A NOTE ON SOME SYSTEMS OF GENERALIZED SYLVESTER EQUATIONS *

Jovana Nikolov Radenković

Faculty of Sciences and Mathematics, University of Niš, Serbia

Abstract

In this paper, we study two systems of generalized Sylvester operator equations. We derive necessary and sufficient conditions for the existence of a solution and provide the general form of a solution. We extend some recent resuts to more general settings.

Key words: Sylvester equations, generalized inverses, Matrix equations and identities

1. Introduction

Let $\mathcal{H}, \mathcal{K}, \mathcal{F}, \mathcal{G}, \mathcal{L}, \mathcal{M}, \mathcal{N}$ be complex Hilbert spaces and let $\mathcal{B}(\mathcal{H}, \mathcal{K})$ denote the set of all bounded linear operators from \mathcal{H} to \mathcal{K}. For a given $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, the symbols $\mathcal{N}(A)$ and $\mathcal{R}(A)$ denote the null space and the range of operator A, respectively. The identity operator is always denoted by I. If $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ has a closed range, then there exists unique operator $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ satisfying the following equations
(1) $A X A=A$
(2) $X A X=X$
(3) $(A X)^{*}=A X$
(4) $(X A)^{*}=X A$.

Such operator is called the Moore-Penrose inverse of an operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ which is denoted by A^{\dagger}. If $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ satisfies the equation (1), i.e. $A X A=A$, then X is an inner generalized inverse of A, and is usually denoted by A^{-}. For $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ there exists a Moore-Penrose inverse, if and only if there exists its

[^0]inner generalized inverse if and only if $\mathcal{R}(A)$ is closed. In this case, we say that A is regular. Furthermore, L_{A} and R_{A} stand for two projections $L_{A}=I-A^{\dagger} A$ and $R_{A}=I-A A^{\dagger}$. induced by A, respectively.

In this paper, we study two systems of generalized Sylvester operator equations

$$
\begin{equation*}
A_{1} X_{1}-X_{2} B_{1}=C_{1}, \quad A_{2} X_{3}-X_{2} B_{2}=C_{2} \tag{1.1}
\end{equation*}
$$

where $A_{1} \in \mathcal{B}(\mathcal{H}, \mathcal{K}), B_{1} \in \mathcal{B}(\mathcal{F}, \mathcal{G}), C_{1} \in \mathcal{B}(\mathcal{F}, \mathcal{K}), A_{2} \in \mathcal{B}(\mathcal{M}, \mathcal{K}), B_{2} \in \mathcal{B}(\mathcal{L}, \mathcal{G})$, $C_{2} \in \mathcal{B}(\mathcal{L}, \mathcal{K})$, and

$$
\begin{equation*}
A_{1} X_{1}-X_{2} B_{1}=C_{1}, \quad A_{2} X_{2}-X_{3} B_{2}=C_{2} \tag{1.2}
\end{equation*}
$$

where $A_{1} \in \mathcal{B}(\mathcal{H}, \mathcal{K}), B_{1} \in \mathcal{B}(\mathcal{F}, \mathcal{G}), C_{1} \in \mathcal{B}(\mathcal{F}, \mathcal{K}), A_{2} \in \mathcal{B}(\mathcal{K}, \mathcal{M}), B_{2} \in \mathcal{B}(\mathcal{G}, \mathcal{N})$, $C_{2} \in \mathcal{B}(\mathcal{G}, \mathcal{M})$.

Systems of such type of matrix equations have been considered by many authors $[3,4,5,6,7]$. In this pape,r we extended recent results [7] on systems of quaternion matrix equations to infinite dimensional settings and provide much simpler proofs to existing conditions.

2. Main results

The following two lemmas play a key role in this paper:
Lemma 2.1. [1] Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{K}), B \in \mathcal{B}(\mathcal{F}, \mathcal{G})$ and $C \in \mathcal{B}(\mathcal{F}, \mathcal{K})$ be such that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed. Then the operator equation

$$
A X B=C
$$

is consistent if and only if

$$
A A^{-} C B^{-} B=C,
$$

for some A^{-}and B^{-}, in which case the general solution is given by

$$
X=A^{-} C B^{-}+Y-A^{-} A Y B B^{-}
$$

for arbitrary $Y \in \mathcal{B}(\mathcal{G}, \mathcal{H})$.
Lemma 2.2. [2] Let E, F, G, D, N, M be Banach spaces. Let $A_{1} \in \mathcal{B}(F, E), A_{2} \in$ $\mathcal{B}(F, N), B_{1} \in \mathcal{B}(D, G), B_{2} \in \mathcal{B}(M, G)$ and

$$
T:=\left(I_{G}-B_{1} B_{1}^{-}\right) B_{2} \quad \text { and } \quad S:=A_{2}\left(I_{F}-A_{1}^{-} A_{1}\right)
$$

be all regular. Moreover, let $A_{1} A_{1}^{-} C_{1} B_{1}^{-} B_{1}=C_{1}$ and $A_{2} A_{2}^{-} C_{2} B_{2}^{-} B_{2}=C_{2}$. Then the equations

$$
A_{1} X B_{1}=C_{1} \quad \text { and } \quad A_{2} X B_{2}=C_{2}
$$

have a common solution if and only if

$$
\left(I_{N}-S S^{-}\right) C_{2}\left(I_{M}-T^{-} T\right)=\left(I_{N}-S S^{-}\right) A_{2} A_{1}^{-} C_{1} B_{1}^{-} B_{2}\left(I_{M}-T^{-} T\right)
$$

In this case, the general common solution is given by

$$
\begin{aligned}
X= & \left(A_{1}^{-} C_{1}-\left(I_{F}-A_{1}^{-} A_{1}\right) S^{-}\left(A_{2} A_{1}^{-} C_{1}-W\right)\right) B_{1}^{-}\left(I_{G}-B_{2} T^{-}\left(I_{G}-B_{1} B_{1}^{-}\right)\right) \\
& +\left(\left(I_{F}-\left(I_{F}-A_{1}^{-} A_{1}\right) S^{-} A_{2}\right) A_{1}^{-} V+\left(I_{F}-A_{1}^{-} A_{1}\right) S^{-} C_{2}\right) T^{-}\left(I_{G}-B_{1} B_{1}^{-}\right) \\
& +Z-\left(A_{1}^{-} A_{1}+\left(I_{F}-A_{1}^{-} A_{1}\right) S^{-} S\right) Z\left(B_{1} B_{1}^{-}+T T^{-}\left(I_{G}-B_{1} B_{1}^{-}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
V= & C_{1} B_{1}^{-} B_{2}\left(I_{M}-T^{-} T\right)+A_{1} A_{2}^{-}\left(I_{N}-S S^{-}\right) C_{2} T^{-} T+A_{1} A_{1}^{-} Q T^{-} T \\
& -A_{1} A_{2}^{-}\left(I_{N}-S S^{-}\right) A_{2} A_{1}^{-} Q T^{-} T \\
W= & \left(I_{N}-S S^{-}\right) A_{2} A_{1}^{-} C_{1}+S S^{-} C_{2}\left(I_{M}-T^{-} T\right) B_{2}^{-} B_{1}+S S^{-} P B_{1}^{-} B_{1} \\
& -S S^{-} P B_{1}^{-} B_{2}\left(I_{M}-T^{-} T\right) B_{2}^{-} B_{1},
\end{aligned}
$$

in which P, Q, Z are arbitrary elements of $\mathcal{B}(D, N), \mathcal{B}(M, E)$ and $\mathcal{B}(G, F)$, respectively.

Note that in the preceding lemmas, in the solvability conditions and formulas for general solutions, arbitrary inner generalized inverses can be replaced by the Moore-Penrose inverse. For example, in Lemma 2.1, if

$$
A A^{-} C B^{-} B=C
$$

holds for some A^{-}and B^{-}, then

$$
A A^{\dagger} C B^{\dagger} B=A A^{\dagger}\left(A A^{-} C B^{-} B\right) B^{\dagger} B=A A^{-} C B^{-} B=C
$$

Conversly, if

$$
A A^{\dagger} C B^{\dagger} B=C
$$

holds, then for arbitrary A^{-}and B^{-}it follows

$$
A A^{-} C B^{-} B=A A^{-}\left(A A^{\dagger} C B^{\dagger} B\right) B^{-} B=A A^{\dagger} C B^{\dagger} B=C .
$$

So, for A^{-}and B^{-}in the solvability conditions and formulas for general solutions, we can choose exactly A^{\dagger} and B^{\dagger}, respectively.

Theorem 2.1. Let $A_{1} \in \mathcal{B}(\mathcal{H}, \mathcal{K}), B_{1} \in \mathcal{B}(\mathcal{F}, \mathcal{G}), C_{1} \in \mathcal{B}(\mathcal{F}, \mathcal{K}), A_{2} \in \mathcal{B}(\mathcal{M}, \mathcal{K})$, $B_{2} \in \mathcal{B}(\mathcal{L}, \mathcal{G}), C_{2} \in \mathcal{B}(\mathcal{L}, \mathcal{K})$ be such that $A_{1}, A_{2}, B_{1}, B_{2}, S$ and T are all regular. Put

$$
\begin{aligned}
& T=\left(I-B_{1} B_{1}^{\dagger}\right) B_{2}, \quad S=\left(I-A_{2} A_{2}^{\dagger}\right) A_{1} A_{1}^{\dagger} \\
& C=\left(I-A_{2} A_{2}^{\dagger}\right)\left(C_{2}-\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger} B_{2}\right)\left(I-T^{\dagger} T\right)
\end{aligned}
$$

The following statements are equivalent:
(i) The system (1.1) is consistent;
(ii) $R_{A_{1}} C_{1} L_{B_{1}}=0, R_{A_{2}} C_{2} L_{B_{2}}=0, R_{S} C=0$;
(iii) $R_{A_{1}} C_{1} L_{B_{1}}=0, C\left(I-\left(B_{2} L_{T}\right)^{\dagger}\left(B_{2} L_{T}\right)\right)=0, R_{S} C=0$.

In this case, the general solution to the system (1.1) is given by

$$
X_{1}=A_{1}^{\dagger} S^{\dagger}\left(R_{A_{1}} C_{1}+W\right) B_{1}^{\dagger} B_{1}+A_{1}^{\dagger} Z B_{1}-A_{1}^{\dagger} S^{\dagger} S Z B_{1}+A_{1}^{\dagger} C_{1}+L_{A_{1}} R,
$$

$$
X_{2}=\left(-R_{A_{1}} C_{1}+S^{\dagger}\left(R_{A_{1}} C_{1}+W\right)\right) B_{1}^{\dagger}\left(I-B_{2} T^{\dagger}\right)
$$

$$
+\left(\left(I-S^{\dagger}\right) R_{A_{1}} V-S^{\dagger} C_{2}\right) T^{\dagger}+Z-\left(I-A_{1} A_{1}^{\dagger}+S^{\dagger} S\right) Z\left(B_{1} B_{1}^{\dagger}+T T^{\dagger}\right)
$$

$$
X_{3}=A_{2}^{\dagger}\left(-R_{A_{1}} C_{1}-S^{\dagger}\left(R_{A_{1}} C_{1}+W\right)\right) B_{1}^{\dagger} B_{2} L_{T}
$$

$$
+A_{2}^{\dagger}\left(\left(I-S^{\dagger}\right) R_{A_{1}} V+S^{\dagger} C_{2}\right) T^{\dagger} B_{2}
$$

$$
+A_{2}^{\dagger} Z B_{2}-A_{2}^{\dagger}\left(I-A_{1} A_{1}^{\dagger}+S^{\dagger} S\right) Z\left(B_{1} B_{1}^{\dagger} B_{2}+T\right)+A_{2}^{\dagger} C_{2}+L_{A_{2}} Y
$$

where

$$
\begin{aligned}
V= & -R_{A_{1}} C_{1} B_{1}^{\dagger} B_{2} L_{T}-R_{A_{1}} R_{A_{2}} R_{S} R_{A_{2}} C_{2} T^{\dagger} T \\
& +R_{A_{1}} Q T^{\dagger} T-R_{A_{1}} R_{A_{2}} R_{S} R_{A_{2}} R_{A_{1}} Q T^{\dagger} T
\end{aligned}
$$

and

$$
\begin{aligned}
W= & -R_{S} R_{A_{2}} R_{A_{1}} C_{1}-S S^{\dagger} C_{2} L_{T} B_{2}^{\dagger} B_{1} \\
& +S S^{\dagger} P B_{1}^{\dagger} B_{1}-S S^{\dagger} P B_{1}^{\dagger} B_{2} L_{T} B_{2}^{\dagger} B_{1}
\end{aligned}
$$

where P, Q, R and Y are arbitrary elements of $\mathcal{B}(\mathcal{F}, \mathcal{K}), \mathcal{B}(\mathcal{G}, \mathcal{K}), \mathcal{B}(\mathcal{F}, \mathcal{H})$ and $\mathcal{B}(\mathcal{L}, \mathcal{K})$, respectively.

Proof. $(i) \Rightarrow(i i)$: Since the system (1.1) is consistent, there exists $X_{2} \in \mathcal{B}(\mathcal{G}, \mathcal{K})$ such that equations

$$
\begin{aligned}
& A_{1} X_{1}-X_{2} B_{1}=C_{1} \\
& A_{2} X_{3}-X_{2} B_{2}=C_{2}
\end{aligned}
$$

are solvable for X_{1} and X_{3}, respectively. According to Lemma 2.1 equation

$$
A_{1} X_{1}-X_{2} B_{1}=C_{1}
$$

is solvable for X_{1} if and only if

$$
\begin{equation*}
\left(I-A_{1} A_{1}^{\dagger}\right)\left(C_{1}+X_{2} B_{2}\right)=0 \tag{2.1}
\end{equation*}
$$

and equation

$$
A_{2} X_{3}-X_{2} B_{2}=C_{2}
$$

is solvable for X_{2} if and only if

$$
\begin{equation*}
\left(I-A_{2} A_{2}^{\dagger}\right)\left(C_{2}+X_{2} B_{2}\right)=0 \tag{2.2}
\end{equation*}
$$

So, from (2.1) and (2.2) it follows that equations

$$
\begin{align*}
\left(I-A_{1} A_{1}^{\dagger}\right) X_{2} B_{1} & =-\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} \\
\left(I-A_{2} A_{2}^{\dagger}\right) X_{2} B_{2} & =-\left(I-A_{2} A_{2}^{\dagger}\right) C_{2} \tag{2.3}
\end{align*}
$$

have a common solution. From Lemma 2.1 and Lemma 2.2 system (2.3) is consistent if and only if

$$
\begin{aligned}
& \left(I-A_{1} A_{1}^{\dagger}\right) C_{1}\left(I-B_{1}^{\dagger} B_{1}\right)=0 \\
& \left(I-A_{2} A_{2}^{\dagger}\right) C_{2}\left(I-B_{2}^{\dagger} B_{2}\right)=0 \\
& \left(I-S S^{\dagger}\right) C=0
\end{aligned}
$$

$(i i) \Rightarrow(i)$: If (ii) holds, then by Lemma 2.2 it follows that system (2.3) is consistent. Let $X_{2} \in \mathcal{B}(G, K)$ be the solution to the system (2.3) and let $X_{1}=$ $A_{1}^{\dagger}\left(X_{2} B_{1}+C_{1}\right)$ and $X_{3}=A_{2}^{\dagger}\left(X_{2} B_{2}+C_{2}\right)$. Then it is easy to see that such X_{1}, X_{2} and X_{3} satisfy (1.1).
$(i i) \Rightarrow(i i i)$: Suppose that

$$
\begin{align*}
& \left(I-A_{1} A_{1}^{\dagger}\right) C_{1}\left(I-B_{1}^{\dagger} B_{1}\right)=0 \tag{2.4}\\
& \left(I-A_{1} A_{1}^{\dagger}\right) C_{1}\left(I-B_{1}^{\dagger} B_{1}\right)=0 \tag{2.5}
\end{align*}
$$

and

$$
\begin{equation*}
\left(I-S S^{\dagger}\right) C=0 \tag{2.6}
\end{equation*}
$$

hold. From (2.6) we get

$$
\begin{aligned}
& C\left(I-\left(B_{2} L_{T}\right)^{\dagger}\left(B_{2} L_{T}\right)\right) \\
= & C\left(I-\left(B_{2}\left(I-T^{\dagger} T\right)\right)^{\dagger}\left(B_{2}\left(I-T^{\dagger} T\right)\right)\right) \\
= & \left(I-A_{2} A_{2}^{\dagger}\right) C_{2}\left(I-T^{\dagger} T\right)\left(I-\left(B_{2}\left(I-T^{\dagger} T\right)\right)^{\dagger}\left(B_{2}\left(I-T^{\dagger} T\right)\right)\right) \\
& -\left(I-A_{2} A_{2}^{\dagger}\right)\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger} B_{2}\left(I-T^{\dagger} T\right)\left(I-\left(B_{2}\left(I-T^{\dagger} T\right)\right)^{\dagger}\left(B_{2}\left(I-T^{\dagger} T\right)\right)\right) \\
= & \left(I-A_{2} A_{2}^{\dagger}\right) C_{2}\left(I-T^{\dagger} T\right)\left(I-\left(B_{2}\left(I-T^{\dagger} T\right)\right)^{\dagger}\left(B_{2}\left(I-T^{\dagger} T\right)\right)\right) \\
= & \left(I-A_{2} A_{2}^{\dagger}\right) C_{2} B_{2}^{\dagger} B_{2}\left(I-T^{\dagger} T\right)\left(I-\left(B_{2}\left(I-T^{\dagger} T\right)\right)^{\dagger}\left(B_{2}\left(I-T^{\dagger} T\right)\right)\right) \\
= & 0 .
\end{aligned}
$$

$(i i i) \Rightarrow(i i)$: Suppose that

$$
\begin{equation*}
\left(I-A_{1} A_{1}^{\dagger}\right) C_{1}\left(I-B_{1}^{\dagger} B_{1}\right)=0 \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
C\left(I-\left(B_{2}\left(I-T^{\dagger} T\right)\right)^{\dagger}\left(B_{2}\left(I-T^{\dagger} T\right)\right)\right)=0 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I-S S^{\dagger}\right) C=0 \tag{2.9}
\end{equation*}
$$

hold. From (2.8) we get

$$
\begin{align*}
& R_{A_{2}} C_{2}\left(I-T^{\dagger} T\right)\left(I-\left(B_{2}\left(I-T^{\dagger} T\right)\right)^{\dagger}\left(B_{2}\left(I-T^{\dagger} T\right)\right)\right) \\
= & R_{A_{2}} R_{A_{1}} C_{1} B_{1}^{\dagger} B_{2}\left(I-T^{\dagger} T\right) L_{B_{2}\left(I-T^{\dagger} T\right)} \\
= & 0 . \tag{2.10}
\end{align*}
$$

Note that

$$
\begin{align*}
& \left(I-T^{\dagger} T\right) L_{B_{2}} \\
= & \left(I-\left(\left(I-B_{1} B_{1}^{\dagger}\right) B_{2}\right)^{\dagger}\left(I-B_{1} B_{1}^{\dagger}\right) B_{2}\right)\left(I-B_{2}^{\dagger} B_{2}\right) \\
= & I-B_{2}^{\dagger} B_{2} \\
= & L_{B_{2}} \tag{2.11}
\end{align*}
$$

so from (2.11) and (2.10) we get

$$
\begin{aligned}
& R_{A_{2}} C_{2} L_{B_{2}} \\
= & R_{A_{2}} C_{2}\left(I-T^{\dagger} T\right) L_{B_{2}} \\
= & R_{A_{2}} C_{2}\left(I-T^{\dagger} T\right)\left(B_{2}\left(I-T^{\dagger} T\right)\right)^{\dagger} B_{2}\left(I-T^{\dagger} T\right) L_{B_{2}} \\
= & R_{A_{2}} C_{2}\left(I-T^{\dagger} T\right)\left(B_{2}\left(I-T^{\dagger} T\right)\right)^{\dagger}\left(I-T^{\dagger} R_{B_{1}}\right) B_{2} L_{B_{2}} \\
= & 0
\end{aligned}
$$

Suppose that system (1.1) is consistent.
Since $X_{2} \in \mathcal{B}(G, K)$ is a solution to (1.1) if and only if it satisfies (2.3), its general form, according to Lemma 2.2, is given by

$$
\begin{aligned}
X_{2}= & \left(-R_{A_{1}} C_{1}+S^{\dagger}\left(R_{A_{1}} C_{1}+W\right)\right) B_{1}^{\dagger}\left(I-B_{2} T^{\dagger}\right) \\
& +\left(\left(I-S^{\dagger}\right) R_{A_{1}} V-S^{\dagger} C_{2}\right) T^{\dagger} \\
& +Z-\left(I-A_{1} A_{1}^{\dagger}+S^{\dagger} S\right) Z\left(B_{1} B_{1}^{\dagger}+T T^{\dagger}\right)
\end{aligned}
$$

where Z is an arbitrary element of $\mathcal{B}(\mathcal{G}, \mathcal{K})$, and

$$
\begin{aligned}
V= & -R_{A_{1}} C_{1} B_{1}^{\dagger} B_{2} L_{T}-R_{A_{1}} R_{A_{2}} R_{S} R_{A_{2}} C_{2} T^{\dagger} T \\
& +R_{A_{1}} Q T^{\dagger} T-R_{A_{1}} R_{A_{2}} R_{S} R_{A_{2}} R_{A_{1}} Q T^{\dagger} T
\end{aligned}
$$

and

$$
\begin{aligned}
W= & -R_{S} R_{A_{2}} R_{A_{1}} C_{1}-S S^{\dagger} C_{2} L_{T} B_{2}^{\dagger} B_{1} \\
& +S S^{\dagger} P B_{1}^{\dagger} B_{1}-S S^{\dagger} P B_{1}^{\dagger} B_{2} L_{T} B_{2}^{\dagger} B_{1},
\end{aligned}
$$

where P and Q are arbitrary elements of $\mathcal{B}(\mathcal{F}, \mathcal{K})$ and $\mathcal{B}(\mathcal{G}, \mathcal{K})$.
From the first equation in (1.1) we have

$$
A_{1} X_{1}=X_{2} B_{1}+C_{1}
$$

so, by Lemma 2.1 we get

$$
\begin{aligned}
X_{1} & =A_{1}^{\dagger}\left(X_{2} B_{1}+C_{1}\right)+L_{A_{1}} R \\
& =A_{1}^{\dagger} S^{\dagger}\left(R_{A_{1}} C_{1}+W\right) B_{1}^{\dagger} B_{1}+A_{1}^{\dagger} Z B_{1}-A_{1}^{\dagger} S^{\dagger} S Z B_{1}+A_{1}^{\dagger} C_{1}+L_{A_{1}} R
\end{aligned}
$$

where R is an arbitrary element of $\mathcal{B}(\mathcal{F}, \mathcal{H})$.
From the second equation in (1.1) we have

$$
A_{2} X_{3}=X_{2} B_{2}+C_{2}
$$

so, by Lemma 2.1 we get

$$
\begin{aligned}
X_{3}= & A_{2}^{\dagger}\left(X_{2} B_{2}+C_{2}\right)+L_{A_{2}} Y \\
= & A_{2}^{\dagger}\left(-R_{A_{1}} C_{1}-S^{\dagger}\left(R_{A_{1}} C_{1}+W\right)\right) B_{1}^{\dagger} B_{2} L_{T} \\
& +A_{2}^{\dagger}\left(\left(I-S^{\dagger}\right) R_{A_{1}} V+S^{\dagger} C_{2}\right) T^{\dagger} B_{2} \\
& +A_{2}^{\dagger} Z B_{2}-A_{2}^{\dagger}\left(I-A_{1} A_{1}^{\dagger}+S^{\dagger} S\right) Z\left(B_{1} B_{1}^{\dagger} B_{2}+T\right)+A_{2}^{\dagger} C_{2}+L_{A_{2}} Y
\end{aligned}
$$

where Y is an arbitrary element of $\mathcal{B}(\mathcal{L}, \mathcal{K})$.
Theorem 2.2. Let $A_{1} \in \mathcal{B}(\mathcal{H}, \mathcal{K}), B_{1} \in \mathcal{B}(\mathcal{M}, \mathcal{L}), C_{1} \in \mathcal{B}(\mathcal{M}, \mathcal{K}), A_{2} \in \mathcal{B}(\mathcal{K}, \mathcal{N})$, $B_{2} \in \mathcal{B}(\mathcal{L}, \mathcal{G}), C_{2} \in \mathcal{B}(\mathcal{L}, \mathcal{N})$ be such that $A_{1}, A_{2}, B_{1}, B_{2}, S$ and T are all regular. Put

$$
\begin{aligned}
& T=\left(I-B_{1} B_{1}^{\dagger}\right)\left(I-B_{2}^{\dagger} B_{2}\right), \quad S=A_{2} A_{1} A_{1}^{\dagger} \\
& C=\left(I-\left(A_{2} A_{1}\right)\left(A_{2} A_{1}\right)^{\dagger}\right)\left(C_{2}+A_{2}\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger}\right)\left(I-B_{2}^{\dagger} B_{2}\right)
\end{aligned}
$$

The following statements are equivalent:
(i) The system (1.2) is consistent;
(ii) $R_{A_{1}} C_{1} L_{B_{1}}=0, R_{A_{2}} C_{2} L_{B_{2}}=0, C L_{T}=0$;
(iii) $R_{A_{1}} C_{1} L_{B_{1}}=0,\left(I-R_{A_{2} A_{1}} A_{2}\left(R_{A_{2} A_{1}} A_{2}\right)^{\dagger}\right) C=0, C L_{T}=0$.

In this case, the general solution to the system (1.2) is given by

$$
\begin{aligned}
X_{1}= & A_{1}^{\dagger} S^{\dagger} A_{2} R_{A_{1}} C_{1}+A_{1}^{\dagger} S^{\dagger} W B_{1}^{\dagger} B_{1}+A_{1}^{\dagger}\left(I-S^{\dagger}\right) V B_{1} \\
& +A_{1}^{\dagger} Z B_{1}-A_{1}^{\dagger} S^{\dagger} S Z B_{1}+A_{1}^{\dagger} C_{1}+R_{A_{1}} R, \\
X_{2}= & \left(-R_{A_{1}} C_{1}+S^{\dagger}\left(A_{2} R_{A_{1}} C_{1}+W\right)\right) B_{1}^{\dagger}\left(I-T^{\dagger}\right) \\
& +\left(\left(I-S^{\dagger} A_{2}\right) R_{A_{1}} V+S^{\dagger} C_{2} L_{B_{2}}\right) T^{\dagger} \\
& +Z-\left(R_{A_{1}}+S^{\dagger} S\right) Z\left(B_{1} B_{1}^{\dagger}+T T^{\dagger}\right),
\end{aligned}
$$

$$
\begin{aligned}
X_{3}= & A_{2}\left(-R_{A_{1}} C_{1}+S^{\dagger}\left(A_{2} R_{A_{1}} C_{1}+W\right)\right) B_{1}^{\dagger}\left(I-T^{\dagger}\right) B_{2}^{\dagger} \\
& +A_{2}\left(\left(I-S^{\dagger} A_{2}\right) R_{A_{1}} V+S^{\dagger} C_{2} L_{B_{2}}\right) T^{\dagger} B_{2}^{\dagger} \\
& +A_{2} Z B_{2}^{\dagger}-A_{2}\left(R_{A_{1}}+S^{\dagger} S\right) Z\left(B_{1} B_{1}^{\dagger}+T T^{\dagger}\right) B_{2}^{\dagger}-C_{2} B_{2}^{\dagger}+Y R_{B_{2}}
\end{aligned}
$$

where

$$
V=-R_{A_{1}} C_{1} B_{1}^{\dagger} L_{B_{2}} L_{T}+R_{A_{1}} Q T^{\dagger} T-R_{A_{1}} A_{2}^{\dagger} R_{S} A_{2} R_{A_{1}} Q T^{\dagger} T
$$

and

$$
W=-R_{S} A_{2} R_{A_{1}} C_{1}+S S^{\dagger} C_{2} L_{B_{2}} B_{1}+S S^{\dagger} P B_{1}^{\dagger} B_{1}-S S^{\dagger} P B_{1}^{\dagger} L_{B_{2}} B_{1}
$$

with P, Q, Z and Y arbitrary elements of $\mathcal{B}(\mathcal{F}, \mathcal{K}), \mathcal{B}(\mathcal{N}, \mathcal{K}), \mathcal{B}(\mathcal{G}, \mathcal{K})$, and $\mathcal{B}(\mathcal{N}, \mathcal{M})$, respectively.

Proof. $(i) \Rightarrow(i i)$: Since the system (1.1) is consistent, there exists $X_{2} \in \mathcal{B}(\mathcal{G}, \mathcal{K})$ such that equations

$$
\begin{aligned}
& A_{1} X_{1}-X_{2} B_{1}=C_{1} \\
& A_{2} X_{2}-X_{3} B_{2}=C_{2}
\end{aligned}
$$

are solvable for X_{1} and X_{3}, respectively. According to Lemma 2.1 equation

$$
\begin{equation*}
A_{1} X_{1}-X_{2} B_{1}=C_{1} \tag{2.12}
\end{equation*}
$$

is solvable for X_{1} if and only if

$$
\begin{equation*}
\left(I-A_{1} A_{1}^{\dagger}\right)\left(C_{1}+X_{2} B_{2}\right)=0 \tag{2.13}
\end{equation*}
$$

and equation

$$
\begin{equation*}
A_{2} X_{2}-X_{3} B_{2}=C_{2} \tag{2.14}
\end{equation*}
$$

is solvable for X_{3} if and only if

$$
\begin{equation*}
\left(A_{2} X_{2}-C_{2}\right)\left(I-B_{2}^{\dagger} B_{2}\right)=0 \tag{2.15}
\end{equation*}
$$

So, from (2.13) and (2.15) it follows that equations

$$
\begin{align*}
& \left(I-A_{1} A_{1}^{\dagger}\right) X_{2} B_{1}=-\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} \\
& A_{2} X_{2}\left(I-B_{2}^{\dagger} B_{2}\right)=C_{2}\left(I-B_{2}^{\dagger} B_{2}\right) \tag{2.16}
\end{align*}
$$

have a common solution. From Lemma 2.1 and Lemma 2.2 system (2.16) is consistent if and only if

$$
\begin{aligned}
& \left(I-A_{1} A_{1}^{\dagger}\right) C_{1}\left(I-B_{1}^{\dagger} B_{1}\right)=0 \\
& \left(I-A_{2} A_{2}^{\dagger}\right) C_{2}\left(I-B_{2}^{\dagger} B_{2}\right)=0 \\
& C^{\prime}\left(I-T^{\dagger} T\right)=0
\end{aligned}
$$

where

$$
C^{\prime}=\left(I-S S^{\dagger}\right)\left(C_{2}+A_{2}\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger}\right)\left(I-B_{2}^{\dagger} B_{2}\right)
$$

Note that condition

$$
\begin{equation*}
C^{\prime}\left(I-T^{\dagger} T\right)=0 \tag{2.17}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
C\left(I-T^{\dagger} T\right)=0 \tag{2.18}
\end{equation*}
$$

since (2.17) implies

$$
\begin{aligned}
& C\left(I-T^{\dagger} T\right) \\
= & R_{A_{2} A_{1}}\left(C_{2}+A_{2}\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger}\right) L_{B_{2}} L_{T} \\
= & R_{A_{2} A_{1}} S S^{\dagger}\left(C_{2}+A_{2}\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger}\right) L_{B_{2}} L_{T} \\
= & R_{A_{2} A_{1}} A_{2} A_{1} A_{1}^{\dagger} S^{\dagger}\left(C_{2}+A_{2}\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger}\right) L_{B_{2}} L_{T} \\
= & 0,
\end{aligned}
$$

and (2.18) implies

$$
\begin{aligned}
& C^{\prime}\left(I-T^{\dagger} T\right) \\
= & R_{S}\left(C_{2}+A_{2}\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger}\right) L_{B_{2}} L_{T} \\
= & R_{S}\left(A_{2} A_{1}\right)\left(A_{2} A_{1}\right)^{\dagger}\left(C_{2}+A_{2}\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger}\right) L_{B_{2}} L_{T} \\
= & \left(I-\left(A_{2} A_{1} A_{1}^{\dagger}\right)\left(A_{2} A_{1} A_{1}^{\dagger}\right)^{\dagger}\right)\left(A_{2} A_{1}\right)\left(A_{2} A_{1}\right)^{\dagger}\left(C_{2}+A_{2}\left(I-A_{1} A_{1}^{-}\right) C_{1} B_{1}^{-}\right) L_{B_{2}} L_{T} \\
= & 0 .
\end{aligned}
$$

I follows that

$$
\begin{aligned}
& \left(I-A_{1} A_{1}^{\dagger}\right) C_{1}\left(I-B_{1}^{\dagger} B_{1}\right)=0 \\
& \left(I-A_{2} A_{2}^{\dagger}\right) C_{2}\left(I-B_{2}^{\dagger} B_{2}\right)=0 \\
& C\left(I-T^{\dagger} T\right)=0
\end{aligned}
$$

$(i i) \Rightarrow(i)$: If $(i i)$ holds, then by Lemma 2.2 it follows that system (2.16) is consistent. Let $X_{2} \in \mathcal{B}(\mathcal{G}, \mathcal{K})$ be the solution to the system (2.16) and let $X_{1}=$ $A_{1}^{\dagger}\left(X_{2} B_{1}+C_{1}\right)$ and $X_{3}=\left(A_{2} X_{2}-C_{2}\right) B_{2}^{\dagger}$. Then it is easy to see that such X_{1}, X_{2} and X_{3} satisfy (1.2).
$(i i) \Rightarrow(i i i)$: Suppose that

$$
\begin{align*}
& \left(I-A_{1} A_{1}^{\dagger}\right) C_{1}\left(I-B_{1}^{\dagger} B_{1}\right)=0 \tag{2.19}\\
& \left(I-A_{2} A_{2}^{\dagger}\right) C_{2}\left(I-B_{2}^{\dagger} B_{2}\right)=0 \tag{2.20}
\end{align*}
$$

and

$$
\begin{equation*}
C\left(I-T^{\dagger} T\right)=0 \tag{2.21}
\end{equation*}
$$

From (2.20) we obtain

$$
\begin{aligned}
& \left(I-R_{A_{2} A_{1}} A_{2}\left(R_{A_{2} A_{1}} A_{2}\right)^{\dagger}\right) C \\
= & \left(I-R_{A_{2} A_{1}} A_{2}\left(R_{A_{2} A_{1}} A_{2}\right)^{\dagger}\right) R_{A_{2} A_{1}}\left(C_{2}+A_{2}\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger}\right) L_{B_{2}} \\
= & \left(I-R_{A_{2} A_{1}} A_{2}\left(R_{A_{2} A_{1}} A_{2}\right)^{\dagger}\right) R_{A_{2} A_{1}} C_{2} L_{B_{2}} \\
& +\left(I-R_{A_{2} A_{1}} A_{2}\left(R_{A_{2} A_{1}} A_{2}\right)^{\dagger}\right) R_{A_{2} A_{1}} A_{2}\left(I-A_{1} A_{1}^{\dagger}\right) C_{1} B_{1}^{\dagger} L_{B_{2}} \\
= & \left(I-R_{A_{2} A_{1}} A_{2}\left(R_{A_{2} A_{1}} A_{2}\right)^{\dagger}\right) R_{A_{2} A_{1}} A_{2} A_{2}^{\dagger} C_{2} L_{B_{2}} \\
= & 0 .
\end{aligned}
$$

$(i i) \Rightarrow(i i i)$: Suppose that

$$
\begin{gather*}
\left(I-A_{1} A_{1}^{\dagger}\right) C_{1}\left(I-B_{1}^{\dagger} B_{1}\right)=0 \tag{2.22}\\
\left(I-R_{A_{2} A_{1}} A_{2}\left(R_{A_{2} A_{1}} A_{2}\right)^{\dagger}\right) C=0 \tag{2.23}
\end{gather*}
$$

and

$$
\begin{equation*}
C\left(I-T^{\dagger} T\right)=0 \tag{2.24}
\end{equation*}
$$

From (2.23) we get

$$
\begin{aligned}
& \left(I-A_{2} A_{2}^{\dagger}\right) C_{2}\left(I-B_{2}^{\dagger} B_{2}\right) \\
= & \left(I-A_{2} A_{2}^{\dagger}\right) C \\
= & \left(I-A_{2} A_{2}^{\dagger}\right) R_{A_{2} A_{1}} A_{2}\left(R_{A_{2} A_{1}} A_{2}\right)^{\dagger} C \\
= & 0 .
\end{aligned}
$$

Suppose that system (1.2) is consistent. Since $X_{2} \in \mathcal{B}(G, K)$ is a solution to (1.2) if and only if it is solution to (2.16), its general form, according to Lemma 2.2, is given by

$$
\begin{aligned}
X_{2}= & \left(-R_{A_{1}} C_{1}+S^{\dagger}\left(A_{2} R_{A_{1}} C_{1}+W\right)\right) B_{1}^{\dagger}\left(I-T^{\dagger}\right) \\
& +\left(\left(I-S^{\dagger} A_{2}\right) R_{A_{1}} V+S^{\dagger} C_{2} L_{B_{2}}\right) T^{\dagger} \\
& +Z-\left(R_{A_{1}}+S^{\dagger} S\right) Z\left(B_{1} B_{1}^{\dagger}+T T^{\dagger}\right),
\end{aligned}
$$

where

$$
V=-R_{A_{1}} C_{1} B_{1}^{\dagger} L_{B_{2}} L_{T}+R_{A_{1}} Q T^{\dagger} T-R_{A_{1}} A_{2}^{\dagger} R_{S} A_{2} R_{A_{1}} Q T^{\dagger} T
$$

and

$$
W=-R_{S} A_{2} R_{A_{1}} C_{1}+S S^{\dagger} C_{2} L_{B_{2}} B_{1}+S S^{\dagger} P B_{1}^{\dagger} B_{1}-S S^{\dagger} P B_{1}^{\dagger} L_{B_{2}} B_{1}
$$

with P, Q, Z arbitrary elements of $\mathcal{B}(\mathcal{F}, \mathcal{M}), \mathcal{B}(\mathcal{G}, \mathcal{K})$ and $\mathcal{B}(\mathcal{G}, \mathcal{K})$, respectively.
From the first equation in (1.2) we have

$$
A_{1} X_{1}=X_{2} B_{1}+C_{1}
$$

so, by Lemma 2.1 we get

$$
\begin{aligned}
X_{1} & =A_{1}^{\dagger}\left(X_{2} B_{1}+C_{1}\right)+L_{A_{1}} R \\
& =A_{1}^{\dagger} S^{\dagger}\left(A_{2} R_{A_{1}} C_{1}+W\right) B_{1}^{\dagger} B_{1}+A_{1}^{\dagger} Z B_{1}-A_{1}^{\dagger} S^{\dagger} S Z B_{1}+A_{1}^{\dagger} C_{1}+L_{A_{1}} R
\end{aligned}
$$

where R is an arbitrary element of $\mathcal{B}(\mathcal{F}, \mathcal{H})$.
From the second equation in (1.2) we have

$$
X_{3} B_{2}=A_{2} X_{2}-C_{2}
$$

so, by Lemma 2.1 we get

$$
\begin{aligned}
X_{3}= & \left(A_{2} X_{2}-C_{2}\right) B_{2}^{\dagger}+Y R_{B_{2}} \\
= & A_{2}\left(-R_{A_{1}} C_{1}+S^{\dagger}\left(A_{2} R_{A_{1}} C_{1}+W\right)\right) B_{1}^{\dagger}\left(I-T^{\dagger}\right) B_{2}^{\dagger} \\
& +A_{2}\left(\left(I-S^{\dagger} A_{2}\right) R_{A_{1}} V+S^{\dagger} C_{2} L_{B_{2}}\right) T^{\dagger} B_{2}^{\dagger} \\
& +A_{2} Z B_{2}^{\dagger}-A_{2}\left(R_{A_{1}}+S^{\dagger} S\right) Z\left(B_{1} B_{1}^{\dagger}+T T^{\dagger}\right) B_{2}^{\dagger}-C_{2} B_{2}^{\dagger}+Y R_{B_{2}}
\end{aligned}
$$

where Y is an arbitrary element of $\mathcal{B}(\mathcal{N}, \mathcal{M})$.

REFERENCES

1. A. Ben-Israel, T. N. E. Greville, Generalized Inverse: Theory and Applications, 2nd Edition, Springer, New York, 2003.
2. A. DAJic, Common solutions of linear equations in ring, with applications, Electron. J. Linear Algebra, 30 (2015), 66-79.
3. S.G. Lee, Q.P. VU, Simultaneous solutions of matrix equations and simultaneous equivalence of matrices, Linear Algebra Appl., 437 (2012), 2325-2339.
4. Y. H. Liu, Ranks of solutions of the linear matrix equation $A X+Y B=C$. Comput. Math. Appl., 52 (2006), 861-872.
5. Q.W. Wang, Z.H. He, Solvability conditions and general solution for the mixed Sylvester equations, Automatica, 49 (2013), 2713-2719.
6. Z.H. He, Q.W. WANg, A pair of mixed generalized Sylvester matrix equations, Journal of Shanghai University (Natural Science), 20 (2014), 138-156.
7. Z.-H. He, Q.-W. Wang, Y. Zhang, A system of quaternary coupled Sylvester-type real quaternion matrix equations, Automatica, 87 (2018), 25-31.

[^0]: Received February 10, 2021; accepted May 03, 2021
 Communicated by Dragana Cvetković Ilić
 Corresponding Author: Jovana Nikolov Radenković, Faculty of Sciences and Mathematics, University of Niš, Serbia | E-mail: jovana.nikolov@gmail.com
 2010 Mathematics Subject Classification. Primary 15A09; Secondary 15A24
 © 2021 by University of Nis̆, Serbia | Creative Commons License: CC BY-NC-ND
 *The author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (451-03-9/2021-14/200124).

