A STUDY OF THE MATRIX CLASSES $\left(c_{0}, c\right)$ AND $\left(c_{0}, c ; P\right)$

Pinnangudi Narayanasubramanian Natarajan

Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India

Abstract

In this paper, entries of sequences, infinite series and infinite matrices are real or complex numbers. We prove some interesting properties of the matrix classes $\left(c_{0}, c\right)$ and $\left(c_{0}, c ; P\right)$. Keywords: First convolution, Banach space, commutative, non-associative algebra, second convolution, groupoid, subgroupoid, ideal.

1. Introduction and Preliminaries

We need the following sequence spaces in the sequel:

$$
\begin{aligned}
c_{0} & =\left\{x=\left\{x_{k}\right\} / \lim _{k \rightarrow \infty} x_{k}=0\right\} \\
c & =\left\{x=\left\{x_{k}\right\} / \lim _{k \rightarrow \infty} x_{k} \text { exists }\right\} .
\end{aligned}
$$

We know that c_{0} and c are Banach spaces under the norm

$$
\|x\|=\sup _{k \geq 0}\left|x_{k}\right|, x=\left\{x_{k}\right\} \in c_{0} \text { or } c .
$$

Let $A=\left(a_{n k}\right), n, k=0,1,2, \ldots$ be an infinite matrix. Then we write $A \in\left(c_{0}, c\right)$ if

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}, n=0,1,2, \ldots
$$

Received February 28, 2021. accepted July 08, 2021.
Communicated by Dijana Mosić
Corresponding Author: Pinnangudi Narayanasubramanian Natarajan, Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India | E-mail: pinnangudinatarajan@gmail.com
2010 Mathematics Subject Classification. 40C05, 40D05, 40H05
is defined and the sequence $A(x)=\left\{(A x)_{n}\right\} \in c$, whenever $x=\left\{x_{k}\right\} \in c_{0} . A(x)$ is called the A-transform of $x=\left\{x_{k}\right\}$. We write $A \in\left(c_{0}, c ; P\right)$ if $A \in\left(c_{0}, c\right)$ and

$$
\lim _{n \rightarrow \infty}(A x)_{n}=\lim _{k \rightarrow \infty} x_{k}=0, x=\left\{x_{k}\right\} \in c_{0} .
$$

The following results can be easily proved.

Theorem 1.1. [2] $A=\left(a_{n k}\right) \in\left(c_{0}, c\right)$ if and only if

$$
\begin{equation*}
\sup _{n \geq 0} \sum_{k=0}^{\infty}\left|a_{n k}\right|<\infty \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=\delta_{k} \text { exists, } k=0,1,2, \ldots \tag{1.2}
\end{equation*}
$$

Further, $A \in\left(c_{0}, c ; P\right)$ if and only if (1.1) holds and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=0, k=0,1,2, \ldots \tag{1.3}
\end{equation*}
$$

The following definitions are needed ([1]).

Definition 1.1. Given the infinite matrices $A=\left(a_{n k}\right), B=\left(b_{n k}\right)$, we define

$$
\begin{equation*}
(A * B)_{n k}=\sum_{i=0}^{k} a_{n i} b_{n, k-i}, n, k=0,1,2, \ldots \tag{1.4}
\end{equation*}
$$

$A * B=\left((A * B)_{n k}\right)$ is called the "first convolution" of A and B;

$$
\begin{equation*}
(A * * B)_{n k}=\frac{1}{k+1} \sum_{i=0}^{k} a_{n i} b_{n, k-i}, n, k=0,1,2, \ldots \tag{1.5}
\end{equation*}
$$

$A * * B=\left((A * * B)_{n k}\right)$ is called the "second convolution" of A and B.

2. Main Results

We now have

Theorem 2.1. $\left(c_{0}, c\right)$ is a Banach space under the norm

$$
\begin{equation*}
\|A\|=\sup _{n \geq 0} \sum_{k=0}^{\infty}\left|a_{n k}\right|, A=\left(a_{n k}\right) \in\left(c_{0}, c\right) . \tag{2.1}
\end{equation*}
$$

Proof. We can check that $\|\cdot\|$, defined by (2.1), is indeed a norm. We will prove that $\left(c_{0}, c\right)$ is complete with respect to the norm defined by (2.1). To this end, let $\left\{A^{(n)}\right\}$ be a Cauchy sequence in $\left(c_{0}, c\right)$, where

$$
A^{(n)}=\left(a_{i j}^{(n)}\right), i, j=0,1,2, \ldots ; n=0,1,2, \ldots
$$

Since $\left\{A^{n}\right\}$ is Cauchy, for $\epsilon>0$, there exists a positive integer n_{0} such that

$$
\begin{gather*}
\left\|A^{(m)}-A^{(n)}\right\|<\epsilon, m, n \geq n_{0}, \\
\text { i.e., } \sup _{i \geq 0} \sum_{j=0}^{\infty}\left|a_{i j}^{(m)}-a_{i j}^{(n)}\right|<\epsilon, m, n \geq n_{0} . \tag{2.2}
\end{gather*}
$$

Thus, for all $i, j=0,1,2, \ldots$,

$$
\begin{equation*}
\left|a_{i j}^{(m)}-a_{i j}^{(n)}\right|<\epsilon, m, n \geq n_{0} . \tag{2.3}
\end{equation*}
$$

So, $\left\{a_{i j}^{(n)}\right\}_{n=0}^{\infty}$ is a Cacuhy sequence of real (or complex) numbers. Since the field of real (or complex) numbers is complete,

$$
a_{i j}^{(n)} \rightarrow a_{i j}, n \rightarrow \infty
$$

where $a_{i j}$ is a real (or complex) number, $i, j=0,1,2, \ldots$. Consider the infinite matrix $A=\left(a_{i j}\right)$. From (2.2), we get, for all $i=0,1,2, \ldots$,

$$
\begin{equation*}
\sum_{j=0}^{J}\left|a_{i j}^{(m)}-a_{i j}^{(n)}\right|<\epsilon, m, n \geq n_{0}, J=0,1,2, \ldots \tag{2.4}
\end{equation*}
$$

Now, for all $n \geq n_{0}$, allowing $m \rightarrow \infty$ in (2.4), we get

$$
\sum_{j=0}^{J}\left|a_{i j}-a_{i j}^{(n)}\right| \leq \epsilon, n \geq n_{0}, i, J=0,1,2, \ldots
$$

from which we have

$$
\begin{align*}
& \sum_{j=0}^{\infty}\left|a_{i j}-a_{i j}^{(n)}\right| \leq \epsilon, n \geq n_{0}, i=0,1,2, \ldots \\
& \text { i.e., } \sup _{i \geq 0} \sum_{j=0}^{\infty}\left|a_{i j}-a_{i j}^{(n)}\right| \leq \epsilon, n \geq n_{0} \tag{2.5}\\
& \text { i.e., }\left\|A^{(n)}-A\right\| \leq \epsilon, n \geq n_{0} \\
& \text { i.e., } A^{(n)} \rightarrow A, n \rightarrow \infty
\end{align*}
$$

We now claim that $A \in\left(c_{0}, c\right)$. In view of (2.5),

$$
\begin{equation*}
\sup _{i \geq 0} \sum_{j=0}^{\infty}\left|a_{i j}-a_{i j}^{\left(n_{0}\right)}\right| \leq \epsilon \tag{2.6}
\end{equation*}
$$

Since $A^{\left(n_{0}\right)}=\left(a_{i j}^{\left(n_{0}\right)}\right) \in\left(c_{0}, c\right)$,

$$
\begin{equation*}
\sup _{i \geq 0} \sum_{j=0}^{\infty}\left|a_{i j}^{\left(n_{0}\right)}\right|=M<\infty \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{i \rightarrow \infty} a_{i j}^{\left(n_{0}\right)}=\delta_{j}^{\left(n_{0}\right)} \text { exists, } j=0,1,2, \ldots \tag{2.8}
\end{equation*}
$$

Now, for all $i=0,1,2, \ldots$,

$$
\begin{aligned}
\sum_{j=0}^{\infty}\left|a_{i j}\right| & =\sum_{j=0}^{\infty}\left|\left\{a_{i j}-a_{i j}^{\left(n_{0}\right)}\right\}+a_{i j}^{\left(n_{0}\right)}\right| \\
& \leq \sum_{j=0}^{\infty}\left|a_{i j}-a_{i j}^{\left(n_{0}\right)}\right|+\sum_{j=0}^{\infty}\left|a_{i j}^{\left(n_{0}\right)}\right| \\
& \leq \sup _{i \geq 0} \sum_{j=0}^{\infty}\left|a_{i j}-a_{i j}^{\left(n_{0}\right)}\right|+\sup _{i \geq 0} \sum_{j=0}^{\infty}\left|a_{i j}^{\left(n_{0}\right)}\right| \\
& \leq \epsilon+M, \text { using }(2.6) \text { and }(2.7) \\
& <\infty,
\end{aligned}
$$

so that

$$
\sup _{i \geq 0} \sum_{j=0}^{\infty}\left|a_{i j}\right|<\infty
$$

Next, we claim that $\left\{a_{i j}\right\}_{i=0}^{\infty}$ is a Cauchy sequence of real (or complex) numbers, $j=0,1,2, \ldots$ To this end,

$$
\begin{align*}
\left|a_{u j}-a_{v j}\right|= & \mid\left\{a_{u j}-a_{u j}^{\left(n_{0}\right)}\right\}+\left\{a_{v j}^{\left(n_{0}\right)}-a_{v j}\right\} \\
& +\left\{a_{u j}^{\left(n_{0}\right)}-a_{v j}^{\left(n_{0}\right)}\right\} \mid \\
\leq & \left|a_{u j}-a_{u j}^{\left(n_{0}\right)}\right|+\left|a_{v j}^{\left(n_{0}\right)}-a_{v j}\right| \\
& \quad+\left|a_{u j}^{\left(n_{0}\right)}-a_{v j}^{\left(n_{0}\right)}\right| \\
\leq & 2 \epsilon+\left|a_{u j}^{\left(n_{0}\right)}-a_{v j}^{\left(n_{0}\right)}\right|, \text { using (2.6). } \tag{2.9}
\end{align*}
$$

Since $\left\{a_{u j}^{\left(n_{0}\right)}\right\}_{u=0}^{\infty}$ converges, $A^{\left(n_{0}\right)} \in\left(c_{0}, c\right)$, it is a Cauchy sequence and so, for $\epsilon>0$, there exists a positive integer L such that

$$
\begin{equation*}
\left|a_{u j}^{\left(n_{0}\right)}-a_{v j}^{\left(n_{0}\right)}\right|<\epsilon, u, v \geq L \tag{2.10}
\end{equation*}
$$

In view of (2.9) and (2.10), we have

$$
\left|a_{u j}-a_{v j}\right|<2 \epsilon+\epsilon, u, v \geq L
$$

Consequently, $\left\{a_{i j}\right\}_{i=0}^{\infty}$ is a Cauchy sequence of real (or complex) numbers and so it converges, i.e.,

$$
\lim _{i \rightarrow \infty} a_{i j} \text { exists, } j=0,1,2, \ldots
$$

Hence $A=\left(a_{i j}\right) \in\left(c_{0}, c\right)$, completing the proof of the theorem.
Theorem 2.2. $\left(c_{0}, c\right)$ is a commutative Banach algebra with identity under the first convolution *.

Proof. It suffices to prove closure under $*$ and the submultiplicative property of the norm. Let $A=\left(a_{n k}\right), B=\left(b_{n k}\right) \in\left(c_{0}, c\right)$ and $C=\left(c_{n k}\right)=A * B$. Now, for $k=0,1,2, \ldots$,

$$
\begin{aligned}
c_{n k} & =(A * B)_{n k} \\
& =\sum_{i=0}^{k} a_{n i} b_{n, k-i} \\
& \rightarrow \sum_{i=0}^{k} a_{i} b_{k-i}, n \rightarrow \infty,
\end{aligned}
$$

where, $\lim _{n \rightarrow \infty} a_{n k}=a_{k}, \lim _{n \rightarrow \infty} b_{n k}=b_{k}, k=0,1,2, \ldots$.
For $n=0,1,2, \ldots$,

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|c_{n k}\right| & =\sum_{k=0}^{\infty}\left|\sum_{i=0}^{k} a_{n i} b_{n, k-i}\right| \\
& \leq \sum_{k=0}^{\infty} \sum_{i=0}^{k}\left|a_{n i}\right|\left|b_{n, k-i}\right| \\
& =\left(\sum_{k=0}^{\infty}\left|a_{n k}\right|\right)\left(\sum_{k=0}^{\infty}\left|b_{n k}\right|\right) \\
& \leq\left(\sup _{n \geq 0} \sum_{k=0}^{\infty}\left|a_{n k}\right|\right)\left(\sup _{n \geq 0} \sum_{k=0}^{\infty}\left|b_{n k}\right|\right) \\
& =\|A\|\|B\|
\end{aligned}
$$

so that

$$
\begin{aligned}
& \sup _{n \geq 0} \sum_{k=0}^{\infty}\left|c_{n k}\right| \leq\|A\|\|B\|, \\
& \text { i.e., }\|A * B\| \leq\|A\|\|B\|,
\end{aligned}
$$

completing the proof of the theorem.

Theorem 2.3. $\left(c_{0}, c\right)$ is a Banach space, which is a commutative, non-associative algebra without identity, under the second convolution $* *$, with norm defined by (2.1).

Proof. Let $A=\left(a_{n k}\right), B=\left(b_{n k}\right) \in\left(c_{0}, c\right)$. Then

$$
(A * * B)_{n k}=\frac{1}{k+1} \sum_{i=0}^{k} a_{n i} b_{n, k-i}, \text { by }(1.5)
$$

We first claim that $\left(c_{0}, c\right)$ is closed under the second convolution $* *$. For $k=$ $0,1,2, \ldots$,

$$
(A * * B)_{n k} \rightarrow \frac{1}{k+1} \sum_{i=0}^{k} a_{i} b_{k-i}, n \rightarrow \infty
$$

where $\lim _{n \rightarrow \infty} a_{n k}=a_{k}, \lim _{n \rightarrow \infty} b_{n k}=b_{k}, k=0,1,2, \ldots$.
Also, for $n=0,1,2, \ldots$,

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|(A * * B)_{n k}\right| & \leq \sum_{k=0}^{\infty} \sum_{i=0}^{k}\left|a_{n i}\right|\left|b_{n, k-i}\right| \\
& =\left(\sum_{k=0}^{\infty}\left|a_{n k}\right|\right)\left(\sum_{k=0}^{\infty}\left|b_{n k}\right|\right) \\
& \leq\|A\|\|B\|
\end{aligned}
$$

Thus,

$$
\sup _{n \geq 0}\left(\sum_{k=0}^{\infty}\left|(A * * B)_{n k}\right|\right) \leq\|A\|\|B\|
$$

so that $A * * B \in\left(c_{0}, c\right)$ and

$$
\|A * * B\| \leq\|A\|\|B\| .
$$

Commutativity can be easily checked. Non-associativity can be established as follows: Let

$$
\begin{gathered}
A=B=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
1 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
\cdots & \ldots & \ldots & \ldots & \ldots
\end{array}\right), \\
C=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
\cdots & \ldots & \cdots & \cdots & \ldots
\end{array}\right)
\end{gathered}
$$

Note that $A, B, C \in\left(c_{0}, c\right)$, using Theorem 1.1. Simple computation shows that

$$
((A * * B) * * C)_{11}=\frac{1}{2}
$$

and

$$
(A * *(B * * C))_{11}=\frac{1}{4}
$$

which proves that

$$
(A * * B) * * C \neq A * *(B * * C)
$$

i.e., $\left(c_{0}, c\right)$ is non-associative. Again $\left(c_{0}, c\right)$ does not have an identity under $* *$. Suppose an identity $E=\left(e_{n k}\right)$ exists. Then

$$
A * * E=A, \text { for all } A=\left(a_{n k}\right) \in\left(c_{0}, c\right)
$$

Consider

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
1 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right) \in\left(c_{0}, c\right)
$$

Simple computation shows that

$$
\begin{equation*}
e_{11}=1 \tag{2.11}
\end{equation*}
$$

Again, consider

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
1 & 0 & 0 & 0 & \ldots \\
1 & 0 & 0 & 0 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right) \in\left(c_{0}, c\right)
$$

Again, simple computation shows that

$$
\begin{equation*}
e_{11}=0 \tag{2.12}
\end{equation*}
$$

(2.11) and (2.12) lead to a contradiction, proving that $\left(c_{0}, c\right)$ has no identity. By Theorem 2.1, $\left(c_{0}, c\right)$ is a Banach space under the norm defined by (2.1). This completes the proof of the theorem.

As noted in ([1], p. 183), the set S of all infinite matrices is a groupoid under the second convolution $* *$, i.e., S is closed under $* *$. Also S is commutative, nonassociative and S has no identity. We now have

Theorem 2.4. $\left(c_{0}, c ; P\right)$ is a subgroupoid of S under the second convolution **.
Proof. Let $A=\left(a_{n k}\right), B=\left(b_{n k}\right) \in\left(c_{0}, c ; P\right)$. Let $C=\left(c_{n k}\right)=A * * B$. We already know that $A * * B \in\left(c_{0}, c\right)$.
Now,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n k}=\lim _{n \rightarrow \infty} b_{n k}=0, k=0,1,2, \ldots \\
c_{n k} & =\frac{1}{k+1}\left[a_{n 0} b_{n k}+a_{n 1} b_{n, k-1}+\cdots+a_{n k} b_{n 0}\right] \\
& \rightarrow 0, n \rightarrow \infty, k=0,1,2, \ldots
\end{aligned}
$$

Thus, $A * * B \in\left(c_{0}, c ; P\right)$, completing the proof.

Let $\left(c_{0}, c\right)^{\prime}$ denote the subclass of $\left(c_{0}, c\right)$ consisting of all $A=\left(a_{n k}\right) \in\left(c_{0}, c\right)$ such that

$$
a_{n k} \rightarrow 0, k \rightarrow \infty, n=0,1,2, \ldots
$$

Theorem 2.5. $\left(c_{0}, c\right)^{\prime}$ is an ideal of $\left(c_{0}, c\right)$ under the second convolution $* *$.
Proof. Let $A=\left(a_{n k}\right) \in\left(c_{0}, c\right)$ and $B=\left(b_{n k}\right) \in\left(c_{0}, c\right)^{\prime}$. We claim that $A * * B \in$ $\left(c_{0}, c\right)^{\prime}$. We know that $\left(c_{0}, c\right)$ is commutative under the second convolution $* *$. We already know that $A * * B \in\left(c_{0}, c\right)$. Now,

$$
\begin{aligned}
(A * * B)_{n k} & =\frac{1}{k+1}\left(\sum_{i=0}^{k} a_{n i} b_{n, k-i}\right) \\
\left|(A * * B)_{n k}\right| & \leq \frac{1}{k+1}\left(\sum_{i=0}^{k}\left|a_{n i} \| b_{n, k-i}\right|\right) \\
& \leq \frac{1}{k+1}\|A\|\|B\| \\
& \rightarrow 0, k \rightarrow \infty, n=0,1,2, \ldots
\end{aligned}
$$

Consequently, $A * * B \in\left(c_{0}, c\right)^{\prime}$, completing the proof.

REFERENCES

1. I. J. Maddox: Elements of Functional Analysis, Cambridge, 1977.
2. M. Stieglitz and H. Tietz: Matrix transformationen von Folgenräumen eine Ergebnisübersicht. Math. Z. 154 (1977), 1-16.

P.N. Natarajan

Old No. $2 / 3$, New No. $3 / 3$
Second Main Road, R.A. Puram
Chennai 600 028, India
pinnangudinatarajan@gmail.com

