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1 Department of Mathematics Education and RINS, Gyeongsang National University

Jinju 52828, Republic of Korea
2 Department of Mathematics, Fırat University

23119 Elazig, Turkey

Abstract. In this paper, our aim is to give surfaces in the Galilean 3-space G3 with
the property that there exist four geodesics through each point such that every surface
built with the normal lines and the binormal lines along these geodesics is a surface
with a minimal surface and a constant negative Gaussian curvature. We show that ψ
should be an isoparametric surface in G3: A plane or a circular hyperboloid.
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1. Introduction

A helical curve (or a helix) is a geometric curve which has non-vanishing constant
curvature κ and non-vanishing constant torsion τ [1]. It is known that if the curve
is a straight line or plane curve, then κ = 0 or τ = 0, respectively [4]. On the other
hand, a family of curves with constant torsion but the non-constant curvature is
called anti-Salkowski curves [9].

From the view of the differential geometry, there are different characterizations
of surfaces. Generally, these type characterizations of surfaces are done in terms of
the Gaussian curvature and mean curvature of the surface, [2, 3]. On the contrary,
if there are characterizations of the surface with constant principal curvatures only,
then these surfaces are called the isoparametric surfaces.
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In connection to this matter, which focuses on characterizations of surfaces with
constant principal curvatures, Tamura [13] showed that complete surfaces of con-
stant mean curvature in E3 on which there exist two helical geodesics through each
point are planes, spheres or circular cylinders. Recently, Lopez et al. improved
surfaces in E3 with the property that there exist four geodesics through each point
such that every ruled surface built with the normal lines along these geodesics is a
surface with constant mean curvature.

In this paper, we improve this characterization to the Galilean 3-space G3 of
negative curvature. To be more precise, we investigate the following results for
surfaces in the Galilean 3-space: First, we define surfaces in the Galilean 3-space
G3 with the property that there exist four geodesics through each point such that
every surface built with the normal lines and the binormal lines along these geodesics
is a surface, which a minimal surface, with a constant negative curvature or zero
curvature. Second, we show that the surface should be an isoparametric surface in
G3: A plane or a circular hyperboloid. For this reason, we shall show the following
theorems:

Theorem 1.1. Let ψ be a connected surface in Galilean 3-space G3. If there exist
four geodesics through each point of ψ with the property that the normal surface
constructed along these geodesics is a minimal surface with a constant negative
curvature or zero curvature, then ψ is a plane or a circular hyperboloid.

Theorem 1.2. Let ψ be a connected surface in Galilean 3-space G3. If there exist
four geodesics through each point of ψ with the property that the binormal surface
constructed along these geodesics is a minimal surface with a constant negative
curvature or zero curvature, then ψ is a plane or a circular hyperboloid.

2. Preliminaries

The Galilean 3-space G3 is a Cayley-Klein space equipped with the projective metric
of signature (0, 0,+,+), given in [6]. The absolute figure of the Galilean space
consists of an ordered triple {ω, f, I} in which ω is the ideal (absolute) plane, f is
the line (absolute line) in ω and I is the fixed elliptic involution of f . We introduce
homogeneous coordinates in G3 in such a way that the absolute plane ω is given
by x0 = 0, the absolute line f by x0 = x1 = 0 and the elliptic involution by

(2.1) (0 : 0 : x2 : x3)→ (0 : 0 : x3 : −x2).

A plane is called Euclidean if it contains f , otherwise it is called isotropic or i.e.,
planes x = const. are Euclidean, and so is the plane ω. Other planes are isotropic.
In other words, an isotropic plane does not involve any isotropic direction.

Definition 2.1. ([10]) Let x = (x1, x2, x3) and y = (y1, y2, y3) be any two vectors
in G3. A vector a is called isotropic if x1 = 0, otherwise it is called non-isotropic.
Then the Galilean scalar product of these vectors is given by

(2.2) 〈x, y〉 =

{
x1y1, ifx1 6= 0ory1 6= 0

x2y2 + x3y3, if x1 = 0andy1 = 0
.
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Definition 2.2. ([15]) Let x = (x1, x2, x3) and y= (y1, y2, y3) be any two vectors
in G3, the Galilean cross product is given as

(2.3) x∧y=


∣∣∣∣∣∣

0 e2 e3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ .
Definition 2.3. ([12]) Let T be the unit tangent vector of a curve α on a surface
ψ in G3, and N be the unit normal vector to the surface at the point α(s) of
α, respectively. Let B = T∧N be the tangential-normal. Then {T,N,B} is an
orthonormal frame at α(s) in G3. The frame is called a Galilean Darboux frame or
a tangent-normal frame and it is expressed as

(2.4)

T ′(s) = kg(s)B(s) + kn(s)N(s),

N ′(s) = τg(s)B(s),

B′(s) = −τg(s)N(s),

where kg, kn and τg are the geodesic curvature, normal curvature, and geodesic
torsion, respectively.

For the curvature κ of α, κ2 = k2g + k2n holds. Also, a curve α is a geodesic (an
asymptotic curve or a line of curvature) if and only if kg ( kn or τg) vanishes,
respectively.

Suppose now that α is a geodesic. Then kg = 0 and T ′ = kn(s)N(s), which
implies that, up change of orientation on ψ if necessary, N(s) is the normal vector
to α. So, from the Galilean Darboux frame, we can write kn = κ and τg = τ . If
replacing these in Equation (2.4), then the formula becomes

T ′(s) = κ(s)N(s),(2.5)

N ′(s) = τ(s)B(s),

B′(s) = −τ(s)N(s).

Let the equation of a surface ψ = ψ(s, t) in G3 is given by

ψ(s, t) = (x(s, t), y(s, t), z(s, t)) .

Then the unit isotropic normal vector field η on ψ(s, t) is given by

(2.6) η =
ψ,s∧ψ,t
‖ψ,s∧ψ,t‖

,

where the partial differentiations with respect to s and t, that is, ψ,s =
∂ψ(s, t)

∂s

and ψ,t =
∂ψ(s, t)

∂t
.
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From (2.1) and w = ‖ψ,s∧ψ,t‖, we get the isotropic unit vector δ in the tangent
plane of the surface as

(2.7) δ =
x,2ψ,s − x,1ψ,t

w
,

where x,1 =
∂x(s, t)

∂s
, x,2 =

∂x(s, t)

∂t
and 〈η, δ〉 = 0, δ2 = 1.

Let us define

g1 = x,1, g2 = x,2, gij = gigj ,

g1 =
x,2
w
, g2 = −x,1

w
, gij = gigj (i, j = 1, 2),

h11 = 〈ψ̃,1, ψ̃,1〉, h12 = 〈ψ̃,1, ψ̃,2〉, h22 = 〈ψ̃,2, ψ̃,2〉,

where ψ̃,1 and ψ̃,2 are the projections of vectors ψ,1 and ψ,2 onto the yz-plane,
respectively. Then, the corresponding matrix of the first fundamental form ds2 of
the surface ψ(s, t) is given by (cf. [11])

(2.8) ds2 =

(
ds21 0
0 ds22

)
,

where ds21 = (g1ds+ g2dt)
2 and ds22 = h11ds

2 + 2h12dsdt+ h22dt
2. In such case, we

denote the coefficients of ds2 by g∗ij .

On the other hand, the function w can be represented in terms of gi and hij as
follows:

w2 = g21h22 − 2g1g2h12 + g22h11.

The Gaussian curvature and the mean curvature of a surface is defined by means
of the coefficients of the second fundamental form Lij , which are the normal com-
ponents of ψ,i,j (i, j = 1, 2). That is,

ψ,i,j =

2∑
k=1

Γkijψ,k + Lijη,

where Γkij is the Christoffel symbols of the surface and Lij are given by

(2.9) Lij =
1

g1
〈g1ψ,i,j − gi,jψ,1, η〉 =

1

g2
〈g2ψ,i,j − gi,jψ,2, η〉.

From this, the Gaussian curvature K and the mean curvature H of the surface are
expressed as [8]

(2.10)
K =

L11L22 − L2
12

w2
,

H =
g22L11 − 2g1g2L12 + g21L22

2w2
.
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3. Proof of Theorem 1.1

In this section, the below definition, proposition, and lemma to prove Theorem 1.1
are given in different steps.

Now we will start to give the definition of the normal surface as follows:

Definition 3.1. Let ψ be a surface in G3. The normal surface ϕ through α is the
surface whose the base curve is α and the ruling are the straight-lines orthogonal
to ψ through α.

The normal surface ϕ along α is a regular surface at least around α. Then ϕ is
parametrized by

(3.1) ϕ(s, t) = α(s) + tN(s),

where s ∈ I and t ∈ R. Then we obtain

(3.2) ϕ,s = α′(s) + t(dN)α(s)(α
′(s))

and

(3.3) ϕ,t = N(s).

Considering s0 ∈ I, we get ‖ϕ,s∧ϕ,t‖ (s0, 0) = ‖α′(s0)∧N(α′(s0))‖ 6= 0. Thus, from
the inverse function theorem, ϕ(s, t) is an immersion.

Our first step towards proving Theorem 1.1 is to show the Gaussian curvature
of the normal surface build up along the geodesic is a negative constant curvature
or zero curvature and should be minimal.

Proposition 3.1. Let ψ be a connected surface in G3. If the normal surface ϕ
constructed along a geodesic of ψ is a surface with constant Gaussian curvature,
then ϕ is either a constant negative curvature surface or flat surface and ϕ should
be a minimal surface.

Proof. Firstly, suppose that α is not a straightline. Then its curvature is defined as
well as T ′(s) 6= 0. Considering equations (3.2) and (3.3),

(3.4) ϕ,s∧ϕ,t = (0, 0, 1),

then we have

(3.5) ‖ϕ,s∧ϕ,t ‖ = 1.

Using (2.6), the unit isotropic normal vector ηϕ of ϕ(s, t) is found as

(3.6) ηϕ = (0, 0, 1).

On the other hand, from equations (3.6) and (2.1), it is easy to show that

δϕ = (0,−1, 0).
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Since ηϕ is the isotropic vector, using the Galilean frame, we can obtain gϕ1 = 1,
gϕ2 = 0.

Considering the projection of ϕ,s and ϕ,t onto the Euclidean yz−plane, we obtain

(3.7) hϕ22 = 1.

Using (3.3), the coefficients of the first fundamental form of the surface in Galilean
space are obtained as

g∗ϕ11 = 1, g∗ϕ12 = 0, g∗ϕ22 = 1.

To calculate the second fundamental form of ϕ(s, t), we have to calculate the fol-
lowing:

ϕ,s,s =
(
κ− tτ2

)
N + tτ ′B(3.8)

ϕ,t,s = τB,

ϕ,t,t = 0.

From equations (3.8) and (2.9), the coefficients of the second fundamental form are
found as

(3.9) Lϕ11 = tτ ′, Lϕ12 = τ, Lϕ22 = 0.

Thus, Kϕ and Hϕ are calculated as

(3.10) Kϕ = −τ2 < 0,

(3.11) Hϕ = 0.

Secondly, assume that α is a straight line. Then the similar calculations as the first
case can be done as follows:

ϕ,s = T (s) + tN ′(s), ϕ,t = N(s),(3.12)

ϕ,s,s = tN ′′(s), ϕ,t,s = N ′(s) and ϕ,t,t = 0,

where α′(s) = T (s) is the tangent vector to α.

Using (2.6), the unit isotropic normal vector ηϕ of ϕ(s, t) is obtained as

(3.13) ηϕ =
T (s)∧N(s) + tN ′(s)∧N(s)

wϕ
,

where wϕ = ‖T (s)∧N(s) + tN ′(s)∧N(s)‖ .
From equations (3.8) and (2.9), the coefficients of the second fundamental form

are given as
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Lϕ11 =
1

wϕ
〈tN ′′(s), T (s)∧N(s) + tN ′(s)∧N(s)〉(3.14)

Lϕ11 =
t

wϕ
〈N ′′(s), T (s)∧N(s)〉+

t2

w
〈N ′′(s), N ′(s)∧N(s)〉,

Lϕ12 =
1

wϕ
〈N ′(s), T (s)∧N(s) + tN ′(s)∧N(s)〉

Lϕ12 =
1

wϕ
〈N ′(s), T (s)∧N(s)〉,

Lϕ22 = 0.

Thus, the Gaussian curvature Kϕ satisfies

(3.15) Kϕw
3
2
ϕ = 〈N ′(s), T (s)∧N(s)〉2.

Squaring both sides equation (3.15) and writing as polynomial equation, we get a
polynomial on t of degree six, this means that

6∑
n=1

Pn(s)tn = 0.

Particularly, Pn(s) = 0 for 0 ≤ n ≤ 6. Then we can obtain P0(s) = K2
ϕ = 0, which

implies that Kϕ = 0.

Furthermore we can easily show that

Hϕ = 0,

which is completed the proof.

Lemma 3.1. Let ψ be a connected surface in G3. If the normal surface ϕ, which
is a minimal surface, constructed along a geodesic α is a constant negative curvature
surface or a flat surface, then α is either

i) an anti Salkowski curve,

ii) a planar curve,

iii) or a line segment and the last case α is a line of curvature of ψ.

Proof. Let α be not a line segment. Then κ > 0. Since ϕ is a surface with a negative
constant curvature, from equation (3.10), we have

τ(s) = const.,

for all s, as a result, we have constant torsion but non-constant curvature. This
means that α is an anti Salkowski curve [9]. Or, we have

τ(s) = 0,
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this implies α is a planar curve.

In the last case, if α is a line segment, from equation (3.15), we get

(3.16) 〈N ′(s), T (s)∧N(s)〉 = 0.

Taking account of the above equations, we can write

T (s) = a(s)N(s) + b(s)N ′(s).

Since 〈T (s), N(s)〉 = 〈N ′(s), N(s)〉 = 0, we find

T (s) = b(s)N ′(s),

this means that
N ′(s) = λT (s),

from this α is also a line of curvature of the surface.

Therefore, Lemma 3.3 means that, under the same hypothesis of Theorem 1.1,
there exist four geodesics through each point p ∈ ψ which are the next three types:

i) An anti Salkowski curve (Type 1),

ii) A planar curve (Type 2),

iii) A line segment, which is a line of curvature (Type 3).

Theorem 3.1. ([14]) A connected surface in R3 with the property that there exist
two proper helical geodesics through each point of the surface is an open of a right
circular cylinder.

Now our aim is to give the proof of Theorem 1.1. Considering Theorem 3.4 and
Proposition 3.2, we can give the following claim:

Claim 3.1. Let p ∈ ψ a non-umbilic point. In a neighborhood Aϕ of p, there are
two proper helical geodesics which is a curve that is both a proper circular helix and
a geodesic on ψ, through any point of Aϕ.

By Lemma 3.3, if Aϕ ⊂ ψ is an open set around p formed by non-umbilic points,
then there exist four tangent directions at q ∈ Aϕ such that the corresponding
geodesic refers to one of the above three Types 1, 2, 3. Because the point is not
umbilic there are at most two geodesics of Type 2 or Type 3. As there are four
geodesics of Types either 1, 2, or 3, we have two geodesics which are an anti salkowski
curve, i.e. of Type 1. In particular, If we get κ = const., then the anti salkowski
curve turns out to be a circular helix. This proves the claim.

Let us denote ψ1 is the set of umbilic points of ψ. This set is closed on ψ.

i) If ψ−ψ1 6= Ø, then ψ−ψ1 is contained in circular hyperboloid . In particular,

we can write Kϕ = − 1

r2
< 0 and Hϕ = 0 on ψ−ψ1. Thus we can define closed set in
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ψ such that ψ2 =

{
p ∈ ψ : Kϕ(p) = − 1

r2
< 0, Hϕ(p) = 0

}
. From connectedness,

we get proved that ψ−ψ1 ⊂ ψ2. Since ψ2∩ ψ1 = Ø, we easily say that ψ2 ⊂ ψ−ψ1

, which proves that ψ2 = ψ − ψ1. As ψ2 is both an open and closed set of ψ, ψ2 =
ψ by connectedness, proving that ψ is an open set of a circular hyperboloid.

ii) If ψ − ψ1 = Ø, then ψ is an umbilic surface. Then ψ is an open of a plane
since we have a flat and a minimal surface.

Then we finish the proof of Theorem 1.1.

4. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2 in different steps as the proof of
Theorem 1.1.

Now, our starting point is to give the definition of the binormal surface as follows:

Definition 4.1. Let ψ be a surface in G3. The binormal surface φ through α is
the surface whose the base curve is α and the ruling are the straightlines orthogonal
to φ through α.

The binormal surface φ along α is a regular surface at least around α. Then φ
is specifed by

(4.1) φ(s, t) = α(s) + tB(s),

where s ∈ I and t ∈ R. Then we get

(4.2) φ,s = α′(s) + t(dB)α(s)(α
′(s))

and

(4.3) φ,t = B(s).

If we consider s0 ∈ I, then we get ‖φ,s∧φ,t‖ (s0, 0) = ‖α′(s0)∧B(α′(s0))‖ 6= 0.
Thus, from the inverse function theorem, φ(s, t) is an immersion.

Our first step is to prove Theorem 1.2 and to get the Gaussian curvature of the
binormal surface constructed along a geodesic. A negative constant curvature or
zero curvature and should be minimal.

Proposition 4.1. Let ψ be a connected surface in G3. If the binormal surface φ
constructed along a geodesic of ψ is a surface with constant Gaussian curvature,
then φ is either a constant negative curvature surface or flat surface and φ should
be a minimal surface.

Proof. Assume first that α is not a straightline. Then its curvature is defined. If
we consider equations (4.2) and (4.3),

(4.4) φ,s∧φ,t = (0,−1, 0),
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then we have

(4.5) ‖φ,s∧φ,t ‖ = 1.

From (2.6), the unit isotropic normal vector ηφ of φ(s, t) is found as

(4.6) ηφ = (0,−1, 0).

On the other hand, from equations (4.6) and (2.1), it is easy to calculate that

δφ = (0, 0,−1).

Since ηφ is the isotropic vector, using the Galilean frame, we can get gφ1 = 1,
gφ2 = 0.

Considering the projection of φ,s and φ,t onto the Euclidean yz−plane, we get

(4.7) hφ22 = 1.

The coefficients of the first fundamental form of the surface in Galilean space are
found as

g∗φ11 = 1, g∗φ12 = 0, g∗φ22 = 1.

To calculate the second fundamental form of φ(s, t), we have to compute the fol-
lowing:

φ,s,s = (κ− tτ ′)N − tτ2B(4.8)

φ,t,s = −τN,
φ,t,t = 0.

From equations (4.8) and (2.9), the coefficients of the second fundamental form are
found as

(4.9) Lφ11 = −κ+ tτ ′, Lφ12 = τ, Lφ22 = 0.

Thus, Kφ and Hφ are computed as

(4.10) Kφ = −τ2 < 0,

(4.11) Hφ = 0.

Secondly, suppose that α is a straightline. Then the similar calculations as first
case can be done as follows:

φ,s = T (s) + tB′(s), φ,t = B(s),(4.12)

φ,s,s = tB′′(s), φ,t,s = B′(s) and φ,t,t = 0,

where α′(s) = T (s) is the tangent vector to α.
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Using (2.6), the unit isotropic normal vector ηφ of φ(s, t) is obtained as

(4.13) ηφ =
T (s)∧B(s) + tB′(s)∧B(s)

wφ
,

where wφ = ‖T (s)∧B(s) + tB′(s)∧B(s)‖ .
From equations (4.8) and (2.9), the coefficients of the second fundamental form

are given as

Lφ11 =
1

wφ
〈tB′′(s), T (s)∧B(s) + tB′(s)∧B(s)〉(4.14)

Lφ11 =
t

wφ
〈B′′(s), T (s)∧B(s)〉+

t2

w
〈B′′(s), B′(s)∧B(s)〉,

Lφ12 =
1

wφ
〈B′(s), T (s)∧B(s) + tB′(s)∧B(s)〉

Lφ12 =
1

wφ
〈B′(s), T (s)∧B(s)〉,

Lφ22 = 0.

Thus, the Gaussian curvature Kφ satisfies

(4.15) Kφw
3
2

φ = 〈B′(s), T (s)∧B(s)〉2.

Squaring both sides equation (4.15) and writing as polynomial equation, we obtain
a polynomial on t of degree six, this means that

6∑
n=1

Qn(s)tn = 0.

Particularly, Qn(s) = 0 for 0 ≤ n ≤ 6. Then we can obtain Q0(s) = K2
φ = 0, which

implies that Kφ = 0.

Moreover we can easily show that

Hφ = 0.

Hence this completes the proof.

Lemma 4.1. Let ψ be a connected surface in G3. If the binormal surface φ, which
is a minimal surface, constructed along a geodesic α is a constant negative curvature
surface or a flat surface, then α is either

i) an anti Salkowski curve,

ii) a planar curve,

iii) or a line segment.

Proof. This proof can be done in a similar way to the proof of Lemma 3.3.
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Therefore, Lemma 4.3 implies that, under the same hypothesis of Theorem 1.2,
there exist four geodesics through each point p ∈ ψ which are the next three types:

i) An anti Salkowski curve (Type 1),

ii) A planar curve (Type 2),

iii) A line segment (Type 3).

Claim 4.1. Let p ∈ ψ a non-umbilic point. In a neighborhood Aφ of p, there are
two proper helical geodesics which is a curve that is both a proper circular helix and
a geodesic on ψ, through any point of Aφ.

Then we finish the proof of Theorem 1.2.
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