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Abstract. We classify almost Yamabe on nearly hyperbolic Sasakian manifolds whose
potential vector field is torse-forming admitting semi-symmetric metric connection and
quarter symmetric non-metric connection. Certain results of such solitons on CR-sub-
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1. Introduction

Much progress has been done in recent years in the study of soliton solutions
of the Ricci flow, the mean curvature flow and the Yamabe flow. Soliton solutions
correspond to self-similar solutions of the corresponding flow. The Yamabe flow,

∂

∂t
g(t) = −R(t)g(t),(1.1)
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where R(t) is the scalar curvature of the metric g(t), was introduced by Hamilton
[14], as an approach to solve the Yamabe problem. In dimension n(= 2), the Yamabe
flow is equivalent to the Ricci flow. However, in dimension n > 2 the Yamabe and
Ricci flows do not agree, since the first one preserves the conformal class of the
metric while the Ricci flow does not in general.

A Yamabe soliton on a Riemannian manifold (M, g) of dimension n is a special
solution of the Yamabe flow. A triplet structure (g, κ, λ) satisfies

1

2
Lκg(X,Y ) = (δ̂ − λ)g(X,Y )(1.2)

for allX, Y onM is known as a Yamabe soliton, where Lκ denotes the Lie derivative
of the metric g along the vector field κ, δ̂ is the scalar curvature and λ is a constant.
The beauty of such =soliton depends on the the flavor of λ. The soliton is said to
be expanding, steady or shrinking, according as λ < 0, λ = 0 or λ > 0 respectively.
If λ ∈ C∞(M), then the metric satisfying (1.2) is called almost Yamabe soliton
[2]. Thus the almost Yamabe solitons are the generalization of Yamabe solitons.

Moreover, if κ is the gradient of some function ϕ̃ on M then it is known as gradient
Yamabe soliton. In context of geometry, the Yamabe solitons are special solution
of Yamabe flow under some regulation. There are several geometers that light up
quite extensively on the beauty of Yamabe flow and Yamabe soliton (see,[9], [11],
[12], [16]).

A vector field κ on a Riemannian manifold (M, g) is known as torse-forming
vector field [21] if it satisfies

∇Xκ = ψX + θ(X)κ, ∀ X ∈ χ(M),(1.3)

where ψ ∈ C∞(M) and θ is a 1-form. The beauty of such vector field is as follows:

i) It is concircular if the 1-form θ vanishes identically [20],
ii) For concurrent, ψ = 1 and θ = 0 [22],
iii) It is recurrent if ψ = 0,
iv) For parallel if ψ = θ = 0.

In 2017, Chen [8] initiated a new type vector field known as torqued vector field if
the vector field κ satisfying (1.2) with θ(κ) = 0, where ψ is called torqued function
with the 1-form θ is the torqued form of κ.

Bejancu introduced the concept of CR-sub-manifolds of Kähler manifold as a gen-
eralization of invariant and anti-invariant sub-manifolds [3]. After that, CR-sub-
manifolds of Sasakian manifold was studied by Hsu [15] and Kobayashi [17]. Yano
and Kon [23] studied contact CR-sub-manifolds. As per this motivation, several ge-
ometers studied CR-sub-manifolds of almost contact manifolds (see, [1],[4],[5],[18]).
The almost hyperbolic (f, ξ, η, g)-structure was defined and studied by Upadhyay
and Dube [19]. CR-sub-manifolds of trans-hyperbolic Sasakian manifold studied
by Bhatt and Dube [6]. Apart from that, Golab [13] introduced the idea of semi-
symmetric and quarter symmetric connections. Lovejoy Das et al. [10] studied
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CR-sub-manifolds of LP -Sasakian manifold with semi-symmetric non-metric con-
nection. CR-sub-manifolds of a nearly hyperbolic Sasakian manifold admitting a
semi-symmetric semi-metric connection were studied by Siddiqi and Rizvi [1].

The sections of this paper are organized as follows. After introduction, Section 2
contains some definitions and basic results. In Section 3, we recall the notion of
semi-symmetric metric connection and quarter symmetric non-metric connection on
nearly hyperbolic Sasakian manifold. Section 4 is devoted to CR-sub-manifolds of
nearly hyperbolic Sasakian manifolds with respect to semi-symmetric metric connec-
tion and quarter symmetric non-metric connection. In Section 5, we study Yamabe
soliton whose potential vector field is torse-forming vector field on nearly hyperbolic
Sasakian manifold with respect to such connection. Section 6 is concerned with the
study of Yamabe soliton with a torse-forming vector field on CR-sub-manifolds
of nearly hyperbolic Sasakian manifolds. Furthermore, we study almost Yamabe
soliton with torse-forming vector field taking κt and κn as tangential and normal
components of such vector field on CR-sub-manifolds of nearly hyperbolic Sasakian
manifolds admitting such connection in Section 7.

2. Preliminaries

Let M be an n-dimensional almost hyperbolic contact metric manifold with the
almost hyperbolic contact metric structure (ϕ, ξ, η, g) satisfying

ϕ2 = I + η ⊗ ξ, η(ξ) = −1, ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ),(2.1)

and
g(ϕX, ϕY ) = −g(X,Y )− η(X)η(Y ),(2.2)

for any vector fields X,Y tangent to M [7]. As per this consequences

g(ϕX, Y ) = −g(X,ϕY ).(2.3)

where I is the identity of the tangent bundle TM, ϕ is a tensor field of (1, 1)-type,
η is a 1-form, ξ is a vector field and g is Riemannian metric tensor of M. An almost
hyperbolic contact metric structure (ϕ, ξ, η, g) on M is called hyperbolic Sasakian
manifold if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X,(2.4)

∇Xξ = ϕX,(2.5)

for all tangent vectors X,Y and a Riemannian metric g and Riemannian connection
∇ on M. With reference to (2.4), an almost hyperbolic contact metric manifold M
with (ϕ, ξ, η, g)-structure is called a nearly hyperbolic Sasakian manifold if

(∇Xϕ)Y + (∇Y ϕ)X = 2g(X,Y )ξ − η(X)Y − η(Y )X.(2.6)
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Let M̀ be a submanifold immersed in M, the Riemannian metric g induced on M̀ .
Let TM̀ and T⊥M̀ be the Lie algebra of vector fields tangential to M̀ and normal
to M̀ respectively and ∇̀ be the induced Levi-Civita connection on M̀ , then the
Gauss and Weingarten formulae are given respectively by

∇XY = ∇̀XY + h(X,Y ), ∀ X,Y ∈ TM̀,(2.7)

∇XN = −ANX +∇⊥N, ∀ N ∈ T⊥M̀,(2.8)

where ∇XY and {h(X,Y ),∇⊥
XN} belong to TM̀ and T⊥M̀ , respectively. The

second fundamental form h and Weingarten map AN associated with N as

g(h(X,Y ), N) = g(ANX,Y ).(2.9)

For any X ∈ Γ(TM) and N ∈ Γ(T⊥M), we can write

X = PX +QX, PX ∈ Γ(D), QX ∈ Γ(D⊥),(2.10)

ϕN = BN + CN, BN ∈ Γ(D⊥), CN ∈ Γ(µ).(2.11)

3. Semi-symmetric Metric Connection and Quarter symmetric
non-metric connection

Firstly, we define a semi-symmetric metric connection [13]:

∇̃XY = ∇XY + η(Y )X − g(X,Y )ξ,(3.1)

such that
(∇̃Xg)(Y,Z) = 0.(3.2)

With the help of (2.6) and (3.1), we get

(∇̃Xϕ)Y + ϕ(∇̃XY ) = (∇Xϕ)Y + ϕ(∇XY )− g(X,ϕY )ξ.(3.3)

On interchanging X and Y , equation (3.3) reduces to

(∇̃Y ϕ)X + ϕ(∇̃YX) = (∇Y ϕ)X + ϕ(∇YX)− g(Y, ϕX)ξ,(3.4)

Adding (3.3) and (3.4), we obtain

(∇̃Xϕ)Y + (∇̃Y ϕ)X + ϕ(∇̃XY −∇XY ) + ϕ(∇̃YX −∇YX)

= (∇Xϕ)Y + (∇)Y ϕ)X − g(X,ϕY )ξ − g(Y, ϕX)ξ.(3.5)

Keeping in mind (2.1), (2.3), (2.6) and (3.1) above equation turn up

(∇̃Xϕ)Y + (∇̃Y ϕ)X

= 2g(X,Y )ξ − η(X)Y − η(Y )X − η(X)ϕY − η(Y )ϕX.(3.6)
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Also from (2.5) and (3.1), we get

∇̃Xξ = ϕX −X − η(X).(3.7)

An almost hyperbolic contact metric manifold with almost hyperbolic contact struc-
ture (ϕ, ξ, η, g) is called nearly hyperbolic Sasakian manifold with semi-symmetric
metric connection if it bearing (3.5) and (3.6). With the help of (2.7), (2.8) and
(3.1) the Gauss and Weingarten formulae on nearly hyperbolic Sasakian manifold
with semi-symmetric metric connection as follows

∇̃XY = ∇̀XY + h(X,Y ), ∀ X,Y ∈ TM̀,(3.8)

∇̃XN = −ANX +∇⊥N, ∀ N ∈ T⊥M̀,(3.9)

Also we recall the notion of a quarter symmetric non-metric connection [13] by

∇̂XY = ∇XY + η(Y )ϕX,(3.10)

such that
(∇̂Xg)(Y, Z) = η(Y )g(ϕX,Z)− η(Z)g(ϕX, Y ).(3.11)

From (2.6) and (3.9), we have

(∇̂Xϕ)Y + (∇̂Y ϕ)X(3.12)

= 2g(X,Y )ξ − η(X)Y − 2η(Y )X − 2η(X)ϕY − 2η(X)η(Y )ξ.

An almost hyperbolic contact manifold is called nearly hyperbolic Sasakian [7] man-
ifold with quarter symmetric non-metric connection if it satisfies (3.11). Therefore
from (2.5) and (3.9), we obtain

∇̂Xξ = 2ϕX.(3.13)

Therefore Gauss and Weingarten formulae on nearly hyperbolic Sasakian manifold
bearing quarter symmetric non-metric connection are given respectively by

∇̂XY = ∇̀XY + h(X,Y ), ∀ X,Y ∈ TM̀,(3.14)

∇̂XN = −ANX +∇⊥N, ∀ N ∈ T⊥M̀,(3.15)

4. CR-sub-manifolds of a Nearly hyperbolic Sasakian Manifold

Definition 4.1. [4] An m-dimensional Riemannian submanifold (M, g) of an n-
dimensional nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g) is called a CR-sub-
manifold if ξ is tangent to M and there exists on M a differentiable distribution
D : x→ Dx ⊂ Tx(M) such that

i) D is invariant under ϕ, i.e., ϕD ⊂ D.
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ii) The orthogonal complement distribution D⊥ : x→ D⊥
x ⊂ TxM of the distribu-

tion D on M is totally real, i.e., ϕD⊥ ⊂ T⊥M .

If dim D⊥=0 ( resp., dim D=0), then the CR-submanifold is known as an invariant
(resp., anti-invariant) submanifold.

Definition 4.2. [4] If the distribution D (resp.,D⊥) is horizontal (resp., vertical),
then the pair (D,D⊥) is called ξ-horizontal (resp., ξ-vertical) if ξ ∈ Γ(D) (resp.,
ξ ∈ Γ(D⊥)). The CR-submanifold is also called ξ-horizontal (resp., ξ-vertical) if
ξ ∈ Γ(D) (resp., ξ ∈ Γ(D⊥)).

The orthogonal complement ϕD⊥ ∈ T⊥M is given by

TM = D ⊕D⊥, T⊥M = ϕD⊥ ⊕ µ,(4.1)

where ϕµ=µ.

Let M̀ be a CR-submanifold of a nearly hyperbolic Sasakian manifoldMn(ϕ, ξ, η, g)

with semi-symmetric metric connection ∇̃. The Gauss and Weingarten formulas
with respect to ∇̃ are given, respectively,

∇̃XY =
`̃∇XY + h̃(X,Y ),(4.2)

∇̃XN = −ÃNX + ∇̃⊥
XN(4.3)

for any X,Y ∈ Γ(TM), where ∇̃XY , ÃNX ∈ Γ(TM). Here
`̃∇, h̃ and ÃN are called

the induced connection on M , the second fundamental form and the Weingarten
mapping with respect to ∇̃, respectively. In view of (3.7), (3.9) and (4.2), we get

`̃∇XY + h̃(X,Y ) = ∇̀XY + h(X,Y ) + η(Y )X − g(X,Y )ξ.(4.4)

Using (2.10) and (2.11) in the equation (4.4) and comparing the tangential and
normal components on both sides, we obtain

P
`̃∇XY = P ∇̀XY + η(Y )PX − αg(X,Y )Pξ,(4.5)

h̃(X,Y ) = h(X,Y ) + η(Y )ϕQX,(4.6)

Q
`̃∇XY = Q∇̀XY − g(X,Y )Qξ,(4.7)

for any X,Y ∈ (TM).
Let M̀ be a CR-submanifold of a nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g)

with quarter symmetric metric connection ∇̂. Then Gauss and Weingarten formulas
with respect to ∇̂ as follows,

∇̂XY =
`̂∇XY + ĥ(X,Y ),(4.8)
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∇̂XN = −ÂNX + ∇̂⊥
XN(4.9)

for any X,Y ∈ Γ(TM), where ∇̂XY , ÂNX ∈ Γ(TM). Here
`̂∇, ĥ and ÂN are called

the induced connection on M, the second fundamental form and the Weingarten
mapping with respect to ∇̂, respectively. In view of (3.9), (3.13) and (4.8), we get

∇̂XY + h̃(X,Y ) = ∇̀XY + h(X,Y ) + η(Y )ϕX.(4.10)

Using (2.10) and (2.11) in (4.10) and comparing the tangential and normal compo-
nents on both sides, we obtain

P ∇̂XY = P ∇̀XY + η(Y )PϕX,(4.11)

h̃(X,Y ) = h(X,Y ),(4.12)

Q∇̂XY = Q∇̀XY + η(Y )QϕX,(4.13)

for any X,Y ∈ (TM).

In this sequel we state the following result.

Theorem 4.1. Let M̀ be a CR-Submanifold of nearly hyperbolic Sasakian man-
ifold Mn(ϕ, ξ, η, g) with respect to semi-symmetric metric connection ∇̃ then we
have

i) If M̀ ξ-horizontal, X,Y ∈ Γ(D) and D is parallel with respect to ∇̃ then induced

connection
`̃∇ is also a semi-symmetric metric connection.

ii) If M̀ ξ-vertical Γ(D⊥) and D⊥ is parallel with respect to ∇̃ then induced con-

nection
`̃∇ is also a semi-symmetric non-metric connection.

iii) The Gauss formula with respect to semi-symmetric metric connection is of the
form

∇̃XY =
`̃∇XY + h(X,Y ) + η(Y )ϕQX,(4.14)

iv) The weingarten formula with respect to semi-symmetric metric connection is of
the form

∇̃XN = −ANX +∇⊥
XN + η(N)X(4.15)

Proof. With the help of (4.2) and (4.6) we get (iii). Also, from (2.8) and (3.1) we
yield (iv). With reference to (4.5), if M̀ ξ-horizontal, X,Y ∈ Γ(D) and D is parallel

with respect to ∇̃ then result (i) is verifying. On the other hand, with the help of

(4.7) if M̀ is ξ-vertical, X,Y ∈ Γ(D⊥) and D⊥ is parallel with respect to ∇̃, we
obtain our desired result(ii). This tells us that the proof is completed.

Theorem 4.2. Let M̀ be a CR-Submanifold of nearly hyperbolic Sasakian mani-
fold Mn(ϕ, ξ, η, g) with respect to quarter symmetric non-metric connection ∇̂ then
we have
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i) If M̀ ξ-horizontal, X,Y ∈ Γ(D) and D is parallel with respect to ∇̂ then induced

connection
`̂∇ is also a quarter symmetric non metric connection.

ii) If M̀ ξ-vertical, X,Y ∈ Γ(D⊥) and D⊥ is parallel with respect to ∇̂ then induced

connection
`̂∇ is also a quarter symmetric non-metric connection.

iii) The Gauss formula with respect to quarter symmetric non-metric connection is
of the form

∇̂XY = ∇̀XY + h(X,Y ),(4.16)

iv) The weingarten formula with respect to quarter symmetric non-metric connec-
tion is of the form

∇̂XN = −ANX +∇⊥
XN + η(N)ϕX(4.17)

Proof. With the help of (4.8) and (4.12) we get (iii). Also, from (2.8) and (3.9)
we yield (iv). With reference to (4.11), if M̀ ξ-horizontal, X,Y ∈ Γ(D) and D is

parallel with respect to ∇̃ then result (i) is verifying. On the other hand, with the
help of (4.13) if M̀ is ξ-vertical, X,Y ∈ Γ(D⊥) and D⊥ is parallel with respect to

∇̃, we obtain our desired result(ii). We completed the proof.

5. Yamabe solitons with potential vector field is torse-forming

As per this consequence of our analysis in this section we have the following geomet-
ric characterization of nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g) admitting

semi-symmetric metric connection ∇̃ and quarter symmetric non-metric connection
∇̂. Thus, in view of my thought,we can state the following result.

Theorem 5.1. A Yamabe soliton (g, κ, λ) on an n-dimensional nearly hyperbolic
Sasakian manifold Mn(ϕ, ξ, η, g) with respect to semi symmetric metric connection

∇̃ is invariant if and only if

2η(κ)g(X,Y ) = {g(X,κ)η(Y ) + g(Y, κ)η(X)}.

Proof. Let (g, κ, λ) be a Yamabe soliton on Mn(ϕ, ξ, η, g) with respect to a semi

symmetric metric connection∇̂. So from (1.2), we have

1

2
(L̃κg)(X,Y ) = (

˜̂
δ − λ)g(X,Y ).(5.1)

From the definition of Lie derivative, equations (2.3) and (3.1), we obtain

(L̃κg)(X,Y ) = g(∇̃Xκ, Y ) + g(X, ∇̃Y κ)(5.2)

= g(∇Xκ, Y ) + g(X,∇Y κ) + 2η(κ)g(X,Y )− {g(X,κ)η(Y ) + g(Y, κ)η(X)}
= (Lκg)(X,Y ) + 2η(κ)g(X,Y )− {g(X,κ)η(Y ) + g(Y, κ)η(X)}
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for all X,Y ∈ χ(M). With the help of (5.1) and (5.2), we get

1

2
(Lκg)(X,Y ) + η(κ)g(X,Y )− 1

2
{g(X,κ)η(Y ) + g(Y, κ)η(X)}(5.3)

= (
˜̂
δ − λ)g(X,Y ).

This indicate that proof is completed.

Theorem 5.2. Let (g, κ, λ) be a Yamabe soliton on an n-dimensional nearly hy-
perbolic Sasakian manifold Mn(ϕ, ξ, η, g) with respect to semi-symmetric metric con-
nection. If κ is a torse-forming vector field, then the soliton (g, κ, λ) is expanding,

steady and shrinking according as λ =
˜̂
δ−ψ− 1

n{θ(κ)+(n−1)η(κ)} <> =0, unless

λ =
˜̂
δ − ψ − 1

n{θ(κ) + (n− 1)η(κ)} is constant.

Proof. Let (g, κ, λ) be a Yamabe soliton on Mn(ϕ, ξ, η, g) with respect to a semi-

symmetric metric connection∇̃. So from (1.2), we have

1

2
(L̃κg)(X,Y ) = (

˜̂
δ − λ)g(X,Y ).(5.4)

From the definition of Lie derivative, equations (1.3) and (3.1), we obtain

(L̃κg)(X,Y ) = g(∇̃Xκ, Y ) + g(X, ∇̃Y κ)

= 2ψg(X,Y ) + {θ(X)g(κ, Y ) + θ(Y )g(κ,X)}
+2η(κ)g(X,Y )− {η(X)g(κ, Y ) + η(Y )g(κ,X)}(5.5)

for all X,Y ∈ χ(M). With the help of (5.4) and (5.5), we get

(ψ − ˜̂
δ + λ)g(X,Y ) =

1

2
{η(Y )g(κ,X) + η(X)g(κ, Y )}

−1

2
{θ(X)g(κ, Y ) + θ(Y )g(κ,X)} − η(κ)g(X,Y )

(5.6)

On contracting (5.6), we have

λ =
˜̂
δ − ψ − 1

n
{θ(κ) + (n− 1)η(κ)}.(5.7)

This leads to the Theorem 5.2

In this sequel, we write the following corollaries.

Corollary 5.1. Let (g, κ, λ) be a Yamabe soliton on an n-dimensional nearly hy-
perbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, with respect to a semi-symmetric
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metric connection ∇̃. Then following relations hold

κ condition of existence condition of shrinking,
steady and expanding

torse- ψ − ˜̂
δ ψ − ˜̂

δ
forming − 1

n{θ(κ) + (n− 1)η(κ)}=C − 1
n{θ(κ) + (n− 1)η(κ)} <> =0

concircular ψ − ˜̂
δ − 1

n{(n− 1)η(κ)}=C ψ − ˜̂
δ − 1

n{(n− 1)η(κ)} <> =0

concurrent 1− ˜̂
δ − 1

n{(n− 1)η(κ)}=C 1− ˜̂
δ − 1

n{(n− 1)η(κ)} <> =0

recurrent
˜̂
δ − 1

n{θ(κ) + (n− 1)η(κ)}=C ˜̂
δ − 1

n{θ(κ) + (n− 1)η(κ)} <> =0

parallel
˜̂
δ − 1

n{(n− 1)η(κ)}=C ˜̂
δ − 1

n{(n− 1)η(κ)} <> =0

torqued ψ − ˜̂
δ − 1

n{(n− 1)η(κ)}=C ψ − ˜̂
δ − 1

n{(n− 1)η(κ)} <> =0

Theorem 5.3. A Yamabe soliton (g, κ, λ) on an n-dimensional nearly hyperbolic
Sasakian manifold Mn(ϕ, ξ, η, g) with respect to quarter symmetric metric connec-

tion ∇̂ always invariant.

Proof. Let (g, κ, λ) be a Yamabe soliton on Mn(ϕ, ξ, η, g) with respect to a quarter

symmetric metric connection∇̂. So from (1.2), we have

1

2
(L̂κg)(X,Y ) = (

̂̂
δ − λ)g(X,Y ).(5.8)

From the definition of Lie derivative, equations (2.3) and (3.9), we obtain

(L̂κg)(X,Y ) = g(∇̂Xκ, Y ) + g(X, ∇̂Y κ)

= g(∇Xκ, Y ) + g(X,∇Y κ) + η(κ)g(ϕX, Y ) + η(κ)g(X,ϕY )

= (Lκg)(X,Y ),(5.9)

for all X,Y ∈ χ(M). With the help of (5.8) and (5.9), we get

1

2
(Lκg)(X,Y ) = (

̂̂
δ − λ)g(X,Y ).(5.10)

Proof is completed.

Theorem 5.4. Let (g, κ, λ) be a Yamabe soliton on an n-dimensional nearly hy-
perbolic Sasakian manifold Mn(ϕ, ξ, η, g) with respect to quarter symmetric metric

connection ∇̂. If κ is a torse-forming vector field, then the soliton (g, κ, λ) is ex-

panding, steady and shrinking according as λ =
̂̂
δ − ψ − 1

n{θ(κ)} <> =0, unless

λ =
̂̂
δ − ψ − 1

n{θ(κ)} is constant.

Proof. Let (g, κ, λ) be a Yamabe soliton on Mn(ϕ, ξ, η, g) with respect to a quarter

symmetric metric connection∇̂. So from (1.2), we have

1

2
(L̂κg)(X,Y ) = (

̂̂
δ − λ)g(X,Y ).(5.11)
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From the definition of Lie derivative, equations (1.3) and (3.9), we obtain

(L̂κg)(X,Y ) = g(∇̂Xκ, Y ) + g(X, ∇̂Y κ)

= 2ψg(X,Y ) + θ(X)g(κ, Y ) + θ(Y )g(κ,X)

(5.12)

for all X,Y ∈ χ(M). With the help of (5.11) and (5.12), we get

(ψ − ̂̂
δ + λ)g(X,Y ) = −1

2
{θ(X)g(κ, Y ) + θ(Y )g(κ,X)}

(5.13)

Taking contraction (5.13), we have

λ =
̂̂
δ − ψ − 1

n
{θ(κ)}.(5.14)

This leads to the Theorem 5.4.

In this sequel, we write the following corollaries.

Corollary 5.2. Let (g, κ, λ) be a Yamabe soliton on an n-dimensional nearly hy-
perbolic Sasakian manifold Mn(ϕ, ξ, η, g) with respect to quarter symmetric metric

connection ∇̂. Then following relations hold

κ condition of existence condition of shrinking,
steady and expanding

torse-forming
̂̂
δ − ψ − 1

n{θ(κ)} = C
̂̂
δ − ψ − 1

n{θ(κ)} <> =0

concircular
̂̂
δ − ψ = C

̂̂
δ − ψ <> =0

concurrent
̂̂
δ − 1 = C

̂̂
δ − 1 <> =0

recurrent
̂̂
δ − 1

n{θ(κ)} = C
̂̂
δ − 1

n{θ(κ)} <> =0

parallel
̂̂
δ = C

̂̂
δ <> =0

torqued
̂̂
δ − ψ = C

̂̂
δ − ψ <> =0

6. Yamabe solitons whose potential vector field is torse-forming on
CR-submanifold of nearly hyperbolic Sasakian manifold

In this section, we study Yamabe soliton whose potential vector field is a torse-
forming on CR-sub-manifolds of nearly hyperbolic Sasakian manifold with respect

to the induced connection
`̃∇ and

`̂∇. We state the following theorem as:

Theorem 6.1. Let M̀ be a CR-submanifold of nearly hyperbolic Sasakian man-
ifold Mn(ϕ, ξ, η, g), n > 1, admitting semi-symmetric metric connection ∇̃ is ξ-

horizontal (resp. ξ-vertical) and D is parallel with respect to ∇̃. If (g, κ, λ) be a
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Yamabe soliton on M and κ is a torse-forming vector field, then (g, κ, λ) is expand-

ing, steady and shrinking according as
˜̂
δ−ψ− 1

n{θ(κ)+(n−1)η(κ)} <> =0, unless˜̂
δ − ψ − 1

n{θ(κ) + (n− 1)η(κ)} is constant.

Proof. If M̀ is ξ-horizontal for all X, Y ∈ Γ(D) and D is parallel with respect to
`̃∇, then in view of (4.5), we have

`̃∇XY = ∇̀XY + η(Y )X − g(X,Y )ξ.(6.1)

With the help of Theorem 5.2 and (3.1), we conclude that the induced connection
∇̀ is also semi-symmetric metric connection. This leads to the proof of the Theorem
6.1

In this sequel, we write the following corollaries.

Corollary 6.1. Let M̀ be a CR-submanifold nearly hyperbolic Sasakian mani-

fold Mn(ϕ, ξ, η, g), n > 1, admitting a semi-symmetric metric connection
`̃∇ is

ξ-horizontal (resp. ξ-vertical) and D is parallel with respect to
`̃∇. If (g, κ, λ) be

a Yamabe soliton on M and κ is a torse-forming vector field, then the following
results hold

κ condition of existence condition of shrinking,
steady and expanding

torse- ψ − ˜̂
δ ψ − ˜̂

δ
forming − 1

n{θ(κ) + (n− 1)η(κ)}=C − 1
n{θ(κ) + (n− 1)η(κ)} <> =0

concircular ψ − ˜̂
δ − 1

n{(n− 1)η(κ)}=C ψ − ˜̂
δ − 1

n{(n− 1)η(κ)} <> =0

concurrent 1− ˜̂
δ − 1

n{(n− 1)η(κ)}=C 1− ˜̂
δ − 1

n{(n− 1)η(κ)} <> =0

recurrent
˜̂
δ − 1

n{θ(κ) + (n− 1)η(κ)}=C ˜̂
δ − 1

n{θ(κ) + (n− 1)η(κ)} <> =0

parallel
˜̂
δ − 1

n{(n− 1)η(κ)}=C ˜̂
δ − 1

n{(n− 1)η(κ)} <> =0

torqued ψ − ˜̂
δ − 1

n{(n− 1)η(κ)}=C ψ − ˜̂
δ − 1

n{(n− 1)η(κ)} <> =0

Theorem 6.2. Let M̀ be a CR-submanifold of nearly hyperbolic Sasakian mani-
fold Mn(ϕ, ξ, η, g), n > 1, admitting quarter symmetric non- metric connection ∇̂
is ξ-horizontal (resp. ξ-vertical) and D is parallel with respect to ∇̂. If (g, κ, λ)
be a Yamabe soliton on M and κ is a torse-forming vector field, then (g, κ, λ) is

expanding, steady and shrinking according as λ =
̂̂
δ − ψ − 1

n{θ(κ)} <> =0, unless

λ =
̂̂
δ − ψ − 1

n{θ(κ)} is constant.

Proof. If M̀ is ξ-horizontal for all X, Y ∈ Γ(D) and D is parallel with respect to
`̂∇, then in view of (4.11), we have

`̂∇XY = ∇̀XY + η(Y )ϕX,(6.2)
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With the help of Theorem 5.5 and (3.9), we conclude that the induced connection
`̂∇ is also quarter symmetric non-metric connection. This leads to the statement of
the Theorem 6.2.

In this sequel, we write the following corollaries.

Corollary 6.2. Let M̀ be a CR-submanifold nearly hyperbolic Sasakian manifold
Mn(ϕ, ξ, η, g), n > 1, admitting induced quarter symmetric non-metric connection
`̂∇ is ξ-horizontal (resp. ξ-vertical) and D is parallel with respect to

`̃∇. If (g, κ, λ)
be a Yamabe soliton on M and κ is a torse-forming vector field, then the following
results hold

κ condition of existence condition of shrinking,
steady and expanding

torse-forming
̂̂
δ − ψ − 1

n{θ(κ)} = constant
̂̂
δ − ψ − 1

n{θ(κ)} <> =0

concircular
̂̂
δ − ψ = constant

̂̂
δ − ψ <> =0

concurrent
̂̂
δ − 1 = constant

̂̂
δ − 1 <> =0

recurrent
̂̂
δ − 1

n{θ(κ)} = constant
̂̂
δ − 1

n{θ(κ)} <> =0

parallel
̂̂
δ = constant

̂̂
δ <> =0

torqued
̂̂
δ − ψ = constant

̂̂
δ − ψ <> =0

7. Almost Yamabe solitons whose potential vector field is
torse-forming on CR-submanifold of nearly hyperbolic Sasakian

manifold

In this section, we classify almost Yamabe solitons whose potential field is torse-
forming on CR-submanifold of nearly hyperbolic Sasakian manifold with respect to
a semi-symmetric metric connection and quarter symmetric non-metric connection.
At this stage, we denote κt and κn as tangential and normal component of such
vector field. For almost Yamabe soliton we have the following.

Theorem 7.1. An almost Yamabe soliton (g, κt, λ) on a CR-submanifold M̀ of
nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, with a semi-symmetric

metric connection of type ∇̃ satisfies

(δ̂ − λ− ψ + η(κn))g(X,Y ) = g(AκnX,Y ) +
1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

+
1

2
{g(κn, X)η(Y ) + g(Y, κn)η(X)}(7.1)

for any vector fields X,Y on M .
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Proof. In view of (1.3), (3.1), (4.14) and (4.15), we have

ψX + θ(P )κ = ∇̃Xκ = ∇̃X(κt + κn) = ∇̀Xκ
t + h(X,κt) + η(κt)ϕQX

−AκnX +∇⊥
Xκ

n + η(κn)X − g(X,κn)ξ.(7.2)

On comparing tangential and normal component of (7.2), we obtain

∇̀Xκ
t = ψX + θ(P )κ+AκnX − η(κn)X + g(X,κn)ξ(7.3)

and
h(X,κt) = −∇⊥

Xκ
n − η(κn)ϕQX.(7.4)

From the definition of Lie derivative and (7.3), we have

Lκtg(X,Y ) = 2ψg(X,Y ) + 2g(AκnX,Y )− 2η(κn)g(X,Y ) + {θ(X)g(κ, Y )

+θ(Y )g(X,κ)}+ {g(κn, X)η(Y ) + g(Y, κn)η(X)}.(7.5)

Using (7.5) in (1.2), we yield

(δ̂ − λ− ψ + η(κn))g(X,Y ) = g(An
κX,Y ) +

1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

+
1

2
{g(κn, X)η(Y ) + g(Y, κn)η(X)}.(7.6)

This proves our assertion.

Corollary 7.1. If an almost Yamabe soliton (g, κt, λ) on a CR-submanifold M̀
of nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, with semi-symmetric
metric connection is minimal, then

(δ̂ − λ− ψ + η(κn))n = θ(κ).(7.7)

Corollary 7.2. Let (g, κt, λ) be an almost Yamabe soliton on a CR-submanifold
M̀ of nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, and ξ-horizontal
(resp.ξ-vertical), X,Y ∈ Γ(D), D is parallel with induced connection ∇̀ satisfies

(δ̂ − λ− ψ + η(κn))g(X,Y ) = g(AκnX,Y ) +
1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

+
1

2
{g(κn, X)η(Y ) + g(Y, κn)η(X)}(7.8)

for any vector fields X,Y on M .

Corollary 7.3. If an almost Yamabe soliton (g, κt, λ) on CR-submanifold M̀ of
nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), (n > 1) and ξ-horizontal (resp.
ξ-vertical), X,Y ∈ Γ(D), D is parallel with induced connection ∇̀ is minimal, then

(δ̂ − λ− ψ + η(κn))n = θ(κ)(7.9)



Some Results on Yamabe Solitons on Nearly Hyperbolic Sasakian Manifolds 215

Theorem 7.2. An almost Yamabe soliton (g, κt, λ) on a CR-submanifold M̀ of
nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, with quarter symmetric

non-metric connection ∇̂ satisfies

(δ̂ − λ− ψ + η(κn))g(X,Y ) = g(AκnX,Y ) +
1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

(7.10)

for any vector fields X,Y on M .

Proof. In view of (1.3), (3.9), (4.16) and (4.17), we have

ψX + θ(P )κ = ∇̂Xκ = ∇̂X(κt + κn) = ∇̀Xκ
t + ĥ(X,κt)− ÂκnX + ∇̂⊥

Xκ
n

= ∇̀Xκ
t + h(X,κt)− ÂκnX +∇⊥

Xκ
n + η(κn)ϕX.(7.11)

On comparing tangential and normal component of (7.11), we obtain

∇̀Xκ
t = ψX + θ(X)κ+AκnX − η(κn)ϕX,(7.12)

and
h(X,κt) = −∇⊥

Xκ
n.(7.13)

From the definition of Lie derivative and (7.12), we have

Lκtg(X,Y ) = 2ψg(X,Y ) + 2g(AκnX,Y ) + {θ(X)g(κ, Y ) + θ(Y )g(X,κ)}.(7.14)

Using (7.14) in (1.2), we yield

(δ̂ − λ− ψ)g(X,Y ) = g(An
κX,Y ) +

1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

(7.15)

This proves our assertion.

Corollary 7.4. If an almost Yamabe soliton (g, κt, λ) on a CR-submanifold M̀ of
nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, with quarter symmetric
non-metric connection is minimal, then

(δ̂ − λ− ψ)n = θ(κ).(7.16)

Corollary 7.5. Let (g, κt, λ) be an almost Yamabe soliton on a CR-submanifold
M̀ of nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, and ξ-horizontal

(resp.ξ-vertical), X,Y ∈ Γ(D), D is parallel with induced connection
`̂∇ satisfies

(δ̂ − λ− ψ + η(κn))g(X,Y ) = g(An
κX,Y ) +

1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

(7.17)

for any vector fields X,Y on M .
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Corollary 7.6. If an almost Yamabe soliton (g, κt, λ) on CR-submanifold M̀ of
nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), (n > 1) and ξ-horizontal (resp.

ξ-vertical), X,Y ∈ Γ(D), D is parallel with induced connection
`̂∇ is minimal, then

(δ̂ − λ− ψ)n = θ(κ)(7.18)

8. Example

Example 8.1. Let us consider on R2n+1 the following hyperbolic Sasakian structure
(ϕ, ξ, η, g) given by

η =
1

2

(
dz −

n∑
i=n

yidxi

)
, ξ =

∂

∂z
,

g = −η ⊗ η − 1

4

n∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi)

ϕ ◦
(
coshxi

∂

∂xi
+ sinhyi

∂

∂yi
+ z

∂

∂z

)

=

n∑
i=1

(
sinhyi

∂

∂xi
+ coshxi

∂

∂yi

)
+

n∑
i=1

sinhy, yi ∂

∂z
,

where
{
xi, yi, z

}
,i = 1, ....n are the denoting the Cartesian coordinates.

The equation t(x1, x2, x3, x4) = (x1, x2, x3, 0, x5) define a CR-sub-manifolds in R5 with
its hyperbolic Sasakian structure (ϕ, ξ, η, g). For this fact we take the orthogonal basis

E1 = coshx5
∂

∂x1
+ sinhx5

∂

∂x2
, E2 = sinhx5

∂

∂x1
+ coshx5

∂

∂x2

E3 = coshx5
∂

∂x3
+ sinhx5

∂

∂x4
, E4 = sinhx5

∂

∂x3
+ coshx5

∂

∂x4
, E5 =

∂

∂x5
= ξ,

and define D = span {E1, E2} and D⊥ = span {E3}. In this case it is clear that
TM = D ⊕D⊥ ⊕ ⟨ξ⟩.

Example 8.2. Let us consider the 5-dimensioanl manifold M = (x1, x2, x3, x4, x5) ∈ R5,
where (x1, x2, x3, x4, x5) are the standard coordinated in R5. Let e1, e2, e3, e4 and e5 be
the vector fields on M given by

e1 = coshx5
∂

∂x1
+ sinhx5

∂

∂x2
, e2 = sinhx5

∂

∂x1
+ coshx5

∂

∂x2

e3 = coshx5
∂

∂x3
+ sinhx5

∂

∂x4
, e4 = sinhx5

∂

∂x3
+ coshx5

∂

∂x4
, e5 =

∂

∂x5
= ξ,
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which are linearly independent at each point of M and hence form a basis tangent
space TpM .
Let g be the Riemannian metric on M define by

g(ei, ei) = −1, for1 ≤ i ≤ 4 and g(e5, e5) = −1,(8.1)

g(ei, ej) = 0, for 1 ̸= j and 1 ≤ i ≤ 5 1 ≤ j ≤ 5.(8.2)

Let η be the 1-form defined by η(X) = g(X, e5) for all X ∈ (M) and let ϕ be the
(1, 1)-tensor field defined by

ϕ(e1) = −e2, ϕ(e2) = −e1, ϕ(e3) = −e4, ϕ(e4) = −e3, ϕ(e5) = 0.

Thus e5 = ξ, the structure (ϕ, ξ, η, g) define an almost hyperbolic contact metric
structure on M . Then we have

[e1, e2] = [e1, e3] = [e1, e4] = [e2, e3] = [e2, e4] = [e3, e4] = 0,

[e1, e5] = −e2, [e2, e5] = −e1, [e3, e5] = e4, [e4, e5] = −e3,

The Levi-Civita connection ∇ of the Riemannian metric g is given by,

2g(∇XY, Z)(8.3)

= Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]),

which is known as Koszul’s formula. After using koszul’s formula, we find

∇e1e1 = 0, ∇e1e2 = −e5, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = −e2,

∇ee1 = −e5, ∇e2e2 = 0, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = −e1,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0, ∇e3e4 = −e5, ∇e3e5 = −e4,

∇e4e1 = 0, ∇e4e2 = −e5, ∇e4e3 = −e5, ∇e4e4 = 0, ∇e4e5 = −e3,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = 0,

By using the definition of semi-symmetric metric connection (3.1) and from above
expressions we find

∇̃e1e1 = −e5, ∇̃e1e2 = −e5, ∇̃e1e3 = 0, ∇̃e1e4 = 0, ∇̃e1e5 = −e1−e2,

∇̃e2e1 = −e5, ∇̃e2e2 = −e5, ∇̃e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = −e1−e2,

∇̃e3e1 = 0, ∇̃e3e2 = 0, ∇̃e3e3 = −e5, ∇e3e4 = −e5, ∇e3e5 = e3 − e4,

∇̃e4e1 = 0, ∇̃e4e2 = −e5, ∇̃e4e3 = −e5, ∇̃e4e4 = −e5, ∇̃e4e5 = −e3 − e4,

∇̃e5e1 = 0, ∇̃e5e2 = 0, ∇̃e5e3 = 0, ∇̃e5e4 = 0, ∇̃e5e5 = 0,
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Therefore, the non-vanishing components of the Riemannian curvatures, the Ricci
curvatures and the Scalar curvature with respect to the semi-symmetric metric
connection as follows:

R̃(e1, e2)e1 = 0, R̃(e1, e2)e2 = 0, R̃(e1, e3)e1 = −e3 − e4, R̃(e1, e3)e3 = e1 + e2,

R̃(e1, e2)e1 = e2, R̃(e1, e2)e2 = −e1, R̃(e1, e3)e1 = 0, R̃(e1, e3)e3 = 0,

R̃(e1, e4)e1 = −e3 − e4, R̃(e1, e4)e4 = e1 + e2, R̃(e1, e5)e1 = −e5,

R̃(e1, e5)e5 = −e1 − e2, R̃(e2, e3)e2 = −e3 − e4, R̃(e2, e3)e3 = −e1 − e2,

R̃(e2, e4)e3 = 0, R̃(e3, e4)e4 = 0, R̃(e3, e5)e3 = −e5,

R̃(e3, e5)e5 = −e3 − e4, R̃(e4, e5)e4 = −e5, R̃(e4, e5)e5 = −e3 − e4,

From these Riemannian curvatures tensors, we calculate

S̃(e1, e1) = S̃(e2, e2) = S̃(e3, e3) = R̃(e4, e4) = S̃(e5, e5) = −4

Since {e1, e2, e3, e4, e5} form a basis of a 5-dimensional almost hyperbolic contact
metric structure. Thus any vector field X,Y, Z ∈ χ(M5) can be written as

X = a1e1 + b1e2 + c1e3 + d1e4 + t1e5,

Y = a2e1 + b2e2 + c2e3 + d2e4 + t2e5,

Z = a3e1 + b3e2 + c3e3 + d3e4 + t3e5,

where ai, bi, ci, di, ti ∈ Re+, i = 1, 2, 3, 4, 5 such that{
(a1a2 + b1b2 + c1c2 + d1d3)

t1
+ t1

(
b2
b1

− a2
a1

− c2
c1

− 1

)}
̸= 0.

If we consider the 1-form θ by θ(X)=-g(X, e5), for any X ∈ χ(M) and considering
ψ ∈ C∞(M) as

ψ =

{
(a1a2 + b1b2 + c1c2 + d1d3)

t1
+ t1

(
b2
b1

− a2
a1

− c2
c1

− 1

)}
.

So the relation
∇XY = ψX + θ(X)Y,(8.4)
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holds. As per this consequences Y is a torse-forming vector field. Thus from (9.3),
we get

(LY g)(X,Z) = g(∇XY,Z) + g(X,∇ZY )
= 2ψg(X,Z) + θ(X)g(Y,Z) + θ(Z)g(Y,X).

(8.5)

Also, we calculate g(X,Z) = a1a3 + b1b3 + c1c3 + d1d3 − t1t3
g(Y,Z) = a2a3 + b2b3 + c2c3 + d2d3 − t2t3
g(Y,X) = a1a2 + b1b2 + c1c2 + d1d2 − t1t2

.(8.6)

Also  θ(X) = t1
θ(Y ) = t2
θ(Z) = t3

.(8.7)

With the help of above equation (9.2) can be reduced

1
2 (LY g)(X,Z) =

{
(a1a2+b1b2+c1c2+d1d3)

t1
+ t1

(
b2
b1

− a2

a1
− c2

c1
− 1

)}
×{a1a3 + b1b3 + c1c3 + d1d3 − t1t3

− 1
2 t1(a2a3 + b2b3 + c2c3 + d2d3 − t2t3)
+t3(a1a3 + b1b3 + c1c3 + d1d3 − t1t3)}

(8.8)

Also,

(
˜̂
δ − λ)g(X,Z) = (−16− λ){a1a3 + b1b3 + c1c3 + d1d3 − t1t3}(8.9)

We consider that a1a3+b1b3+c1c3+d1d3−t1t3 ̸= 0 and 5t1(a2a3+b2b3+c2c3+d2d3−
t2t3)+5t3(a1a3+b1b3+c1c3+d1d3− t1t3)+2t2(a1a3+b1b3+c1c3+d1d3− t1t3)=0.

we get (g, Y, λ) is a Yamabe soliton, i.e., 1
2LY g(X,Z)=(

˜̂
δ− λ)g(X,Z) holds, unless

λ = −16−
{

(a1a2+b1b2+c1c2+d1d3)
t1

+ t1

(
b2
b1

− a2

a1
− c2

c1
− 1

)}
− 1

5 t2

= r̃ − ψ − 1
5θ(Y )

= constant

So the existence of Yamabe soliton (g, Y, λ) on a 5-dimensional hyperbolic Sasakian

manifold with semi symmetric metric connection ∇̃ with potential vector field Y as
torse-forming thus the Theorem 5.2 is verified.

Example 8.3. In Example 8.2, we consider the hyperbolic Sasakian manifoldM (ϕ, η, ξ, g)
with quarter symmetric non-metric connection. Using the equation (3.9), we obtain:

∇̂e1e1 = 0, ∇̂e1e2 = −e5, ∇̂e1e3 = 0, ∇e1e4 = 0, ∇̂e1e5 = −e2,

∇̂ee1 = −e5, ∇̂e2e2 = 0, ∇̂e2e3 = 0, ∇̂e2e4 = 0, ∇̂e2e5 = −e1,

∇̂e3e1 = 0, ∇̂e3e2 = 0, ∇̂e3e3 = 0, ∇̂e3e4 = −e5, ∇̂e3e5 = −e4,

∇̂e4e1 = 0, ∇̂e4e2 = −e5, ∇̂e4e3 = −e5, ∇̂e4e4 = 0, ∇̂e4e5 = −e3,

∇̂e5e1 = 0, ∇̂e5e2 = 0, ∇̂e5e3 = 0, ∇̂e5e4 = 0, ∇̂e5e5 = 0,



220 S. K. Yadav, M. D. Siddiqi and D. L. Suthar

Therefore, the non-vanishing components of the Riemannian curvatures, the Ricci curva-
tures and the Scalar curvature with respect to the quarter-symmetric non-metric connec-
tion are as follows:

R̂(e1, e2)e1 = e2, R̂(e1, e2)e2 = −e1, R̂(e1, e3)e1 = 0, R̂(e1, e3)e3 = 0,

R̂(e1, e4)e1 = 0, R̂(e1, e4)e4 = 0, R̂(e1, e5)e1 = −e5, R̂(e1, e5)e5 = −e1,

R̂(e2, e3)e2 = 0, R̂(e2, e3)e3 = 0, R̂(e2, e4)e3 = 0, R̂(e3, e4)e4 = 0,

R̂(e2, e5)e2 = −e5, R̂(e2, e5)e5 = −e2, R̂(e3, e4)e3 = e4, R̂(e3, e4)e4 = −e3,

R̂(e3, e5)e3 = −e5, R̂(e3, e5)e5 = −e3, R̂(e4, e5)e4 = −e5, R̂(e4, e5)e5 = −e4,

From these Riemannian curvatures tensors components with quarter semi-symmetric non-
metric connection we calculate:

Ŝ(e1, e1) = Ŝ(e2, e2) = Ŝ(e3, e3) = R̂(e4, e4) = 0, Ŝ(e5, e5) = −4

r̂ = −4.

Therefore, the constructed metric of the hyperbolic Sasakian manifold with quarter-
symmetric non-metric connection is Yamabe solion. It is shown that the scalar curvature
with respect to the quarter-symmetric non-metric connection r̂ = −4 and λ = −4 < 0 i.e
is admitting shrinking Yamabe soliton.
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