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Abstract. In this paper, we define a new type of convergence of sequences of sets
by using the continuous convergence (or α-convergence) of the sequence of distance
functions. Then we proved in which case it is equivalent to rough Wijsman convergence
by considering the different values of the roughness degrees.
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1. Introduction

Wijsman [11] has introduced a new type of convergence, which is considered as
one of the most important contributions to the theory of convergence of sequences
of sets and it is called by his name. He used pointwise convergence of distance
functions to define this type of convergence. He [12] also proved a necessary and
sufficient condition related to the pointwise limit and limit inferior of the sequences
of distance functions under various constraints in order for a sequence of sets to be
Wijsman convergent.

In the 2000s, after Phu [8] put forward the idea of rough convergence in the
normed spaces, Phu’s work was extended to statistical convergence by Aytar [1], and
to ideal convergence by Dündar and Çakan [4]. Phu’s [8] idea showed that a sequence
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which is not convergent in the usual sense might be convergent to a point, with a
certain degree of roughness. In 2016, by combining the two concepts (Wijsman
convergence and rough convergence), the idea of rough Wijsman convergence of a
sequence of sets was defined by Ölmez and Aytar [7]. Then, Subramanian and Esi
[10] defined the concept of rough Wijsman convergence for a triple sequences of
sets. Recently, Babaarslan and Tuncer [2] applied the theory of rough convergence
to the fuzzy set theory using the double sequences.

Continuous convergence, which is a stronger type of convergence than pointwise
convergence (see [6], [9]), has been referred to as α-convergence in recent years
(see [3], [5]). Pointwise convergence is equivalent to α-convergence on sequences
or nets of functions that are equicontinuous. Das and Papanastassiou [3] defined
the concepts of α-equal convergence, α-uniform equal convergence and α-strong
uniform equal convergence on the sequences of real-valued functions. Gregoriades
and Papanastassiou [5] defined the concept of exhaustive, which is a property weaker
than equicontinuity for sequences and nets of functions on metric spaces, and using
this property, they investigated the relationships between α-convergence, pointwise
convergence and uniform convergence. They also gave a generalization of Ascoli’s
theorem using the concept of exhaustive.

The main purpose of this article is to observe the results using α-convergence
instead of pointwise convergence of distance functions. In this context, first we
define the concept of rough continuous convergence. Then we examined the relations
between the new definitions obtained with different roughness degrees r1 and r2
(see Propositions 3.1 and 3.2). As the main results of this paper, we show that in
which cases the new definition coincides with the rough Wijsman convergence (see
Theorem 3.1). By giving illustrative examples, the similarity (see Example 3.1) and
difference (see Example 3.2) between definitions are obtained.

2. Preliminaries

Throughout this paper, we assume that X is a nonempty set and ρX is a metric on
X and that A, An are nonempty closed subsets of X for each n ∈ N.

Let (xn) be a sequence in the metric space X, and r be a nonnegative real
number, the sequence (xn) is said to be rough convergent to x with the roughness

degree r, denoted by xn
r→ x, if for each ε > 0 there exists an n (ε) ∈ N such that

ρX(xn, x) < r + ε for each n ≥ n (ε) [8].

The distance function d(·, A) : X → [0,∞) is defined by the formula

d(x,A) = inf{ρX(x, y) : y ∈ A}

[6, 11].

We say that the sequence (An) is Wijsman convergent to the set A if

lim
n→∞

d(x,An) = d(x,A) for all x ∈ X.
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In this case, we write An
W→ A, as n→∞ [11].

Given r ≥ 0, we say that a sequence (An) is rough Wijsman convergent to the
set A if for every ε > 0 and each x ∈ X there exists an N(x, ε) ∈ N such that

|d(x,An)− d(x,A)| < r + ε for all n ≥ N(x, ε)

and we write d(x,An)
r→ d(x,A) or An

r−W→ A as n→∞ [7].

Let (Y, ρY ) be another metric space and D be a subset of X. Assume the f,
fn functions from X to Y for each n ∈ N. The sequence (fn) α-converges to f iff
for every x ∈ X and for every sequence (xn) of points of X converging to x, the

sequence (fn(xn)) converges to f(x). We shall write fn
α→ f to denote that the

sequence (fn) α-converges to f (see [5, 6, 9]).

The open ball with centre x ∈ X and radius δ > 0 is the set

S(x, δ) = {y ∈ X : ρX(x, y) < δ}.

The sequence (fn) is called equicontinuous at x if for all ε > 0 there exists
δ = δ (ε) > 0 such that ρY (fn(y), fn(x)) < ε whenever y ∈ S(x, δ), n ∈ N [6].

3. Main Results

Definition 3.1. Let r1 ≥ 0 and r2 ≥ 0. The sequence (An) is said to be rough α-
convergent (or continuous convergent) to the set A with the roughness degree r1∧r2
if for every sequence (xn) which is xn

r1−→ x, the condition d (xn, An)
r2−→ d (x,A)

holds at each x ∈ X. In this case, we use the notation An
r1∧r2−α−→ A.

If take r1 = 0 and use the notation r instead of r2, the sequence (An) is said to be

rough α-convergent to the set A, and we write An
r−α−→ A.

Let us give an illustrative example to explain the Definition 3.1 to the readers.

Example 3.1. Define

An :=

{
[−3,−1]× [−1, 1] , if n is an odd integer
[1, 3]× [−1, 1] , if n is an even integer

and A = {0} × [−1, 1] in the space R2 equipped with the Euclid metric.

First we show that the sequence (An) is rough Wijsman convergent to the set A. Let
ε > 0 and (x∗, y∗) ∈ R2. Then we calculate

d ((x∗, y∗) , A) =


√

(x∗ − 0)2 + (y∗ − 1)2 , if x∗ ∈ R and y∗ > 1√
(x∗ − 0)2 + (y∗ + 1)2 , if x∗ ∈ R and y∗ < −1
|x∗| , if x∗ ∈ R and − 1 ≤ y∗ ≤ 1

.

Similarly, d ((x∗, y∗) , An) can be easily calculated. Then there exists an n1 = n1 ((x∗, y∗) , ε)
such that it can be easily obtained

|d ((x∗, y∗) , An)− d ((x∗, y∗) , A)| ≤ 3 + ε
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for each n ≥ n1 using the inequality
√

(x∗ − x)2 + (y∗ − y)2 ≤ |x∗ − x|+ |y∗ − y| . Hence,

it is proved that An
r−W−→ A, for every r ≥ 3.

Now we show that the sequence (An) is rough α-convergent to the set A. Assume
that the sequence (xn, yn) converges to the point (x∗, y∗) . Hence there exists an n2 =
n2 ((x∗, y∗) , ε) such that it can be easily calculated

|d ((xn, yn) , An)− d ((x∗, y∗) , A)| ≤ 3 + ε

for each n ≥ n2. This proves that An
r−α−→ A for each r ≥ 3.

Lastly we show that An
r1∧r2−α−→ A. Let (xn, yn)

r1−→ (x∗, y∗) . Then there exists an
n3 = n3 ((x∗, y∗) , ε) such that |xn − x∗| < r1 + ε and |yn − y∗| < r1 + ε for every n ≥ n3.
Hence the inequality

|d ((xn, yn) , An)− d ((x∗, y∗) , A)| ≤ 3 + r1 + ε

is obvious for every n ≥ n3. If we take r2 = r1 + 3, then we get An
r1∧r2−α−→ A.

Proposition 3.1. If the sequence (An) is rough α-convergent to the set A with the
roughness degree r1 ∧ r2 then it rough α-converges to the set A with the roughness
degree r2.

Proof. Assume An
r1∧r2−α−→ A. Take x ∈ X. Let (xn) be a sequence such that

xn −→ x. We also have xn
r1−→ x. Since An

r1∧r2−α−→ A, we get

(3.1) d (xn, An)
r2−→ d (x,A) .

Then (3.1) holds for each sequence (xn) such that xn −→ x. Hence we have An
r2−α−→

A, which completes the proof.

As can be seen following example, the converse implication of Proposition 3.1
doesn’t hold in general.

Example 3.2. Define

An :=


{
−2 +

1

n

}
, if n is an odd integer{

2− 1

n

}
, if n is an even integer

and A = [−2, 2].

First we show that the sequence (An) is rough Wijsman convergent to the set A. We
have

d(x,An) =

{ ∣∣x+ 2− 1
n

∣∣ , if n is an odd integer∣∣x− 2 + 1
n

∣∣ , if n is an even integer

and

d (x,A) =


|x+ 2| , if x < −2
0 , if − 2 ≤ x ≤ 2
|x− 2| , if x > 2
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for each x ∈ R. Hence, for each ε > 0 and each x, there exists an n1 = n1(x, ε) such that
n ≥ n1 we have

|d (x,An)− d (x,A)| ≤ 4 + ε.

Therefore, we get An
r−W−→ A for each r ≥ 4.

Now we show that the sequence (An) is rough α-convergent to the set A. Assume
xn −→ x. Since

d(xn, An) =

{ ∣∣xn + 2− 1
n

∣∣ , if n is an odd integer∣∣xn − 2 + 1
n

∣∣ , if n is an even integer
,

for each ε > 0 there exists an n2 = n2(x, ε) such that n ≥ n2 we have

|d (xn, An)− d (x,A)| ≤ 4 + ε.

This is desired result, i.e., An
r−α−→ A for every r ≥ 4.

Lastly we show that An
r1∧r2−α9 A. Take r1 = r2 = 4. Define xn = 6 for each n and

x = 2. Then the sequence (xn) is rough α-convergent to the point x with the roughness
degree r1 = 4. On the other hand, we have

d(xn, An) =

{ ∣∣8− 1
n

∣∣ , if n is an odd integer∣∣4 + 1
n

∣∣ , if n is an even integer
.

If we take ε = 1, then we have

|d (xn, An)− d (x,A)| = 8 � 5 = r2 + ε

for every odd terms. Hence we get An
r1∧r2−α9 A.

The question may come to mind: Could the converse implication of Proposition
3.1 be obtained based on a particular selection of r1 and r2? Before answering this
question as Proposition 3.2, we will give a simple inequality:

Lemma 3.1. If the set A is a nonempty closed subset of X, then we have

|d (x,A)− d (y,A)| ≤ ρX(x, y)

for each x, y ∈ X.

The proof of Lemma 3.1 is obvious from the Lipschitz continuity of distance
functions.

Proposition 3.2. If the sequence (An) is α-convergent to the set A with the rough-
ness degree r, then it is α-convergent to the set A with the roughness degree r1 ∧ r2
for each r1 and r2 such that r2 ≥ r1 + r.

Proof. Let ε > 0 and x ∈ X. If we assume that xn
r1−→ x, then it is clear that

there exists a sequence (yn) ⊂ X such that yn → x and ρX(xn, yn) ≤ r1. Since the
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sequence (An) is α-convergent to the set A with the roughness degree r, there exists
an n1(x, ε) ∈ N such that n ≥ n1 we have

|d (yn, An)− d (x,A)| < r + ε.

By Lemma 3.1, we get

|d (xn, An)− d (yn, An)| ≤ ρX(xn, yn) ≤ r1

for each n ∈ N. Then we have

|d (xn, An)− d (x,A)| ≤ |d (xn, An)− d (yn, An)|+ |d (yn, An)− d (x,A)|
< r1 + r + ε

for each n ≥ n1. If we take r2 = r1 + r, then we say that the sequence (An) is
α-convergent to the set A with the roughness degree r1 ∧ r2, which completes the
proof.

Before giving the main result of the paper, let’s give a lemma. It will be used
in the proof of Theorem 3.1.

Lemma 3.2. The sequence (d (·, An)) of distance functions is equicontinuous.

Proof. Let x ∈ X, ε > 0 and z ∈ S (x, ε) . We have

ρX (y, z) ≤ ρX (y, x) + ρX (x, z)

ρX (x, y) ≤ ρX (x, z) + ρX (z, y)

for y ∈ An, where n fixed. Since

d (z,An) = infy∈An ρX (y, z) ≤ infy∈An (ρX (y, x) + ρX (x, z))
= infy∈An ρX (y, x) + ρX (x, z) < d (x,An) + ε

d (x,An) = infy∈An
ρX (x, y) ≤ infy∈An

(ρX (x, z) + ρX (z, y))
= infy∈An

(ρX (z, y)) + ρX (x, z) < d (z,An) + ε,

we get
−ε < d (z,An)− d (x,An) < ε.

Therefore, if we take δ = ε > 0, then we get

|d (z,An)− d (x,An)| < ε

for each n ∈ N and each z ∈ S (x, ε) . Since the point x is arbitrary, the sequence
(d (·, An)) of functions is equicontinuous.

Theorem 3.1. The concepts of rough Wijsman convergence and rough α-convergence
are equivalent to each other with the same roughness degree.
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Proof. First we assume that the sequence (An) is rough α-convergent to the set A.

Let ε > 0 and x ∈ X. Define xn = x for each n ∈ N. Since An
r−α−→ A, there exists

an n1(x, ε) ∈ N such that n ≥ n1, we have

|d (xn, An)− d (x,A)| < r + ε.

Then we get

|d (x,An)− d (x,A)| = |d (xn, An)− d (x,A)|
< r + ε

for each n ≥ n1. Therefore the sequence (An) is rough Wijsman convergent to the
set A.

On the other hand, now we assume that the sequence (An) is rough Wijsman
convergent to the set A with the roughness degree r. Then the sequence (d (·, An)) of
functions is rough convergent to the function d (·, A) on X with the same roughness
degree r. Let x ∈ X and ε > 0. Hence there exists an n1 (x, ε) ∈ N such that n ≥ n1
we have

|d (x,An)− d (x,A)| < r +
ε

2
.

By Lemma 3.2, there exists δ (x, ε) > 0 such that

(3.2) |d (y,An)− d (x,An)| < ε

2

for each n ∈ N and each y ∈ S (x, δ) . Take a sequence (xn) such that xn −→ x. In
this case, there exists an n2 (x, δ) ∈ N such that ρX (xn, x) < δ for each n ≥ n2.
Hence by the inequality (3.2), we get

|d (xn, An)− d (x,An)| < ε

2

for each n ≥ n2. Define n0 = max {n1, n2} . Therefore we have

|d (xn, An)− d (x,A)| ≤ |d (xn, An)− d (x,An)|+ |d (x,An)− d (x,A)|

< r +
ε

2
+
ε

2
= r + ε

for each n ≥ n0. Since x is an arbitrary point, we say that the sequence (An) is
rough α-convergent to the set A.
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