FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 36, No 5 (2021), 961-968 https://doi.org/10.22190/FUMI210228070P Original Scientific Paper

A STUDY OF THE MATRIX CLASSES (c_0, c) AND $(c_0, c; P)$

Pinnangudi Narayanasubramanian Natarajan

Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India

Abstract. In this paper, entries of sequences, infinite series and infinite matrices are real or complex numbers. We prove some interesting properties of the matrix classes (c_0, c) and $(c_0, c; P)$.

Keywords: First convolution, Banach space, commutative, non-associative algebra, second convolution, groupoid, subgroupoid, ideal.

1. Introduction and Preliminaries

We need the following sequence spaces in the sequel:

$$c_0 = \left\{ x = \{x_k\} / \lim_{k \to \infty} x_k = 0 \right\};$$

$$c = \left\{ x = \{x_k\} / \lim_{k \to \infty} x_k \text{ exists} \right\}.$$

We know that c_0 and c are Banach spaces under the norm

$$||x|| = \sup_{k \ge 0} |x_k|, x = \{x_k\} \in c_0 \text{ or } c.$$

Let $A = (a_{nk}), n, k = 0, 1, 2, ...$ be an infinite matrix. Then we write $A \in (c_0, c)$ if

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k, n = 0, 1, 2, \dots$$

Received February 28, 2021. accepted July 08, 2021.

Communicated by Dijana Mosić

Corresponding Author: Pinnangudi Narayana
subramanian Natarajan, Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chenna
i600028, India | E-mail: pinnangudinatarajan@gmail.com

²⁰¹⁰ Mathematics Subject Classification. 40C05, 40D05, 40H05

^{© 2021} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

P.N. Natarajan

is defined and the sequence $A(x) = \{(Ax)_n\} \in c$, whenever $x = \{x_k\} \in c_0$. A(x) is called the A-transform of $x = \{x_k\}$. We write $A \in (c_0, c; P)$ if $A \in (c_0, c)$ and

$$\lim_{n \to \infty} (Ax)_n = \lim_{k \to \infty} x_k = 0, x = \{x_k\} \in c_0.$$

The following results can be easily proved.

Theorem 1.1. [2] $A = (a_{nk}) \in (c_0, c)$ if and only if

(1.1)
$$\sup_{n\geq 0}\sum_{k=0}^{\infty}|a_{nk}|<\infty;$$

and

(1.2)
$$\lim_{n \to \infty} a_{nk} = \delta_k \ \text{exists}, k = 0, 1, 2, \dots$$

Further, $A \in (c_0, c; P)$ if and only if (1.1) holds and

(1.3)
$$\lim_{n \to \infty} a_{nk} = 0, k = 0, 1, 2, \dots$$

The following definitions are needed ([1]).

Definition 1.1. Given the infinite matrices $A = (a_{nk}), B = (b_{nk})$, we define

(1.4)
$$(A * B)_{nk} = \sum_{i=0}^{k} a_{ni} b_{n,k-i}, n, k = 0, 1, 2, \dots$$

 $A * B = ((A * B)_{nk})$ is called the "first convolution" of A and B;

(1.5)
$$(A * *B)_{nk} = \frac{1}{k+1} \sum_{i=0}^{k} a_{ni} b_{n,k-i}, n, k = 0, 1, 2, \dots$$

 $A * *B = ((A * *B)_{nk})$ is called the "second convolution" of A and B.

2. Main Results

We now have

Theorem 2.1. (c_0, c) is a Banach space under the norm

(2.1)
$$||A|| = \sup_{n \ge 0} \sum_{k=0}^{\infty} |a_{nk}|, A = (a_{nk}) \in (c_0, c).$$

Proof. We can check that $\|\cdot\|$, defined by (2.1), is indeed a norm. We will prove that (c_0, c) is complete with respect to the norm defined by (2.1). To this end, let $\{A^{(n)}\}$ be a Cauchy sequence in (c_0, c) , where

$$A^{(n)} = (a_{ij}^{(n)}), i, j = 0, 1, 2, \dots; n = 0, 1, 2, \dots$$

Since $\{A^n\}$ is Cauchy, for $\epsilon > 0$, there exists a positive integer n_0 such that

$$||A^{(m)} - A^{(n)}|| < \epsilon, m, n \ge n_0,$$

(2.2)
$$i.e., \ \sup_{i\geq 0}\sum_{j=0}^{\infty} |a_{ij}^{(m)} - a_{ij}^{(n)}| < \epsilon, m, n \geq n_0.$$

Thus, for all i, j = 0, 1, 2, ...,

(2.3)
$$|a_{ij}^{(m)} - a_{ij}^{(n)}| < \epsilon, m, n \ge n_0.$$

So, $\{a_{ij}^{(n)}\}_{n=0}^{\infty}$ is a Cacuhy sequence of real (or complex) numbers. Since the field of real (or complex) numbers is complete,

$$a_{ij}^{(n)} \to a_{ij}, n \to \infty$$

where a_{ij} is a real (or complex) number, $i, j = 0, 1, 2, \ldots$ Consider the infinite matrix $A = (a_{ij})$. From (2.2), we get, for all $i = 0, 1, 2, \ldots$,

(2.4)
$$\sum_{j=0}^{J} |a_{ij}^{(m)} - a_{ij}^{(n)}| < \epsilon, m, n \ge n_0, J = 0, 1, 2, \dots$$

Now, for all $n \ge n_0$, allowing $m \to \infty$ in (2.4), we get

$$\sum_{j=0}^{J} |a_{ij} - a_{ij}^{(n)}| \le \epsilon, n \ge n_0, i, J = 0, 1, 2, \dots,$$

from which we have

$$\sum_{j=0}^{\infty} |a_{ij} - a_{ij}^{(n)}| \le \epsilon, n \ge n_0, i = 0, 1, 2, \dots,$$

(2.5)
$$i.e., \quad \sup_{i\geq 0} \sum_{j=0}^{\infty} |a_{ij} - a_{ij}^{(n)}| \leq \epsilon, n \geq n_0,$$
$$i.e., \quad ||A^{(n)} - A|| \leq \epsilon, n \geq n_0,$$
$$i.e., \quad A^{(n)} \to A, n \to \infty.$$

We now claim that $A \in (c_0, c)$. In view of (2.5),

(2.6)
$$\sup_{i\geq 0} \sum_{j=0}^{\infty} |a_{ij} - a_{ij}^{(n_0)}| \leq \epsilon.$$

Since $A^{(n_0)} = (a_{ij}^{(n_0)}) \in (c_0, c),$

(2.7)
$$\sup_{i \ge 0} \sum_{j=0}^{\infty} |a_{ij}^{(n_0)}| = M < \infty$$

and

(2.8)
$$\lim_{i \to \infty} a_{ij}^{(n_0)} = \delta_j^{(n_0)} \text{ exists}, j = 0, 1, 2, \dots$$

Now, for all i = 0, 1, 2, ...,

$$\begin{split} \sum_{j=0}^{\infty} |a_{ij}| &= \sum_{j=0}^{\infty} |\{a_{ij} - a_{ij}^{(n_0)}\} + a_{ij}^{(n_0)}| \\ &\leq \sum_{j=0}^{\infty} |a_{ij} - a_{ij}^{(n_0)}| + \sum_{j=0}^{\infty} |a_{ij}^{(n_0)}| \\ &\leq \sup_{i \ge 0} \sum_{j=0}^{\infty} |a_{ij} - a_{ij}^{(n_0)}| + \sup_{i \ge 0} \sum_{j=0}^{\infty} |a_{ij}^{(n_0)}| \\ &\leq \epsilon + M, \text{ using (2.6) and (2.7)} \\ &< \infty, \end{split}$$

so that

$$\sup_{i\geq 0}\sum_{j=0}^{\infty}|a_{ij}|<\infty.$$

Next, we claim that $\{a_{ij}\}_{i=0}^{\infty}$ is a Cauchy sequence of real (or complex) numbers, $j = 0, 1, 2, \ldots$ To this end,

$$\begin{aligned} |a_{uj} - a_{vj}| &= |\{a_{uj} - a_{uj}^{(n_0)}\} + \{a_{vj}^{(n_0)} - a_{vj}\} \\ &+ \{a_{uj}^{(n_0)} - a_{vj}^{(n_0)}\}| \\ &\leq |a_{uj} - a_{uj}^{(n_0)}| + |a_{vj}^{(n_0)} - a_{vj}| \\ &+ |a_{uj}^{(n_0)} - a_{vj}^{(n_0)}| \end{aligned}$$

$$(2.9) \qquad \leq 2\epsilon + |a_{uj}^{(n_0)} - a_{vj}^{(n_0)}|, \text{ using } (2.6).$$

Since $\{a_{uj}^{(n_0)}\}_{u=0}^{\infty}$ converges, $A^{(n_0)} \in (c_0, c)$, it is a Cauchy sequence and so, for $\epsilon > 0$, there exists a positive integer L such that

(2.10)
$$|a_{uj}^{(n_0)} - a_{vj}^{(n_0)}| < \epsilon, u, v \ge L.$$

In view of (2.9) and (2.10), we have

$$|a_{uj} - a_{vj}| < 2\epsilon + \epsilon, u, v \ge L.$$

Consequently, $\{a_{ij}\}_{i=0}^{\infty}$ is a Cauchy sequence of real (or complex) numbers and so it converges, i.e.,

$$\lim_{i \to \infty} a_{ij} \quad \text{exists}, j = 0, 1, 2, \dots$$

Hence $A = (a_{ij}) \in (c_0, c)$, completing the proof of the theorem. \Box

Theorem 2.2. (c_0, c) is a commutative Banach algebra with identity under the first convolution *.

Proof. It suffices to prove closure under * and the submultiplicative property of the norm. Let $A = (a_{nk}), B = (b_{nk}) \in (c_0, c)$ and $C = (c_{nk}) = A * B$. Now, for $k = 0, 1, 2, \ldots$,

$$c_{nk} = (A * B)_{nk}$$

=
$$\sum_{i=0}^{k} a_{ni} b_{n,k-i}$$

$$\rightarrow \sum_{i=0}^{k} a_{i} b_{k-i}, n \rightarrow \infty,$$

where, $\lim_{n \to \infty} a_{nk} = a_k$, $\lim_{n \to \infty} b_{nk} = b_k$, $k = 0, 1, 2, \dots$ For $n = 0, 1, 2, \dots$,

$$\begin{split} \sum_{k=0}^{\infty} |c_{nk}| &= \sum_{k=0}^{\infty} \left| \sum_{i=0}^{k} a_{ni} b_{n,k-i} \right| \\ &\leq \sum_{k=0}^{\infty} \sum_{i=0}^{k} |a_{ni}| |b_{n,k-i}| \\ &= \left(\sum_{k=0}^{\infty} |a_{nk}| \right) \left(\sum_{k=0}^{\infty} |b_{nk}| \right) \\ &\leq \left(\sup_{n\geq 0} \sum_{k=0}^{\infty} |a_{nk}| \right) \left(\sup_{n\geq 0} \sum_{k=0}^{\infty} |b_{nk}| \right) \\ &= ||A|| ||B||, \end{split}$$

so that

$$\sup_{n \ge 0} \sum_{k=0}^{\infty} |c_{nk}| \le ||A|| ||B||,$$

i.e., $||A * B|| \le ||A|| ||B||,$

completing the proof of the theorem. $\hfill\square$

Theorem 2.3. (c_0, c) is a Banach space, which is a commutative, non-associative algebra without identity, under the second convolution **, with norm defined by (2.1).

Proof. Let $A = (a_{nk}), B = (b_{nk}) \in (c_0, c)$. Then

$$(A * *B)_{nk} = \frac{1}{k+1} \sum_{i=0}^{k} a_{ni} b_{n,k-i}, \text{ by (1.5)}.$$

We first claim that (c_0, c) is closed under the second convolution **. For $k = 0, 1, 2, \ldots$,

$$(A * *B)_{nk} \rightarrow \frac{1}{k+1} \sum_{i=0}^{k} a_i b_{k-i}, n \rightarrow \infty,$$

where $\lim_{n \to \infty} a_{nk} = a_k$, $\lim_{n \to \infty} b_{nk} = b_k$, $k = 0, 1, 2, \dots$ Also, for $n = 0, 1, 2, \dots$,

$$\begin{split} \sum_{k=0}^{\infty} |(A * *B)_{nk}| &\leq \sum_{k=0}^{\infty} \sum_{i=0}^{k} |a_{ni}| |b_{n,k-i}| \\ &= \left(\sum_{k=0}^{\infty} |a_{nk}| \right) \left(\sum_{k=0}^{\infty} |b_{nk}| \right) \\ &\leq ||A| ||B||. \end{split}$$

Thus,

$$\sup_{n \ge 0} \left(\sum_{k=0}^{\infty} |(A * B)_{nk}| \right) \le ||A|| ||B||,$$

so that $A * *B \in (c_0, c)$ and

$$\|A * *B\| \le \|A\| \|B\|.$$

Commutativity can be easily checked. Non-associativity can be established as follows: Let $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$$A = B = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 1 & 1 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix},$$
$$C = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}.$$

Note that $A, B, C \in (c_0, c)$, using Theorem 1.1. Simple computation shows that

$$((A * *B) * *C)_{11} = \frac{1}{2}$$

and

$$(A**(B**C))_{11}=\frac{1}{4},$$

which proves that

$$(A * *B) * *C \neq A * *(B * *C),$$

i.e., (c_0, c) is non-associative. Again (c_0, c) does not have an identity under **. Suppose an identity $E = (e_{nk})$ exists. Then

$$A * *E = A$$
, for all $A = (a_{nk}) \in (c_0, c)$.

Consider

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 1 & 1 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix} \in (c_0, c).$$

Simple computation shows that

(2.11)
$$e_{11} = 1.$$

Again, consider

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix} \in (c_0, c).$$

Again, simple computation shows that

(2.12)
$$e_{11} = 0.$$

(2.11) and (2.12) lead to a contradiction, proving that (c_0, c) has no identity. By Theorem 2.1, (c_0, c) is a Banach space under the norm defined by (2.1). This completes the proof of the theorem. \Box

As noted in ([1], p. 183), the set S of all infinite matrices is a groupoid under the second convolution **, i.e., S is closed under **. Also S is commutative, nonassociative and S has no identity. We now have

Theorem 2.4. $(c_0, c; P)$ is a subgroupoid of S under the second convolution **.

Proof. Let $A = (a_{nk}), B = (b_{nk}) \in (c_0, c; P)$. Let $C = (c_{nk}) = A * *B$. We already know that $A * *B \in (c_0, c)$.

$$\lim_{n \to \infty} a_{nk} = \lim_{n \to \infty} b_{nk} = 0, k = 0, 1, 2, \dots$$
$$c_{nk} = \frac{1}{k+1} [a_{n0}b_{nk} + a_{n1}b_{n,k-1} + \dots + a_{nk}b_{n0}]$$
$$\to 0, n \to \infty, k = 0, 1, 2, \dots$$

Thus, $A * *B \in (c_0, c; P)$, completing the proof. \Box

P.N. Natarajan

Let $(c_0, c)'$ denote the subclass of (c_0, c) consisting of all $A = (a_{nk}) \in (c_0, c)$ such that

$$a_{nk} \rightarrow 0, k \rightarrow \infty, n = 0, 1, 2, \ldots$$

Theorem 2.5. $(c_0, c)'$ is an ideal of (c_0, c) under the second convolution **.

Proof. Let $A = (a_{nk}) \in (c_0, c)$ and $B = (b_{nk}) \in (c_0, c)'$. We claim that $A * *B \in (c_0, c)'$. We know that (c_0, c) is commutative under the second convolution **. We already know that $A * *B \in (c_0, c)$. Now,

$$(A * *B)_{nk} = \frac{1}{k+1} \left(\sum_{i=0}^{k} a_{ni} b_{n,k-i} \right),$$

$$|(A * *B)_{nk}| \leq \frac{1}{k+1} \left(\sum_{i=0}^{k} |a_{ni}| |b_{n,k-i}| \right)$$

$$\leq \frac{1}{k+1} ||A|| ||B||$$

$$\to 0, k \to \infty, n = 0, 1, 2, \dots.$$

Consequently, $A * *B \in (c_0, c)'$, completing the proof. \Box

REFERENCES

- 1. I. J. MADDOX: Elements of Functional Analysis, Cambridge, 1977.

P.N. Natarajan Old No. 2/3, New No. 3/3 Second Main Road, R.A. Puram Chennai 600 028, India

pinnangudinatarajan@gmail.com