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ON THE TRAJECTORIES OF STOCHASTIC FLOW GENERATED
BY THE NATURAL MODEL IN MULTI-DIMENSIONAL CASE

Yamina Khatir, Abdeldjebbar Kandouci and Fatima Benziadi
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Abstract. Based on the same model stated in [3], we will study the differentiability
of the stochastic flow generated by the natural model with respect to the initial data,
based on an important idea of H-Kunita, R.M-Dudley and F-Ledrappier. This is the
main motivation of our research.
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1. Introduction

The notion of the stochastic flow generated by a stochastic differential equation
has been studied by several authors. For the differentiability of the stochastic flow,
T-Fujiwara and H-Kunita [13] studied the differentiability of stochastic flows for
stochastic differential equations with jumps then H-Kunita [6] demonstrated the
differentiability of the stochastic flows with respect to the initial data for stochastic
differential equations with smooth coefficients. Malliavin [14] demonstrated the
differentiability of the solutions of stochastic differential equations according to the
initial conditions for classical type equations on manifolds.

Recently, studies concerning the differentiability of the stochastic flow gener-
ated by the stochastic differential equations have been developed. A-Y-Pilipenko
[15] demonstrated the differentiability of the solution of stochastic differential equa-
tions with reflection in the Sobolev space and he showed in [16] the same result
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but with Lipschitz continuous coefficients. In another work, he proved in collabo-
ration with O-V-Aryasova [17] the differentiability of stochastic flow for stochastic
differential equations with discontinuous drift in multidimensional case. In [18] K-
Burdzy proved the differentiability of stochastic flow of reflected Brownian motions
with respect to the initial data in a smooth multidimensional domain. A-Stefano
[19] showed the differentiability of the solution for stochastic differential equations
with discontinues drift in one-dimensional case. X-Zhang [20] obtained the dif-
ferentiability of stochastic flow for stochastic differential equations without global
Lipschitz coefficients. E-Fedrizzi and F-Flandoli [21] obtained weakly differentiable
of solutions of stochastic differential equations with Non-regular drift. Qian Lin
[22] studied the differentiability of the solutions of stochastic differential equations
driven by G-Brownian motion with respect to the initial data and the parameter.
S-Mohammed, T-Nilssen and F-Proske [23] demonstrated the differentiability of
stochastic flow for stochastic differential equations with singular coefficients in the
Sobolev sense.

In our paper, we consider a following stochastic differential equation:

(\u) =

 dXx
u,t = Xx

u,t

(
− e−Λt

1− Zt
Nt + f(Xt − (1− Zt))dYt

)
, t ∈ [u,∞[,

Xx
u,u = x,

where x is the initial condition.

This equation is called \-equation indicated in ([1],[3][5][24]),which is the price-
less system in financial mathematics and it’s one of the best ways to represent the
evolution of a financial market after the default time, it’s considered a prosperous
system of parameters (Z, Y, f). the parameter Z determines the default intensity.
The parameters Y and f describe the evolution of the market after the default time
τ .
Let’s move to the multidimensional version of \−equation [3]. On a probability
space (Ω, (F)t≥0,P), we have:

(\u) =

 dXu,t(x) = Xt(x)

(
− e−Λt

1− Zt
dNt + F (Xt(x)− (1− Zt))dYt

)
, t ∈ [u,∞[,

Xu,u(x) = x,

where (Λ1, ...,Λd) is d-dimensional is continuous increasing process null at the origin,
Nt = (N1, ..., Nd) is a given d−dimensional continuous non-negative local martin-
gale such that 0 < Zt = Nte

−Λt < 1, t > 0 and (Z(t, w) = (Z1(t, w), ..., Zd(t, w))
presents the default intensity. (Y (t, w) = (Y 1(t, w), ..., Y n(t, w)) is a given n−dime-
nsional continuous local martingale and F = (F1, ..., Fn) on Rn is Lipschitz mapping
null at the origin.

This equation has a unique solution Xu,t(x) such as;

Xu
t = x+

∫ t

u

Xs

(
− e−Λs

1− Zs

)
dNs +

∫ t

u

Xs

d∑
i=1

n∑
j=1

F ij(Xs− (1−Zs))dY js , s ∈ [u, t]
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where Xu
u = x is the initial condition and F ij is i − th component of the vector

function F j .

The aim of this paper is to show the differentiability of the process Xu
t with

respect to the initial value, this property was studied for several stochastic differ-
ential equations under different conditions like H-Kunita [6], Bismut [14], Malliavin
[14], K.D.Elworthy and Z.Brzezniak [9]. Our paper is based mainly on an idea of
R.M-Dudley, H-Kunita and F-Ledrappier [12], such that:

• We demonstrate the existence of the partial derivative for any s, t, x a.s if
our stochastic flow generated by the \-equation in multidimensional case, has
a continuous extension at y = 0 for any s, t, x a.s and this follows from the
estimate given by the proposition of H.Kunita and also the Kolmogorov’s the-
orem. Without forgetting the use of the usual estimation inequalities: Hölder
Inequality, BDG inequality, and Gronwall’s lemma. This means that the so-
lution is continuously differentiable and the derivative is Hölder continuous.

• We assume the following hypothesis: the coefficients of \−equation are con-
tinuous and the processes represented in this equation take real values.

The rest of the paper is organized as follows: the second section contains generalities
which we will need in what follows, the third section represents the obtained results
about the differentiability of stochastic flow and the last section gives the main
result of this paper.

2. Generalities

Theorem 2.1. (BDG Inequality)[11]. Let T > 0 and ξ be a continuous local
martingale such that ξ0 = 0. For any 1 ≤ p < ∞ there exists positive constants
cp, Cp independent of T and (ξt)0≤t≤T such that,

cpE[< ξ >
p/2
T ] ≤ E[(ξ∗t )p] ≤ CpE[< ξ >

p/2
T ]

where ξ∗t = sup0≤t≤T |ξt|.

Theorem 2.2. (Hölder Inequality)[11]. Let 1 ≤ p, q ≤ ∞ so that
1

p
+

1

q
= 1 and

f, g : Rd −→ R are Lebesgue measurable. Then

‖fg‖1 ≤ ‖f‖p‖g‖q

Proposition 2.1. [6] Let 2 ≤ p < ∞. There exists a constant R such that, for
any (s, x), (s′, x′) belonging to [0, T ]× Rn,

E
[

sup
s≤t≤T

|ξxs,t − ξx
′

s′,t|p
]
≤ R

(
|x− x′|p + |s− s′|

p
2 (1 + |x′|p)

)
(2.1)
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Theorem 2.3. (Kolmogorov’s theorem)[11]. Let ξλ(w) be a real valued random
field with parameter λ = (λ1, ..., λd) ∈ [0, 1]d. Suppose that there are constants
γ > 0, αi > d, i = 1, ..., d and C > 0 such that

E [|ξλ − ξµ|γ ] ≤ C
d∑
i=1

|λi − µi|αi ∀λ, µ ∈ [0, 1]d.(2.2)

Then ξλ has a continuous modification ξ̃λ.

We need also the following importan lemma.

Lemma 2.1. (Gronwall’s lemma)[11]. Let (a, b) ∈ R2 with a < b, ϕ, β and
φ : [a, b]→ R non-negative continuous functions, such that ∀t ∈ [a, b],

ϕ(t) ≤ β(t) +

∫ t

a

ϕ(s)φ(s)ds

Then,

∀t ∈ [a, b], ϕ(t) ≤ β(t) exp

(∫ t

a

φ(s)ds

)
Lemma 2.2. [11] Let T > 0 and p be any real number. Then there is a positive
constant Cp,T such that ∀x, y ∈ Rd and ∀t ∈ [0, T ],

E |Jt(x)− Js(y)|p ≤ Cp,T |x− y|p

3. The Found Results on the differentiability of the Solutions of SDE
in multi-dimensional case

3.1. The case studied by Olga.V. Aryasova and Andrey.Yu. Pilipenko

This subsection is borrowed from [10]. We consider an SDE of the form:{
dζt(x) = a(ζt(x))dt+ dwt,
ζ0(x) = x,

Where x ∈ Rd,d ≥ 1,(wt)t≥0 is a d-dimensional Wiener process, a = (a1, ..., ad) is
a bounded measurable mapping from Rd to Rd, this equation has a unique strong
solution. The differentiability of this solution with respect to initial data is given
in the following theorem.

Theorem 3.1. Let a : Rd → Rd be such that for all 1 ≤ i ≤ d, ai is a function of

bounded variation on Rd. Put µij =
∂ai

∂xj
, and assume that the measures |µij |, 1 ≤
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i, j ≤ d, belong to Kato’s class. Let φt(x), t ≥ 0, be a solution to the integral
equation

φt(x) = E +

∫ t

0

dAs(ζ(x))φs(x),(3.1)

where E is d × d−identity matrix, the integral on the right-hand side of (3.1) is
the Lebesgue-Stieltjes integral with respect to the continuous function of bounded
variation t → At(ζ(x)). Then φt(x) is the derivative of ζt(x) in Lp−sense, for all
p > 0, x ∈ Rd, h ∈ Rd, t > 0:

E
∥∥∥∥ζt(x+ h)− ζt(x)

ε
− φt(x)h

∥∥∥∥p → 0, ε→ 0,(3.2)

where ‖.‖ is a norm in the space Rd. Moreover:

P{∀t ≥ 0 : ζt(.) ∈W 1
p,loc(Rd,Rd), ∇ζt(x) = φt(x) for λ− a.a.x} = 1,

where λ is the Lebesgue measure on Rd.

3.2. The case studied by Philip E. Protter

This subsection is borrowed from [11]. Consider a following system:

D :


ϕit = xi +

m∑
α=1

∫ t

0

f iα(ϕs−)dZαs

Di
kt = δik +

m∑
α=1

n∑
j=1

∫ t

0

∂f iα
∂xj

(ϕs−)Dj
ksdZ

α
s

(1 ≤ i ≤ n) where D denotes an n× n matrix-valued process and δik = 1 if i = k
and 0 otherwise (Kronecker’s delta). A convenient convention, sometimes called
the Einstein convention, is to leave the summations implicit. Thus, the system of
equations (D) can be alternatively written as:

D :


ϕit = xi +

∫ t

0

f iα(ϕs−)dZαs

Di
kt = δik +

∫ t

0

∂f iα
∂xj

(ϕs−)Dj
ksdZ

α
s

Theorem 3.2. [11] Let Z be as in (H1) and let the functions (f iα) in (H2) have
locally Lipschitz first partial derivatives. Then for almost all w there exists a func-
tion ϕ(t, w, x) which is continuously differentiable in the open set {x : ρ(x,w) > t},
where ρ is the explosion time. If (f iα) are globally Lipschitz then ρ = ∞. Let
Dk(t, w, x) ≡ ∂

∂xk
ϕ(t, w, x). Then for each x the process (ϕ(., w, x), D(., w, x)) is

identically càdlàg, and it is the solution of equations (D) on [0, ρ(x, .)].
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3.3. The case studied by R.M.Dudley, H.Kunita and F.Ledrappier

This subsection is borrowed from [12]. We shall consider an Itô’s stochastic differ-
ential equation:

dχt = ξ0(t, χt)dt+

m∑
k=1

ξk(t, χt)dB
k
t(3.3)

has a solution χt, t ∈ [s, T ] such that for all x ∈ Rd

χt = x+

∫ t

s

ξ0(t, χt)dt+

m∑
k=1

∫ t

s

ξk(t, χt)dB
k
t

For the convenience of notations, we will often write dt as dB0
t and write the last

equation as:

χt = x+

m∑
k=1

∫ t

s

ξk(t, χt)dB
k
t

where x = χs be initial condition.
The following theorem give the smoothness property of this solution.

Theorem 3.3. [12] suppose that coefficients ξ
0
, ..., ξ

m
of an Itô’s stochastic differ-

ential equation, are globally Lipschitz continuous (C1,α
g ) functions for some α > 0

and their first derivatives are bounded. Then the solution χs,t(x) is a C1,β of x for
any β less than α for each s < t a.s.

4. Main result

This section contains the main result which is concerning the differentiability of the
solution of the natural equation with respect to the initial value. But before that
we give a detailed description of the natural equation in multidimensional case, we
have:

(\u) =



dX1
u,t(x) = X1

u,t(x)

(
− e−Λ1

t

1− Z1
t

dN1
t + F11dY

1
t + ...+ F1ddY

n
t

)
. .
. .
. .

dXd
u,t(x) = Xd

u,t(x)

(
− e−Λdt

1− Zdt
dNd

t + Fn1dY
1
t + ...+ FnddY

n
t

)

Then

(\u) =

 dXu,t(x) = Xt(x)

(
− e−Λt

1− Zt
dNt + F (Xt(x)− (1− Zt))dYt

)
, t ∈ [u,∞[,

Xu,u(x) = x,
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where Xu,t(x) = (X1
u,t(x), ..., Xd

u,t(x))T ,− e−Λt

1− Zt
=

(
− e−Λ1

t

1− Z1
t

, ...,− e−Λdt

1− Zdt

)T
,

x = (x1, ..., xd)T the initial condition and:

F =


F11 . . . F1d

. . . . .

. . . . .

. . . . .
Fn1 . . . Fnd


Then we can write the solution Xu

t for u ≤ s ≤ t in this form:

Xu
t = x+

∫ t

u

Xs

(
− e−Λs

1− Zs

)
dNs+

∫ t

u

Xs

d∑
i=1

n∑
j=1

F ij (Xs − (1− Zs)) dY js , s ∈ [u, t]

We introduce the stopping time τn = inf

{
t, 1− Zt <

1

n

}
on the quantity

(
− e−Λs

1− Zs

)
(because we don’t know if it’s finite or not). Therefore, we assume the process X̃x

u,t

instead of Xx
u,t:

X̃u
t = x+

∫ t

u

X̃s

(
− e−Λs

1− Zs∧τn

)
dNs+

∫ t

u

X̃s

d∑
i=1

n∑
j=1

F ij(X̃s−(1−Zs))dY js , s ∈ [u, t]

In order to prove the differentibility property, it’s enough to apply the idea of
R.M.Dudley, H.Kunita and F.Ledrappier [12]: For y ∈ R \ 0, we define

θu,t(x, y) =
∂X̃x

u,t

∂xk
=

1

y

[
X̃x+yek
u,t − X̃x

u,t

]
where ek is the unit vector (0, ..., 0, 1, 0, ..., 0) for k = 1...d.
So we will demonstrate that θu,t(x, y) has a continuous extension at y = 0 for any
(u, t, x). Depending on the following estimate and Kolmogorov’s theorem, for any
p > 2, there exits a positive constant Cp such that:

E|θu,t(x, y)− θu′,t′(x′, y′)|p

≤ Cp
[
|x− x′|αp + |y − y′|αp + (1 + |x|+ |x′|)αp(|u− u′|

αp
2(4.1)

+ |t− t′|
αp
2 )
]

(4.2)

Proof: Firstly we show the boundedness of E|θu,t(x, y)|p, we have:

θu,t(x, y) =
1

y

[
X̃x+yek
u,t − X̃x

u,t

]
we denote

Mt = − e−Λt

1− Zt∧τn



886 Y.Khatir, A.Kandouci and F.Benziadi

F̃ ij(X̃x+yek
t ) = X̃x+yek

t F ij
(
X̃x+yek
t − (1− Zt)

)
F̃ ij(X̃x

t ) = X̃x
t F

ij
(
X̃x
t − (1− Zt)

)
So

θu,t(x, y) = ek +
1

y

[∫ t

u

X̃x+yek
s − X̃x

sMsdNs

]

+
1

y

 d∑
i=1

n∑
j=1

∫ t

u

F̃ ij(X̃x+yek
s )− F̃ ij(X̃x

s )dY js

(4.3)

Then

E|θu,t(x, y)|p ≤ 1 +
1

y
E
∣∣∣∣∫ t

u

X̃x+yek
s − X̃x

sMsdNs

∣∣∣∣p
+

1

y

d∑
i=1

n∑
j=1

E
∣∣∣∣∫ t

u

F̃ ij(X̃x+yek
s )− F̃ ij(X̃x

s )dY js

∣∣∣∣p(4.4)

Using BDG’s inequality, we have:

E|θu,t(x, y)|p ≤ 1 + Cp1E
[∫ t

u

|θr,s(x, y)|2|Ms|2ds
] p

2

+ Cp1
1

y

d∑
i=1

n∑
j=1

E
[∫ t

u

|F̃ ij(X̃x+yek
s )− F̃ ij(X̃x

s )|2ds
] p

2

(4.5)

Now we apply the hölder inequality, noting q the conjugate of p
2 :

E|θu,t(x, y)|p

≤ 1 + (t− u)
p
2qCp1E

[
sup

u<t<∞
|θu,t(x, y)|p

∫ t

u

|Ms|pds
]

+ (t− u)
p
2qCp1

1

y

×
d∑
i=1

j=1∑
n

E
[∫ t

u

|F̃ ij(X̃x+yek
s )− F̃ ij(X̃x

s )|pds
]

(4.6)

And as F̃ ij is Lipschitz, we have:∣∣∣F̃ ij(X̃x+yek
s )− F̃ ij(X̃s)

∣∣∣ ≤ k1

∣∣∣X̃x+yek
s − X̃x

s

∣∣∣
Therefore

E |θu,t(x, y)|p ≤ 1 + (t− u)
p
2qCp1E

[
sup

u<t<∞
|θu,t(x, y)|p

∫ t

u

|Ms|pds
]

+ (t− u)
p
2q k1C

p
1E
[∫ t

u

|θr,s(x, y)|pds
]

(4.7)
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and by following, we have ab ≤ a2

2 + b2

2 , so:

E
[

sup
u<t<∞

|θu,t(x, y)|p
∫ t

u

|Ms|pds
]
≤ 1

2
E
[

sup
u<t<∞

|θu,t(x, y)|2p
]

+
1

2

[∫ t

u

E|Ms|pds
]2

(4.8)

Then the proposition(2.1), yields for any x ∈ Rd and a constant c′:

E
[

sup
u<t<∞

|θu,t(x, y)|p
∫ t

u

|Ms|pds
]
≤ 1

2
c′ +

1

2

[∫ t

u

E|Ms|pds
]2

(4.9)

Furthermore, we have the quantity E
[∫ t
u
|Ms|pds

]
<∞. Next, note that

E
[∫ t
u
|Ms|pds

]
= R, then:

E
[

sup
u<t<∞

|θu,t(x, y)|p
∫ t

u

|Ms|pds
]
≤ Cp2 + Cp3R

2
(4.10)

where
1

2
c′(t− u)

p
2qCp1 = Cp2 and

1

2
(t− u)

p
2qCp1 = Cp3 . As a result:

E |θu,t(x, y)|p ≤ Cp4 + Cp5

∫ t

u

E|θr,s(x, y)|pds(4.11)

Where Cp4 = Cp2 + Cp3R
2

and Cp5 = (t− u)
p
2q k1C

p
1 , therefore by Gronwall’s lemma,

we get:
E |θu,t(x, y)|p ≤ Cp4 exp (Cp5 (t− u))(4.12)

Consequently E|θu,t(x, y)|p is bounded. Secondly we prove the estimate (4.1). In
case t = t′, we suppose that u < u′ < t. Other cases will be proven in the same
way. Then we have:

θu,t(x, y)− θu′,t(x′, y′)

=

∫ u′

u

θr,s(x, y)− θr′,s(x′, y′)MsdNs +
1

y

d∑
i=1

n∑
j=1

∫ u′

u

F̃ ij(X̃x+yek
s )

− F̃ ij(X̃x
s )− F̃ ij(X̃x′+y′ek

s ) + F̃ ij(X̃x′

s )dY js(4.13)

Noting

Ĩ1 =

∫ u′

u

θr,s(x, y)− θr′,s(x′, y′)MsdNs

Ĩ2 =
1

y

d∑
i=1

n∑
j=1

∫ u′

u

F̃ ij(X̃x+yek
s )− F̃ ij(X̃x

s )− F̃ ij(X̃x′+y′ek
s ) + F̃ ij(X̃x′

s )dY js
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So

E|Ĩ1|p = E

∣∣∣∣∣
∫ u′

u

θr,s(x, y)− θr′,s(x′, y′)MsdNs

∣∣∣∣∣
p

(4.14)

The BDG’s inequality leads to:

E|Ĩ1|p ≤ Cp6E

[∫ u′

u

|θr,s(x, y)− θr′,s(x′, y′)|2|Ms|2ds

] p
2

(4.15)

using Hölder’s inequality, noting q∗ the conjugate of
p

2
:

E|Ĩ1|p ≤ (u′ − u)
p

2q∗ Cp6E

[
sup

u<t<∞
|θu,t(x, y)− θu′,t(x′, y′)|p

∫ u′

u

|Ms|pds

]
(4.16)

and by following, we have ab ≤ a2

2
+
b2

2
:

E|Ĩ1|p ≤ (u′ − u)
p

2q∗ Cp7E
[

sup
u<t<∞

|θu,t(x, y)− θu′,t(x′, y′)|2p
]

+ (u′ − u)
p

2q∗ Cp7

[∫ u′

u

E|Ms|pds

]2

(4.17)

Then the proposition (2.1), gives:

E|Ĩ1|p ≤ (u′ − u)
p

2q∗ Cp7

[
R1|y − y′|2p +R

2

1

]
(4.18)

where Cp7 =
1

2
Cp6 .

it remains to study the term Ĩ2:

|Ĩ2| ≤
1

y

d∑
i=1

n∑
j=1

∫ u′

u

|F̃ ij(X̃x+yek
s )− F̃ ij(X̃x

s )|

+ | − F̃ ij(X̃x′+y′ek
s ) + F̃ ij(X̃x′

s )|dY js(4.19)

Using again the BDG’s inequality, we obtain:

E|Ĩ2|p

≤ 1

y
Cp8

d∑
i=1

n∑
j=1

E

[∫ u′

u

|F̃ ij(X̃x+yek
s )− F̃ ij(X̃x

s )|2(4.20)

+| − F̃ ij(X̃x′+y′ek
s ) + F̃ ij(X̃x′

s )|2ds
] p

2
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applying Hölder’s inequality, noting q∗ the conjugate of
p

2
, we have:

E|Ĩ2|p ≤ 1

y
Cp8 (u′ − u)

p
2q∗

d∑
i=1

n∑
j=1

∫ u′

u

E|F̃ ij(X̃x+yek
s )− F̃ ij(X̃x

s )|p

+ E|F̃ ij(X̃x′

s )− F̃ ij(X̃x′+y′ek
s )|pds(4.21)

We have always F̃ is Lipschitz:

E|Ĩ2|p ≤
1

y
Cp8 (u′ − u)

p
2q∗ k1

∫ u′

u

E|X̃x+yek
s − X̃x

s |p + E|X̃x′

s − X̃x′+y′ek
s |pds(4.22)

Thus, by lemma (2.2), we have:

E|Ĩ2|p ≤
1

y
K1
p,TC

p
8 (u′ − u)

p
2q∗+1

k1 (|y|p + |y′|p)(4.23)

From (4.18)and (4.23), we obtain:

E |θu,t(x, y)− θu′,t(x′, y′)|
p ≤ Cp9 (u′ − u)

p
2q∗(4.24)

Where Cp9 = Cp7 (R1|y − y′|2p +R
2

1) + 1
yK

1
p,TC

p
8 (u′ − u)k1(|y|p + |y′|p).

It remains Kolmogorov’s theorem, we denote G = θu,t(x, y)−θu′,t′(x′, y′) and simply
applying Itô’s formula to the function f(G) = |G|p for t = t′, we obtain

|G|p =
∑
i,j

∫ u′

u

∂f

∂Gi
(G)dGs +

1

2

∑
i,j

∫ u′

u

∂2f

∂GiGj
(G)d < Gi, Gj >s

noting

Î =
∑
i,j

∫ u′

u

∂f

∂Gi
(G)dGs

I =
1

2

∑
i,j

∫ u′

u

∂2f

∂GiGj
(G)d < Gi, Gj >s

such that

Î =
∑
i,j

∫ u′

u

∂f

∂Gi
(G)

[
GsMsdNs +

1

y
F̃ ij(X̃x+yek)− F̃ ij(X̃x)

−F̃ ij(X̃x′+y′ek) + F̃ ij(X̃x′)dY js

]
Then

I =
∑
i,j,h,l

∫ u′

u

∂2f

∂GiGj
(G)

[
GsMsdNs +

1

y
F̃ il (X̃

x+yek)− F̃ il (X̃x)

−F̃ il (X̃x′+y′ek) + F̃ il (X̃
x′)dY ls

]
×

[
GsMsdNs +

1

y
F̃ jh(X̃x+yek)− F̃ jh(X̃x)− F̃ jh(X̃x′+y′ek) + F̃ jh(X̃x′)dY hs

]



890 Y.Khatir, A.Kandouci and F.Benziadi

For Î, we denote:
∂f

∂Gi
(G) = |p||G|P−1

Î1 =
∑
i

∫ u′

u

∂f

∂Gi
(G)GsMsdNs

Î2 =
∑
i

∫ u′

u

∂f

∂Gi
(G)

1

y
F̃ ij(X̃x+yek)− F̃ ij(X̃x)− F̃ ij(X̃x′+y′ek) + F̃ ij(X̃x′)

So, we have ∑
i

∣∣∣∣ ∂f∂Gi (G)Gs

∣∣∣∣ ≤ d|p||G|P−1|Gs|(4.25)

Then

|Î1| ≤ d|p|
∫ u′

u

|Gs|P ds×
∫ u′

u

MsdNs(4.26)

noting ϕt =
∫ u′
u
MsdNs, it’s a local martingale (see [2]):

|Î1| ≤ d|p|ϕt
∫ u′

u

|Gs|P ds(4.27)

And we have F̃ ij(X̃x) is Lipschitz function, therefore:∑
i

∣∣∣∣ ∂f∂Gi (G)
1

y
F̃ ij(X̃x+yek)− F̃ ij(X̃x)− F̃ ij(X̃x′+y′ek) + F̃ ij(X̃x′)

∣∣∣∣ ≤ d k1 |p| |G|P

(4.28)
Then

|Î2| ≤ dn k1 |p|
∫ u′

u

|Gs|P ds(4.29)

From (4.27) and (4.29), we get:

|Î| ≤ d |p|(ϕt + nk1)

∫ u′

u

|Gs|P ds(4.30)

For I, we denote

I1 =
∑
i,j,h,l

∫ u′

u

∂2f

∂GiGj
(G)(Gs)

2(Ms)
2dNsdNs(4.31)

I2 =
1

y

∑
i,j,h,l

∫ u′

u

∂2f

∂GiGj
(G)GsMsF̃

i
l (X̃

x+yek)

−F̃ il (X̃x)− F̃ il (X̃x′+y′ek) + F̃ il (X̃
x′)dNsdY

l
s(4.32)
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I3 =
1

y

∑
i,j,h,l

∫ u′

u

∂2f

∂GiGj
(G)GsMsF̃

j
h(X̃x+yek)

−F̃ jh(X̃x)− F̃ jh(X̃x′+y′ek) + F̃ jh(X̃x′)dNsdY
h
s(4.33)

I4 =
1

y2

∑
i,j,h,l

∫ u′

u

∂2f

∂GiGj
(G)

[
F̃ il (X̃

x+yek)− F̃ il (X̃x)− F̃ il (X̃x′+y′ek) + F̃ il (X̃
x′)
]

×
[
F̃ jh(X̃x+yek)− F̃ jh(X̃x)− F̃ jh(X̃x′+y′ek) + F̃ jh(X̃x′)

]
dY lsdY

h
s

And note that
∂2f

∂GiGj
(G) = p(p− 1)|G|p−2

Then for I1, we have∑
i,j,h,l

∣∣∣∣ ∂2f

∂GiGj
(G)(Gs)

2

∣∣∣∣ ≤ d |p| |p− 1| |G|p−2|G|2(4.34)

So

|I1| ≤ d |p| |p− 1|
∫ u′

u

|Gs|pM2
s dNsdNs(4.35)

∫ u′
u
MsdNs is always a local martingale, so

|I1| ≤ d |p| |p− 1|ϕ2
t

∫ u′

u

|Gs|pds(4.36)

For I2, we have∑
i,j,h,l

1

y

∣∣∣∣ ∂2f

∂GiGj
(G)GsF̃

i
l (X̃

x+yek)− F̃ il (X̃x)− F̃ il (X̃x′+y′ek) + F̃ il (X̃
x′)

∣∣∣∣
≤ dn k1|p| |p− 1| |G|p−2|Gs|2(4.37)

Therefore we get

|I2| ≤ dn k1|p| |p− 1|ϕ2
t

∫ u′

u

|Gs|pds(4.38)

For I3, we have

|I3| ≤ dn k1|p| |p− 1|ϕ2
t

∫ u′

u

|Gs|pds(4.39)

For I4, we have

I4 ≤ dn k2
1|p| |p− 1|

∫ u′

u

|Gs|pds(4.40)
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Then we have

I =
1

2

[
I1 + I2 + I3 + I4

]
(4.41)

Such that

I ≤ 1

2
(2nk1 ϕt + ϕ2

t + nk2
1) d |p| |p− 1|

∫ u′

u

|Gs|pds(4.42)

From these two inequalities (4.30) and (4.42), we get

|G|p ≤ d |p| (1

2
|p− 1| (2nk1 ϕt + ϕ2

t + nk2
1) + ϕt + nk1)

∫ u′

u

|Gs|pds(4.43)

Therefore

E|G|p ≤ Cp10

∫ u′

u

E|Gs|pds(4.44)

By Grönwall’s inequality we have

E|G|p ≤ Cp11(4.45)

where Cp11 is exp (Cp10(u′ − u)).

The proof is completed.
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