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Abstract. In this paper, we study two systems of generalized Sylvester operator equa-
tions. We derive necessary and sufficient conditions for the existence of a solution and
provide the general form of a solution. We extend some recent resuts to more general
settings.
Key words: Sylvester equations, generalized inverses, Matrix equations and identities

1. Introduction

Let H, K, F , G, L, M, N be complex Hilbert spaces and let B(H,K) denote
the set of all bounded linear operators from H to K. For a given A ∈ B(H,K),
the symbols N (A) and R(A) denote the null space and the range of operator A,
respectively. The identity operator is always denoted by I. If A ∈ B(H,K) has a
closed range, then there exists unique operator X ∈ B(K,H) satisfying the following
equations

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA.

Such operator is called the Moore-Penrose inverse of an operator A ∈ B(H,K)
which is denoted by A†. If X ∈ B(K,H) satisfies the equation (1), i.e. AXA = A,
then X is an inner generalized inverse of A, and is usually denoted by A−. For
A ∈ B(H,K) there exists a Moore-Penrose inverse, if and only if there exists its
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inner generalized inverse if and only if R(A) is closed. In this case, we say that A
is regular. Furthermore, LA and RA stand for two projections LA = I − A†A and
RA = I −AA†. induced by A, respectively.

In this paper, we study two systems of generalized Sylvester operator equations

(1.1) A1X1 −X2B1 = C1, A2X3 −X2B2 = C2,

where A1 ∈ B(H,K), B1 ∈ B(F ,G), C1 ∈ B(F ,K), A2 ∈ B(M,K), B2 ∈ B(L,G),
C2 ∈ B(L,K), and

(1.2) A1X1 −X2B1 = C1, A2X2 −X3B2 = C2,

where A1 ∈ B(H,K), B1 ∈ B(F ,G), C1 ∈ B(F ,K), A2 ∈ B(K,M), B2 ∈ B(G,N ),
C2 ∈ B(G,M).

Systems of such type of matrix equations have been considered by many authors
[3, 4, 5, 6, 7]. In this pape,r we extended recent results [7] on systems of quaternion
matrix equations to infinite dimensional settings and provide much simpler proofs
to existing conditions.

2. Main results

The following two lemmas play a key role in this paper:

Lemma 2.1. [1] Let A ∈ B(H,K), B ∈ B(F ,G) and C ∈ B(F ,K) be such that
R(A) and R(B) are closed. Then the operator equation

AXB = C

is consistent if and only if
AA−CB−B = C,

for some A− and B−, in which case the general solution is given by

X = A−CB− + Y −A−AY BB−,

for arbitrary Y ∈ B(G,H).

Lemma 2.2. [2] Let E,F,G,D,N,M be Banach spaces. Let A1 ∈ B(F,E), A2 ∈
B(F,N), B1 ∈ B(D,G), B2 ∈ B(M,G) and

T := (IG −B1B
−
1 )B2 and S := A2(IF −A−1 A1)

be all regular. Moreover, let A1A
−
1 C1B

−
1 B1 = C1 and A2A

−
2 C2B

−
2 B2 = C2. Then

the equations
A1XB1 = C1 and A2XB2 = C2

have a common solution if and only if

(IN − SS−)C2(IM − T−T ) = (IN − SS−)A2A
−
1 C1B

−
1 B2(IM − T−T ).
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In this case, the general common solution is given by

X = (A−1 C1 − (IF −A−1 A1)S−(A2A
−
1 C1 −W ))B−1 (IG −B2T

−(IG −B1B
−
1 ))

+((IF − (IF −A−1 A1)S−A2)A−1 V + (IF −A−1 A1)S−C2)T−(IG −B1B
−
1 )

+Z − (A−1 A1 + (IF −A−1 A1)S−S)Z(B1B
−
1 + TT−(IG −B1B

−
1 )),

where

V = C1B
−
1 B2(IM − T−T ) + A1A

−
2 (IN − SS−)C2T

−T + A1A
−
1 QT−T

−A1A
−
2 (IN − SS−)A2A

−
1 QT−T,

W = (IN − SS−)A2A
−
1 C1 + SS−C2(IM − T−T )B−2 B1 + SS−PB−1 B1

−SS−PB−1 B2(IM − T−T )B−2 B1,

in which P ,Q, Z are arbitrary elements of B(D,N), B(M,E) and B(G,F ), respec-
tively.

Note that in the preceding lemmas, in the solvability conditions and formulas
for general solutions, arbitrary inner generalized inverses can be replaced by the
Moore-Penrose inverse. For example, in Lemma 2.1, if

AA−CB−B = C

holds for some A− and B−, then

AA†CB†B = AA†(AA−CB−B)B†B = AA−CB−B = C.

Conversly, if
AA†CB†B = C

holds, then for arbitrary A− and B− it follows

AA−CB−B = AA−(AA†CB†B)B−B = AA†CB†B = C.

So, for A− and B− in the solvability conditions and formulas for general solutions,
we can choose exactly A† and B†, respectively.

Theorem 2.1. Let A1 ∈ B(H,K), B1 ∈ B(F ,G), C1 ∈ B(F ,K), A2 ∈ B(M,K),
B2 ∈ B(L,G), C2 ∈ B(L,K) be such that A1, A2, B1, B2, S and T are all regular.
Put

T = (I −B1B
†
1)B2, S = (I −A2A

†
2)A1A

†
1,

C = (I −A2A
†
2)(C2 − (I −A1A

†
1)C1B

†
1B2)(I − T †T ).

The following statements are equivalent:

(i) The system (1.1) is consistent;
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(ii) RA1
C1LB1

= 0, RA2
C2LB2

= 0, RSC = 0;

(iii) RA1
C1LB1

= 0, C(I − (B2LT )†(B2LT )) = 0, RSC = 0.

In this case, the general solution to the system (1.1) is given by

X1 = A†1S
†(RA1C1 + W )B†1B1 + A†1ZB1 −A†1S

†SZB1 + A†1C1 + LA1R,

X2 =
(
−RA1

C1 + S†(RA1
C1 + W )

)
B†1(I −B2T

†)

+
(
(I − S†)RA1V − S†C2

)
T † + Z − (I −A1A

†
1 + S†S)Z(B1B

†
1 + TT †),

X3 = A†2
(
−RA1

C1 − S†(RA1
C1 + W )

)
B†1B2LT

+ A†2
(
(I − S†)RA1

V + S†C2

)
T †B2

+ A†2ZB2 −A†2(I −A1A
†
1 + S†S)Z(B1B

†
1B2 + T ) + A†2C2 + LA2Y,

where

V = −RA1
C1B

†
1B2LT −RA1

RA2
RSRA2

C2T
†T

+ RA1
QT †T −RA1

RA2
RSRA2

RA1
QT †T

and

W = −RSRA2
RA1

C1 − SS†C2LTB
†
2B1

+ SS†PB†1B1 − SS†PB†1B2LTB
†
2B1,

where P , Q, R and Y are arbitrary elements of B(F ,K), B(G,K), B(F ,H) and
B(L,K), respectively.

Proof. (i) ⇒ (ii): Since the system (1.1) is consistent, there exists X2 ∈ B(G,K)
such that equations

A1X1 −X2B1 = C1

A2X3 −X2B2 = C2

are solvable for X1 and X3, respectively. According to Lemma 2.1 equation

A1X1 −X2B1 = C1

is solvable for X1 if and only if

(2.1) (I −A1A
†
1)(C1 + X2B2) = 0,

and equation
A2X3 −X2B2 = C2
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is solvable for X2 if and only if

(2.2) (I −A2A
†
2)(C2 + X2B2) = 0.

So, from (2.1) and (2.2) it follows that equations

(I −A1A
†
1)X2B1 = −(I −A1A

†
1)C1,

(I −A2A
†
2)X2B2 = −(I −A2A

†
2)C2(2.3)

have a common solution. From Lemma 2.1 and Lemma 2.2 system (2.3) is consistent
if and only if

(I −A1A
†
1)C1(I −B†1B1) = 0,

(I −A2A
†
2)C2(I −B†2B2) = 0,

(I − SS†)C = 0.

(ii) ⇒ (i): If (ii) holds, then by Lemma 2.2 it follows that system (2.3) is
consistent. Let X2 ∈ B(G,K) be the solution to the system (2.3) and let X1 =

A†1(X2B1 +C1) and X3 = A†2(X2B2 +C2). Then it is easy to see that such X1, X2

and X3 satisfy (1.1).

(ii)⇒ (iii): Suppose that

(2.4) (I −A1A
†
1)C1(I −B†1B1) = 0,

(2.5) (I −A1A
†
1)C1(I −B†1B1) = 0

and

(2.6) (I − SS†)C = 0

hold. From (2.6) we get

C(I − (B2LT )†(B2LT ))

= C(I − (B2(I − T †T ))†(B2(I − T †T )))

= (I −A2A
†
2)C2(I − T †T )(I − (B2(I − T †T ))†(B2(I − T †T )))

−(I −A2A
†
2)(I −A1A

†
1)C1B

†
1B2(I − T †T )(I − (B2(I − T †T ))†(B2(I − T †T )))

= (I −A2A
†
2)C2(I − T †T )(I − (B2(I − T †T ))†(B2(I − T †T )))

= (I −A2A
†
2)C2B

†
2B2(I − T †T )(I − (B2(I − T †T ))†(B2(I − T †T )))

= 0.

(iii)⇒ (ii): Suppose that

(2.7) (I −A1A
†
1)C1(I −B†1B1) = 0,
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(2.8) C(I − (B2(I − T †T ))†(B2(I − T †T ))) = 0

and

(2.9) (I − SS†)C = 0

hold. From (2.8) we get

RA2
C2(I − T †T )(I − (B2(I − T †T ))†(B2(I − T †T )))

= RA2RA1C1B
†
1B2(I − T †T )LB2(I−T †T )

= 0.(2.10)

Note that

(I − T †T )LB2

= (I − ((I −B1B
†
1)B2)†(I −B1B

†
1)B2)(I −B†2B2)

= I −B†2B2

= LB2
,(2.11)

so from (2.11) and (2.10) we get

RA2C2LB2

= RA2C2(I − T †T )LB2

= RA2C2(I − T †T )(B2(I − T †T ))†B2(I − T †T )LB2

= RA2C2(I − T †T )(B2(I − T †T ))†(I − T †RB1)B2LB2

= 0.

Suppose that system (1.1) is consistent.

Since X2 ∈ B(G,K) is a solution to (1.1) if and only if it satisfies (2.3), its
general form, according to Lemma 2.2, is given by

X2 =
(
−RA1C1 + S†(RA1C1 + W )

)
B†1(I −B2T

†)

+
(
(I − S†)RA1

V − S†C2

)
T †

+ Z − (I −A1A
†
1 + S†S)Z(B1B

†
1 + TT †),

where Z is an arbitrary element of B(G,K), and

V = −RA1C1B
†
1B2LT −RA1RA2RSRA2C2T

†T

+ RA1QT †T −RA1RA2RSRA2RA1QT †T

and

W = −RSRA2
RA1

C1 − SS†C2LTB
†
2B1

+ SS†PB†1B1 − SS†PB†1B2LTB
†
2B1,
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where P and Q are arbitrary elements of B(F ,K) and B(G,K).

From the first equation in (1.1) we have

A1X1 = X2B1 + C1,

so, by Lemma 2.1 we get

X1 = A†1(X2B1 + C1) + LA1R

= A†1S
†(RA1

C1 + W )B†1B1 + A†1ZB1 −A†1S
†SZB1 + A†1C1 + LA1

R,

where R is an arbitrary element of B(F ,H).

From the second equation in (1.1) we have

A2X3 = X2B2 + C2,

so, by Lemma 2.1 we get

X3 = A†2(X2B2 + C2) + LA2
Y

= A†2
(
−RA1

C1 − S†(RA1
C1 + W )

)
B†1B2LT

+ A†2
(
(I − S†)RA1V + S†C2

)
T †B2

+ A†2ZB2 −A†2(I −A1A
†
1 + S†S)Z(B1B

†
1B2 + T ) + A†2C2 + LA2

Y,

where Y is an arbitrary element of B(L,K). 2

Theorem 2.2. Let A1 ∈ B(H,K), B1 ∈ B(M,L), C1 ∈ B(M,K), A2 ∈ B(K,N ),
B2 ∈ B(L,G), C2 ∈ B(L,N ) be such that A1, A2, B1, B2, S and T are all regular.
Put

T = (I −B1B
†
1)(I −B†2B2), S = A2A1A

†
1,

C = (I − (A2A1)(A2A1)†)(C2 + A2(I −A1A
†
1)C1B

†
1)(I −B†2B2).

The following statements are equivalent:

(i) The system (1.2) is consistent;

(ii) RA1
C1LB1

= 0, RA2
C2LB2

= 0, CLT = 0;

(iii) RA1
C1LB1

= 0, (I −RA2A1
A2(RA2A1

A2)†)C = 0, CLT = 0.

In this case, the general solution to the system (1.2) is given by

X1 = A†1S
†A2RA1

C1 + A†1S
†WB†1B1 + A†1(I − S†)V B1

+ A†1ZB1 −A†1S
†SZB1 + A†1C1 + RA1R,

X2 =
(
−RA1

C1 + S†(A2RA1
C1 + W )

)
B†1(I − T †)

+
(
(I − S†A2)RA1

V + S†C2LB2

)
T †

+ Z − (RA1
+ S†S)Z(B1B

†
1 + TT †),
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X3 = A2

(
−RA1C1 + S†(A2RA1C1 + W )

)
B†1(I − T †)B†2

+ A2

(
(I − S†A2)RA1

V + S†C2LB2

)
T †B†2

+ A2ZB†2 −A2(RA1 + S†S)Z(B1B
†
1 + TT †)B†2 − C2B

†
2 + Y RB2 ,

where
V = −RA1

C1B
†
1LB2

LT + RA1
QT †T −RA1

A†2RSA2RA1
QT †T

and

W = −RSA2RA1
C1 + SS†C2LB2

B1 + SS†PB†1B1 − SS†PB†1LB2
B1

with P ,Q, Z and Y arbitrary elements of B(F ,K), B(N ,K), B(G,K), and B(N ,M),
respectively.

Proof. (i)⇒ (ii): Since the system (1.1) is consistent, there exists
X2 ∈ B(G,K) such that equations

A1X1 −X2B1 = C1

A2X2 −X3B2 = C2

are solvable for X1 and X3, respectively. According to Lemma 2.1 equation

(2.12) A1X1 −X2B1 = C1

is solvable for X1 if and only if

(2.13) (I −A1A
†
1)(C1 + X2B2) = 0

and equation

(2.14) A2X2 −X3B2 = C2

is solvable for X3 if and only if

(2.15) (A2X2 − C2)(I −B†2B2) = 0.

So, from (2.13) and (2.15) it follows that equations

(I −A1A
†
1)X2B1 = −(I −A1A

†
1)C1,

A2X2(I −B†2B2) = C2(I −B†2B2)(2.16)

have a common solution. From Lemma 2.1 and Lemma 2.2 system (2.16) is consis-
tent if and only if

(I −A1A
†
1)C1(I −B†1B1) = 0,

(I −A2A
†
2)C2(I −B†2B2) = 0,

C ′(I − T †T ) = 0,
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where

C ′ = (I − SS†)(C2 + A2(I −A1A
†
1)C1B

†
1)(I −B†2B2).

Note that condition

(2.17) C ′(I − T †T ) = 0

is equivalent to

(2.18) C(I − T †T ) = 0,

since (2.17) implies

C(I − T †T )

= RA2A1
(C2 + A2(I −A1A

†
1)C1B

†
1)LB2

LT

= RA2A1SS
†(C2 + A2(I −A1A

†
1)C1B

†
1)LB2LT

= RA2A1A2A1A
†
1S
†(C2 + A2(I −A1A

†
1)C1B

†
1)LB2LT

= 0,

and (2.18) implies

C ′(I − T †T )

= RS(C2 + A2(I −A1A
†
1)C1B

†
1)LB2

LT

= RS(A2A1)(A2A1)†(C2 + A2(I −A1A
†
1)C1B

†
1)LB2

LT

= (I − (A2A1A
†
1)(A2A1A

†
1)†)(A2A1)(A2A1)†(C2 + A2(I −A1A

−
1 )C1B

−
1 )LB2

LT

= 0.

I follows that

(I −A1A
†
1)C1(I −B†1B1) = 0,

(I −A2A
†
2)C2(I −B†2B2) = 0,

C(I − T †T ) = 0.

(ii) ⇒ (i): If (ii) holds, then by Lemma 2.2 it follows that system (2.16) is
consistent. Let X2 ∈ B(G,K) be the solution to the system (2.16) and let X1 =

A†1(X2B1 +C1) and X3 = (A2X2−C2)B†2. Then it is easy to see that such X1, X2

and X3 satisfy (1.2).

(ii)⇒ (iii): Suppose that

(2.19) (I −A1A
†
1)C1(I −B†1B1) = 0,

(2.20) (I −A2A
†
2)C2(I −B†2B2) = 0
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and

(2.21) C(I − T †T ) = 0.

From (2.20) we obtain

(I −RA2A1A2(RA2A1A2)†)C

= (I −RA2A1A2(RA2A1A2)†)RA2A1(C2 + A2(I −A1A
†
1)C1B

†
1)LB2

= (I −RA2A1A2(RA2A1A2)†)RA2A1C2LB2

+(I −RA2A1
A2(RA2A1

A2)†)RA2A1
A2(I −A1A

†
1)C1B

†
1LB2

= (I −RA2A1
A2(RA2A1

A2)†)RA2A1
A2A

†
2C2LB2

= 0.

(ii)⇒ (iii): Suppose that

(2.22) (I −A1A
†
1)C1(I −B†1B1) = 0,

(2.23) (I −RA2A1
A2(RA2A1

A2)†)C = 0

and

(2.24) C(I − T †T ) = 0.

From (2.23) we get

(I −A2A
†
2)C2(I −B†2B2)

= (I −A2A
†
2)C

= (I −A2A
†
2)RA2A1A2(RA2A1A2)†C

= 0.

Suppose that system (1.2) is consistent. Since X2 ∈ B(G,K) is a solution to (1.2)
if and only if it is solution to (2.16), its general form, according to Lemma 2.2, is
given by

X2 =
(
−RA1

C1 + S†(A2RA1
C1 + W )

)
B†1(I − T †)

+
(
(I − S†A2)RA1V + S†C2LB2

)
T †

+ Z − (RA1
+ S†S)Z(B1B

†
1 + TT †),

where

V = −RA1C1B
†
1LB2LT + RA1QT †T −RA1A

†
2RSA2RA1QT †T

and

W = −RSA2RA1
C1 + SS†C2LB2

B1 + SS†PB†1B1 − SS†PB†1LB2
B1
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with P , Q, Z arbitrary elements of B(F ,M), B(G,K) and B(G,K), respectively.

From the first equation in (1.2) we have

A1X1 = X2B1 + C1,

so, by Lemma 2.1 we get

X1 = A†1(X2B1 + C1) + LA1
R

= A†1S
†(A2RA1

C1 + W )B†1B1 + A†1ZB1 −A†1S
†SZB1 + A†1C1 + LA1

R,

where R is an arbitrary element of B(F ,H).

From the second equation in (1.2) we have

X3B2 = A2X2 − C2,

so, by Lemma 2.1 we get

X3 = (A2X2 − C2)B†2 + Y RB2

= A2

(
−RA1

C1 + S†(A2RA1
C1 + W )

)
B†1(I − T †)B†2

+ A2

(
(I − S†A2)RA1

V + S†C2LB2

)
T †B†2

+ A2ZB†2 −A2(RA1 + S†S)Z(B1B
†
1 + TT †)B†2 − C2B

†
2 + Y RB2 ,

where Y is an arbitrary element of B(N ,M). 2
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