP ))V , because πC(XV ) 6= 0
and πC(XC) 6= 0 on TMn (in general). In view of the last expression, it can
easily observe that the Ricci soliton (gC , PC , λ) on TMn is shrinking, steady, and
expanding if π(BP ) <,= and > 0, respectively. Thus, Theorem 5.4 is satisfied.

REFERENCES

1. N. S. Agashe and M. R. Chafle: A semi symmetric non-metric connection in a
Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), 399-409.

2. A. Barman and G. Ghosh: Semi-symmetric Non-metric Connection on P-Sasakian
Manifolds, Analele Universitatii de Vest, Timisoara Seria Matematica-Informatica,
LIV, 2, (2016), 47-58.

3. S. K. Chaubey and Ahmet Yildiz: Riemannian manifolds admitting a new type os
semi-symmetric non-metric connection, Turk J. Math. 43 (2019), 1887-1904.

4. S. K. Chaubey and R. H. Ojha: On a semi-symmetric non-metric connection. Filo-
mat 26 (2012) 63-69.

5. L. S. Das and M. N. I. Khan: Almost r-contact structure in the tangent bundle,
Differential Geometry-Dynamical System7 (2005), 34-41.

6. L. S. Das, R. Nivas and M. N. I. Khan: On submanifolds of codimension 2 im-
mersed in a hsu–quarternion manifold, Acta Mathematica Academiae Paedagogicae
Nyiregyhaziensis, 25(1) (2009), 129-135.

7. L. P. Eisenhart: Riemannian Geometry. Princeton, NJ, USA: Princeton University
Press, 1949.
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