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CONSTRUCTION OF OFFSET SURFACES WITH A GIVEN
NON-NULL ASYMPTOTIC CURVE

Ergin Bayram and Fatma Güler
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Abstract. In the present work, we study construction of offset surfaces with a given
non-null asymptotic curve. Let α (s) be a spacelike or timelike unit speed curve with
non-vanishing curvature and ϕ (s, t) be a surface pencil accepting α (s) as a common
asymptotic curve. We obtain conditions such that the offset surface possesses the image
of α (s) as an asymptotic curve. We validate the method with illustrative examples.
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1. Introduction

Traditional research on curves and surfaces focuses on to find chracteristic
curves, such as geodesic curve, asymptotic curve, and principal curve etc. on a
present surface. However, the reverse problem, that is finding surfaces possessing
a prescribed curve, is much more interesting. The construction of surfaces with a
given characteristic curve is a new research area that attracts the interests of many
researchers. The first study of this type of construction conducted by Wang et
al. [18]. They presented a method for surfaces accepting a given curve as a com-
mon geodesic. Inspired by Wang et al. [18], researchers obtained constraints for a
prescribed curve to be a specific curve on constructed surfaces [1 - 3, 8, 10, 16, 17].

Offset surfaces have a great importance among surfaces. An offset surface is
a surface at a fixed distance along the unit normal vector field of a given surface.
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An idea of the value of offset surfaces can be realized from the great volume of
literature [7, 9, 11, 12, 14, 15]. Moon [12] presented equivolumetric offset surface.
Authors in [14] introduced a new algorithm for the efficient and reliable generation
of offset surfaces for polygonal meshes. Hermann [9] showed that a base surface and
its offset have the same geometric continuum. Güler et al. [8] obtained necessary
constraints such that the image curve is a common asymptotic curve on each offset.
The properties of offset surfaces have been examined in [7].

Motivated by the increasing importance of surfaces in mathematical physics, and
very restricted knowledge about offset surfaces in Minkowski 3-space, we develop
the theory of offset surfaces using non-null curves. We present constraints for a non-
null curve to be a common asymptotic on an offset surface pencil. In particular,
given a surface pencil with a common asymptotic curve, we give conditions such
that the image curve is also a common asymptotic on each offset. The method is
illustrated with several examples.

2. Preliminaries

In this section, we review some notions related with curves and surfaces in Minkowski
3-space.

The real vector space IR3 endowed with the scalar product

(2.1) 〈x, y〉 = −x1y1 + x2y2 + x3y3,

where X = (x1, x2, x3) , Y =(y1, y2, y3) ∈ IR3, is called Minkowski 3-space and

denoted by IR3
1.

A vector X ∈ IR3 is called spacelike, timelike or null if

(2.2)

 〈X,X〉 > 0 or X = 0,
〈X,X〉 < 0,

〈X,X〉 = 0 and X 6= 0,

respectively [5].

The vectoral product of X and Y is defined as [13]

(2.3) X × Y =

∣∣∣∣∣∣
e1 −e2 −e3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ = (x2y3 − x3y2, x1y3 − x3y1, x2y1−x1y2) .

We denote by {T (s) , N (s) , B (s)} the moving Frenet frame along the curve
α = α (s) in Minkowski 3-space, where the vector fields T, N and B are called the
tangent, the principal normal and the binormal vector field of α, respectively.
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Theorem 2.1. Let α = α (s) be a spacelike or timelike arclength curve with non
vanishing curvature. The Frenet formula of α is given by

(2.4)

 T ′

N ′

B′

 =

 0 κ 0
−ε1δ1κ 0 τ

0 ε1τ 0

 T
N
B

 ,
where 〈T, T 〉 = ε1, 〈N,N〉 = δ1. Also, we have B = ε1δ1 (T ×N) , κ = δ1

〈
T

′
, N
〉

and τ = −ε1δ1
〈
N

′
, B
〉
. The functions κ and τ are called the curvature and torsion

of α, respectively.

If α (s) is a non-null curve on a surface, then we have another frame, the so
called Darboux frame {T, b, n} . Here, T is the unit tangent vector field of α, n is
the unit normal vector field of the surface and b is a unit vector field given by
b = ε1ε3 (n× T ) , where 〈n, n〉 = ε3. Because, T is the same in each frame, the
other vector fields of these frames lie on the same plane. Thus, we can give the
following relation about these frames as:

Let ϕ be a spacelike surface and α (s) a spacelike curve on ϕ. We have

(2.5)

 T
b
n

 =

 1 0 0
0 cosh θ sinh θ
0 sinh θ cosh θ

 T
N
B

 ,
where θ is the hyperbolic angle between the vectors b and N.

Let ϕ be a timelike surface and α (s) a spacelike or timelike curve on ϕ.

1) If α (s) is timelike curve, then

(2.6)

 T
b
n

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 T
N
B

 ,
where θ is the angle between the vectors b and N.

2) If α (s) is a spacelike curve, then

(2.7)

 T
b
n

 =

 1 0 0
0 cosh θ sinh θ
0 sinh θ cosh θ

 T
N
B

 ,
where θ is the hyperbolic angle between the vectors b and N.

Let ϕ (s, t) be a timelike or spacelike surface. We have the following formula for
the Darboux frame as
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(2.8)

 T ′

b′

n′

 =

 0 ε2kg ε3kn
−ε1kg 0 ε3τg
−ε1kn −ε2τg 0

 T
b
n

 ,
where ε1 = 〈T, T 〉 , ε2 = 〈b, b〉 , ε3 = 〈n, n〉 , b = −ε2 (n× T ) and kg, kn and τg
are the geodesic curvature, the normal curvature and the geodesic torsion of α (s) ,
respectively [6].

3. Construction of surfaces with a non-null asymptotic curve

Let α (s) be a spacelike or timelike arclength curve with nonvanishing curvature.
Surfaces passing through α (s) are given by

(3.1) ϕ (s, t) = α (s) + x (s, t)T (s) + y (s, t)N (s) + z (s, t)B (s) ,

A1 ≤ s ≤ A2, B1 ≤ t ≤ B2, where x (s, t) , y (s, t) and z (s, t) are C2 marching-
scale functions. Assume that ϕ (s, t0) = α (s) for some t0 ∈ [B1, B2] , so that α
becomes a parameter curve on ϕ (s, t) .

The normal vector field of ϕ (s, t) is

(3.2) n (s, t) =
∂ϕ

∂s
× ∂ϕ

∂t

and along the curve α (s) , one can write it as

(3.3) n (s, t0) = φ1 (s, t0)T (s) + φ2 (s, t)N (s) + φ3 (s, t)B (s) ,

where

(3.4)


φ1 (s, t0) =

[
∂z
∂s (s, t0) ∂y∂t (s, t0)− ∂y

∂s (s, t0) ∂z∂t (s, t0)
]
ε1,

φ2 (s, t0) =
[(

1 + ∂x
∂s (s, t0)

)
∂z
∂t (s, t0)− ∂z

∂s (s, t0) ∂x∂t (s, t0)
]
δ1,

φ3 (s, t0) =
[
∂y
∂s (s, t0) ∂x∂t (s, t0)−

(
1 + ∂x

∂s (s, t0)
)
∂y
∂t (s, t0)

]
δ2,

ε1 = 〈T, T 〉 , δ1 = 〈N,N〉 and δ2 = 〈B,B〉 .

Theorem 3.1. A non-null curve α (s) is a common asymptotic curve on the sur-
face pencil ϕ (s, t) [16] if
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(3.5) x (s, t0) = y (s, t0) = z (s, t0) =
∂z

∂t
(s, t0) ≡ 0.

To obtain regular surfaces one need ∂y
∂t (s, t0) 6= 0 as an extra condition.

Definition 3.1. Let ϕ (s, t) be a parametric surface with unit normal vector field
n̂ (s, t). A parametric offset surface is defined by

(3.6) ϕ (s, t) = ϕ (s, t) + rn̂ (s, t) ,

r being a non zero real constant [19].

Using Eqn. (3.1) offset surface pencil has the form

(3.7) ϕ (s, t) = α (s) + rn̂ (s, t) + x (s, t)T (s) + y (s, t)N (s) + z (s, t)B (s) ,

β (s) = α (s) + rn̂ (s, t) being the image of α (s) on ϕ (s, t) .

Theorem 3.2. Let α (s) be a non-null regular curve on the surface pencil ϕ (s, t).
Then

(3.8)
kg
r

= − 1
v3

[
−kgv2 − rε3

(
rτgk

′
n + τ ′g (1 + rε1kn)

)]
kn

r
= 1

v2

[
kn (1 + rε1kn) + rε2τ

2
g

]
τg
r = − 1

v2 [rε1ε2knτg − ε2τg (1 + rε1kn)] ,

for the image curve β (s) on the offset surface pencil ϕ (s, t) , respectively, where

(3.9) v = ‖β′ (s)‖ =
∣∣∣(1 + rε1kn)

2
ε1 + ε2r

2τ2g

∣∣∣1/2 ,
and kg, kn, τg are the geodesic, the normal curvature and the geodesic torsion of
α (s) , respectively.

This result also exists in [4] for spacelike surfaces.

Theorem 3.3. Let
{
T
r
, N

r
, B

r
}

be the Frenet frame of the image curve β (s) on

ϕ (s, t) and {T, b, n} the Darboux frame of α (s) on ϕ (s, t) .Then we have
(3.10)

T
r

= 1
v [(1 + rε1kn)T + rε2τgb]

N
r

= 1

v4
√

(kg
r)

2−(kn
r)

2

[
−rv3τgkg

r
T + ε1v

3kg
r

(1 + rε1kn) b− ε3kn
r
v4n
]

B
r

= 1

v3
√

(kg
r)

2−(kn
r)

2

[
rv2τgkn

r
T − ε1v2kn

r
(1 + rε1kn) b+ v3ε3kg

r
n
]
,

where v = ‖β′ (s)‖ =
∣∣∣(1 + rε1kn)

2
ε1 + ε2r

2τ2g

∣∣∣1/2 , kgr, knr are the geodesic cur-

vature and the normal curvature of the image curve β (s) and kg, kn, τg are the
geodesic, the normal curvature and the geodesic torsion of α (s) , respectively.
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Now, suppose that α (s) is a common spacelike asymptotic and parameter curve
with timelike binormal on the spacelike surface pencil. Our objective is to find suf-
ficient constraints for the curve β (s) to be both an asymptotic curve and parameter
curve on the offset surface pencil ϕ (s, t) .

Observe that, by Eqn. (3.7), β (s) is a parameter curve on each offset.

The necessary and sufficient condition forthe image curve β (s) to be an asymp-
totic curve on the offset surface ϕ (s, t) is

(3.11)

〈
∂nr

∂s
(s, t0) , T

r
(s)

〉
= 0,

where T
r

(s) is the tangent vector field of the image curve β (s) and nr (s, t0) is
the unit normal vector field of ϕ (s, t) through the image curve. According to [19],
we have nr (s, t0) = ±n (s, t0) . Now, we have the following equivalent asymptotic
requirement

(3.12)

〈
∂n

∂s
(s, t0) , T

r
(s)

〉
= 0,

where n (s, t0) is the normal vector field of ϕ (s, t) . By the asymptotic requirement
of α (s), we have

(3.13) n (s, t0) =
∂y

∂s
(s, t0)B (s) .

With the help of Eqns. (2.4), (2.7), (3.10) and (3.12) we obtain

(3.14) τ (s) τg (s)
∂y

∂t
(s, t0) chθ (s) = τg (s)

∂2y

∂s∂t
(s, t0) shθ (s) ,

for β (s) to be an asymptotic curve on every spacelike offset surface pencil ϕ (s, t) .

Note that, if α (s) is a line of curvature, i.e τg (s) ≡ 0, then Eqn. (3.14) is
satisfied and β (s) be an asymptotic curve on the spacelike offset surface pencil
ϕ (s, t) .

Theorem 3.4. Let ϕ (s, t) be a spacelike surface pencil with a common spacelike
parametric and asymptotic curve α (s) with timelike binormal. The image curve
β (s) of α (s) is a common asymptotic curve on the spacelike offset surface pencil
ϕ (s, t) , if

(3.15)

{
x (s, t0) = y (s, t0) = z (s, t0) ≡ 0.

y (s, t) = e
∫
τ(s) coth θ(s)ds

∫
ψ (t) dt+ ξ (s) ,

where A1 ≤ s ≤ A2, B1 ≤ t ≤ B2, ψ ∈ C2, ξ ∈ C1.
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Proof. Since the α (s) curve is a parameter curve on the surface ϕ (s, t) , we have

x (s, t0) = y (s, t0) = z (s, t0) ≡ 0.

For the image curve β(s) of α (s) to be a common asymptotic curve on the spacelike
offset surface pencil ϕ (s, t) , we can use Eqn. (3.12). If Eqns. (3.4), (3.10) and (2.7)
are written in Eqn. (3.12), then we obtain a second- order linear partial differential
equation with variable coefficients as follows,

(3.16) τ cosh θ
∂y (s, t0)

∂t
= sinh θ

∂2y (s, t0)

∂s∂t
,

where since α (s) is an asymptotic on the surface pencil ϕ (s, t) , we have τg 6= 0.The
desired result is obtained from the solution of Eqn. (3.17).

Now, suppose that ϕ (s, t) is a timelike surface with a common timelike asymp-
totic curve α (s) . Hence, the offset surface ϕ (s, t) of ϕ (s, t) is also a timelike surface.

By a similar investigation we obtain the following theorem:

Theorem 3.5. Let ϕ (s, t) be a timelike surface pencil with a common timelike
parametric and asymptotic curve α (s) or spacelike parametric and asymptotic curve
α (s) with spacelike binormal. The image curve β (s) of α (s) is a common asymp-
totic curve on the timelike offset surface pencil ϕ (s, t) , if

(3.17)

{
x (s, t0) = y (s, t0) = z (s, t0) ≡ 0.

y (s, t) = e
∫
τ(s) cot θ(s)ds

∫
ψ (t) dt+ ξ (s) ,

where A1 ≤ s ≤ A2, B1 ≤ t ≤ B2, ψ ∈ C2, ξ ∈ C1.

4. Examples

4.1. Example 1

Unit speed timelike curve α (s) =
(
5
3s,

4
9 cos (3s) , 49 sin (3s)

)
has Frenet vector fields

as  T (s) =
(
5
3 ,−

4
3 sin (3s) , 43 cos (3s)

)
,

N (s) = (0,− cos (3s) ,− sin (3s)) ,
B (s) =

(
− 4

3 ,
5
3 sin (3s) ,− 5

3 cos (3s)
)
,

and torsion τ (s) ≡ 5. Choosing ξ (s) ≡ 0, ψ (t) ≡ 1, t0 = 0 and θ (s) = π
4 yields

y (s, t) = (t+ c1) e5s+c2 and for c1 = c2 = 0, y (s, t) = te5s. Letting x (s, t) =
z (s, t) ≡ 0 Theorems 3.1 and 3.5 are satisfied. Thus, we obtain the timelike surface

ϕ (s, t) =

(
5

3
s,

(
4

9
− te5s

)
cos (3s) ,

(
4

9
− te5s

)
sin (3s)

)
,
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Fig. 4.1: Timelike surface ϕ (s, t) and its asymptotic curve α (s) .

0 ≤ s ≤ 0.3, 0 ≤ t ≤ 0.2, accepting α (s) as an asymptotic curve (Figure 4.1).

To obtain the offset surface of ϕ (s, t) , first we calculate

n̂ (s, t) =
1

A

(
4− 9te5s, 5 sin (3s) ,−5 cos (3s)

)
,

where A =
∣∣∣25−

(
9te5s − 4

)2∣∣∣ 12 . Now for r = 3, the image curve of α (s) is

β (s) = α (s) + 3n̂ (s, 0)

=

(
5

3
s+ 4,

4

9
cos (3s) + 5 sin (3s) ,

4

9
sin (3s)− 5 cos (3s)

)
.

Using Eqn. (3.6), we get the offset timelike surface

ϕ (s, t) =

(
5

3
s−

3
(
9te5s − 4

)
A

,

(
4

9
− te5s

)
cos (3s) +

15 sin (3s)

A
,(

4

9
− te5s

)
sin (3s)− 15 cos (3s)

A

)
,

0 ≤ s ≤ 0.3, 0 ≤ t ≤ 0.2, accepting β (s) as an asymptotic curve (Figure 4.2).

4.2. Example 2

The Frenet vector fields of the spacelike curve α (s) =
(

1
3 sinh

(√
3s
)
, 2
√
3

3 s, 13 cosh
(√

3s
))

with timelike binormal are
T (s) =

(√
3
3 cosh

(√
3s
)
, 2
√
3

3 ,
√
3
3 sinh

(√
3s
))
,

N (s) =
(
sinh

(√
3s
)
, 0, cosh

(√
3s
))
,

B (s) =
(

2
√
3

3 cosh
(√

3s
)
,
√
3
3 ,

2
√
3

3 sinh
(√

3s
))
,
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Fig. 4.2: Timelike offset surface ϕ (s, t) and its asymptotic curve β (s) .

and its torsion is τ (s) ≡ −2. Choosing ξ (s) ≡ 0, ψ (t) ≡ 1, t0 = 0 and θ (s) =
coth−1

(
− 1

2

)
yields y (s, t) = (t+ c1) es+c2 and for c1 = c2 = 0, y (s, t) = tes.

Letting x (s, t) = z (s, t) ≡ 0, Theorems 3.1 and 3.4 are satisfied. Thus, we obtain
the spacelike surface

ϕ (s, t) =

(
(3 + tes) sinh

s

4
,

5

4
s, (3 + tes) cosh

s

4

)
,

0 ≤ s ≤ 1, −1 ≤ t ≤ 1, accepting α (s) as an asymptotic curve (Figure 4.3).

Fig. 4.3: Spacelike surface ϕ (s, t) and its asymptotic curve α (s) .

Using Eqn. (3.6), we get the offset spacelike surface

ϕ (s, t) =

(
(3 + tes) sinh

s

4
+

20

A
cosh

s

4
,

5

4
s+

4 (tes + 3)

A
, (3 + tes) cosh

s

4
+

20

A
sinh

s

4

)
,

0 ≤ s ≤ 5, 0 ≤ t ≤ 5, accepting β (s) as an asymptotic curve (Figure 4.4).
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Fig. 4.4: Spacelike offset surface ϕ (s, t) and its asymptotic curve β (s) .
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