CONSTRUCTION OF OFFSET SURFACES WITH A GIVEN NON-NULL ASYMPTOTIC CURVE

Ergin Bayram and Fatma Güler
Faculty of Science and Arts, Department of Mathematics, P. O. Box 55200, Samsun, Turkey

Abstract

In the present work, we study construction of offset surfaces with a given non-null asymptotic curve. Let $\alpha(s)$ be a spacelike or timelike unit speed curve with non-vanishing curvature and $\varphi(s, t)$ be a surface pencil accepting $\alpha(s)$ as a common asymptotic curve. We obtain conditions such that the offset surface possesses the image of $\alpha(s)$ as an asymptotic curve. We validate the method with illustrative examples. Keywords: Ofset surface, Minkowski 3-space, asymptotic curve.

1. Introduction

Traditional research on curves and surfaces focuses on to find chracteristic curves, such as geodesic curve, asymptotic curve, and principal curve etc. on a present surface. However, the reverse problem, that is finding surfaces possessing a prescribed curve, is much more interesting. The construction of surfaces with a given characteristic curve is a new research area that attracts the interests of many researchers. The first study of this type of construction conducted by Wang et al. [18]. They presented a method for surfaces accepting a given curve as a common geodesic. Inspired by Wang et al. [18], researchers obtained constraints for a prescribed curve to be a specific curve on constructed surfaces $[1-3,8,10,16,17]$.

Offset surfaces have a great importance among surfaces. An offset surface is a surface at a fixed distance along the unit normal vector field of a given surface.

[^0]An idea of the value of offset surfaces can be realized from the great volume of literature [7, 9, 11, 12, 14, 15]. Moon [12] presented equivolumetric offset surface. Authors in [14] introduced a new algorithm for the efficient and reliable generation of offset surfaces for polygonal meshes. Hermann [9] showed that a base surface and its offset have the same geometric continuum. Güler et al. [8] obtained necessary constraints such that the image curve is a common asymptotic curve on each offset. The properties of offset surfaces have been examined in [7].

Motivated by the increasing importance of surfaces in mathematical physics, and very restricted knowledge about offset surfaces in Minkowski 3 -space, we develop the theory of offset surfaces using non-null curves. We present constraints for a nonnull curve to be a common asymptotic on an offset surface pencil. In particular, given a surface pencil with a common asymptotic curve, we give conditions such that the image curve is also a common asymptotic on each offset. The method is illustrated with several examples.

2. Preliminaries

In this section, we review some notions related with curves and surfaces in Minkowski 3 -space.

The real vector space $I R^{3}$ endowed with the scalar product

$$
\begin{equation*}
\langle x, y\rangle=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \tag{2.1}
\end{equation*}
$$

where $X=\left(x_{1}, x_{2}, x_{3}\right), Y=\left(y_{1}, y_{2}, y_{3}\right) \in I R^{3}$, is called Minkowski 3 -space and denoted by $I R_{1}^{3}$.

A vector $X \in I R^{3}$ is called spacelike, timelike or null if

$$
\left\{\begin{array}{c}
\langle X, X\rangle>0 \text { or } X=0, \tag{2.2}\\
\langle X, X\rangle<0 \\
\langle X, X\rangle=0 \text { and } X \neq 0,
\end{array}\right.
$$

respectively [5].
The vectoral product of X and Y is defined as [13]

$$
X \times Y=\left|\begin{array}{ccc}
e_{1} & -e_{2} & -e_{3} \tag{2.3}\\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|=\left(x_{2} y_{3}-x_{3} y_{2}, x_{1} y_{3}-x_{3} y_{1}, x_{2} y_{1-} x_{1} y_{2}\right)
$$

We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve $\alpha=\alpha(s)$ in Minkowski 3 -space, where the vector fields T, N and B are called the tangent, the principal normal and the binormal vector field of α, respectively.

Theorem 2.1. Let $\alpha=\alpha(s)$ be a spacelike or timelike arclength curve with non vanishing curvature. The Frenet formula of α is given by

$$
\left[\begin{array}{l}
T^{\prime} \tag{2.4}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\varepsilon_{1} \delta_{1} \kappa & 0 & \tau \\
0 & \varepsilon_{1} \tau & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

where $\langle T, T\rangle=\varepsilon_{1},\langle N, N\rangle=\delta_{1}$. Also, we have $B=\varepsilon_{1} \delta_{1}(T \times N), \kappa=\delta_{1}\left\langle T^{\prime}, N\right\rangle$ and $\tau=-\varepsilon_{1} \delta_{1}\left\langle N^{\prime}, B\right\rangle$. The functions κ and τ are called the curvature and torsion of α, respectively.

If $\alpha(s)$ is a non-null curve on a surface, then we have another frame, the so called Darboux frame $\{T, b, n\}$. Here, T is the unit tangent vector field of α, n is the unit normal vector field of the surface and b is a unit vector field given by $b=\varepsilon_{1} \varepsilon_{3}(n \times T)$, where $\langle n, n\rangle=\varepsilon_{3}$. Because, T is the same in each frame, the other vector fields of these frames lie on the same plane. Thus, we can give the following relation about these frames as:

Let φ be a spacelike surface and $\alpha(s)$ a spacelike curve on φ. We have

$$
\left[\begin{array}{c}
T \tag{2.5}\\
b \\
n
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh \theta & \sinh \theta \\
0 & \sinh \theta & \cosh \theta
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right],
$$

where θ is the hyperbolic angle between the vectors b and N.
Let φ be a timelike surface and $\alpha(s)$ a spacelike or timelike curve on φ.

1) If $\alpha(s)$ is timelike curve, then

$$
\left[\begin{array}{c}
T \tag{2.6}\\
b \\
n
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right],
$$

where θ is the angle between the vectors b and N.
2) If $\alpha(s)$ is a spacelike curve, then

$$
\left[\begin{array}{c}
T \tag{2.7}\\
b \\
n
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh \theta & \sinh \theta \\
0 & \sinh \theta & \cosh \theta
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right],
$$

where θ is the hyperbolic angle between the vectors b and N.
Let $\varphi(s, t)$ be a timelike or spacelike surface. We have the following formula for the Darboux frame as

$$
\left[\begin{array}{c}
T^{\prime} \tag{2.8}\\
b^{\prime} \\
n^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \varepsilon_{2} k_{g} & \varepsilon_{3} k_{n} \\
-\varepsilon_{1} k_{g} & 0 & \varepsilon_{3} \tau_{g} \\
-\varepsilon_{1} k_{n} & -\varepsilon_{2} \tau_{g} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
b \\
n
\end{array}\right]
$$

where $\varepsilon_{1}=\langle T, T\rangle, \varepsilon_{2}=\langle b, b\rangle, \varepsilon_{3}=\langle n, n\rangle, \quad b=-\varepsilon_{2}(n \times T)$ and k_{g}, k_{n} and τ_{g} are the geodesic curvature, the normal curvature and the geodesic torsion of $\alpha(s)$, respectively [6].

3. Construction of surfaces with a non-null asymptotic curve

Let $\alpha(s)$ be a spacelike or timelike arclength curve with nonvanishing curvature. Surfaces passing through $\alpha(s)$ are given by

$$
\begin{equation*}
\varphi(s, t)=\alpha(s)+x(s, t) T(s)+y(s, t) N(s)+z(s, t) B(s) \tag{3.1}
\end{equation*}
$$

$A_{1} \leq s \leq A_{2}, \quad B_{1} \leq t \leq B_{2}$, where $x(s, t), y(s, t)$ and $z(s, t)$ are C^{2} marchingscale functions. Assume that $\varphi\left(s, t_{0}\right)=\alpha(s)$ for some $t_{0} \in\left[B_{1}, B_{2}\right]$, so that α becomes a parameter curve on $\varphi(s, t)$.

The normal vector field of $\varphi(s, t)$ is

$$
\begin{equation*}
n(s, t)=\frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t} \tag{3.2}
\end{equation*}
$$

and along the curve $\alpha(s)$, one can write it as

$$
\begin{equation*}
n\left(s, t_{0}\right)=\phi_{1}\left(s, t_{0}\right) T(s)+\phi_{2}(s, t) N(s)+\phi_{3}(s, t) B(s) \tag{3.3}
\end{equation*}
$$

where

$$
\left\{\begin{array}{c}
\phi_{1}\left(s, t_{0}\right)=\left[\frac{\partial z}{\partial s}\left(s, t_{0}\right) \frac{\partial y}{\partial t}\left(s, t_{0}\right)-\frac{\partial y}{\partial s}\left(s, t_{0}\right) \frac{\partial z}{\partial t}\left(s, t_{0}\right)\right] \varepsilon_{1}, \tag{3.4}\\
\phi_{2}\left(s, t_{0}\right)=\left[\left(1+\frac{\partial x}{\partial s}\left(s, t_{0}\right)\right) \frac{\partial z}{\partial t}\left(s, t_{0}\right)-\frac{\partial z}{\partial s}\left(s, t_{0}\right) \frac{\partial x}{\partial t}\left(s, t_{0}\right)\right] \delta_{1}, \\
\phi_{3}\left(s, t_{0}\right)=\left[\frac{\partial y}{\partial s}\left(s, t_{0}\right) \frac{\partial x}{\partial t}\left(s, t_{0}\right)-\left(1+\frac{\partial x}{\partial s}\left(s, t_{0}\right)\right) \frac{\partial y}{\partial t}\left(s, t_{0}\right)\right] \delta_{2},
\end{array}\right.
$$

$\varepsilon_{1}=\langle T, T\rangle, \delta_{1}=\langle N, N\rangle$ and $\delta_{2}=\langle B, B\rangle$.

Theorem 3.1. A non-null curve $\alpha(s)$ is a common asymptotic curve on the surface pencil $\varphi(s, t)[16]$ if

$$
\begin{equation*}
x\left(s, t_{0}\right)=y\left(s, t_{0}\right)=z\left(s, t_{0}\right)=\frac{\partial z}{\partial t}\left(s, t_{0}\right) \equiv 0 . \tag{3.5}
\end{equation*}
$$

To obtain regular surfaces one need $\frac{\partial y}{\partial t}\left(s, t_{0}\right) \neq 0$ as an extra condition.
Definition 3.1. Let $\varphi(s, t)$ be a parametric surface with unit normal vector field $\widehat{n}(s, t)$. A parametric offset surface is defined by

$$
\begin{equation*}
\bar{\varphi}(s, t)=\varphi(s, t)+r \widehat{n}(s, t), \tag{3.6}
\end{equation*}
$$

r being a non zero real constant [19].
Using Eqn. (3.1) offset surface pencil has the form

$$
\begin{equation*}
\bar{\varphi}(s, t)=\alpha(s)+r \widehat{n}(s, t)+x(s, t) T(s)+y(s, t) N(s)+z(s, t) B(s) \tag{3.7}
\end{equation*}
$$

$\beta(s)=\alpha(s)+r \widehat{n}(s, t)$ being the image of $\alpha(s)$ on $\bar{\varphi}(s, t)$.
Theorem 3.2. Let $\alpha(s)$ be a non-null regular curve on the surface pencil $\varphi(s, t)$. Then

$$
\begin{gather*}
{\overline{k_{g}}}^{r}=-\frac{1}{v^{3}}\left[-k_{g} v^{2}-r \varepsilon_{3}\left(r \tau_{g} k_{n}^{\prime}+\tau_{g}^{\prime}\left(1+r \varepsilon_{1} k_{n}\right)\right)\right] \tag{3.8}\\
{\overline{k_{n}}}^{r}=\frac{1}{v^{2}}\left[k_{n}\left(1+r \varepsilon_{1} k_{n}\right)+r \varepsilon_{2} \tau_{g}^{2}\right] \\
=-\frac{1}{v^{2}}\left[r \varepsilon_{1} \varepsilon_{2} k_{n} \tau_{g}-\varepsilon_{2} \tau_{g}\left(1+r \varepsilon_{1} k_{n}\right)\right]
\end{gather*}
$$

for the image curve $\beta(s)$ on the offset surface pencil $\bar{\varphi}(s, t)$, respectively, where

$$
\begin{equation*}
v=\left\|\beta^{\prime}(s)\right\|=\left|\left(1+r \varepsilon_{1} k_{n}\right)^{2} \varepsilon_{1}+\varepsilon_{2} r^{2} \tau_{g}^{2}\right|^{1 / 2} \tag{3.9}
\end{equation*}
$$

and k_{g}, k_{n}, τ_{g} are the geodesic, the normal curvature and the geodesic torsion of $\alpha(s)$, respectively.

This result also exists in [4] for spacelike surfaces.
Theorem 3.3. Let $\left\{\bar{T}^{r}, \bar{N}^{r}, \bar{B}^{r}\right\}$ be the Frenet frame of the image curve $\beta(s)$ on $\bar{\varphi}(s, t)$ and $\{T, b, n\}$ the Darboux frame of $\alpha(s)$ on $\varphi(s, t)$. Then we have

$$
\left\{\begin{array}{c}
\bar{T}^{r}=\frac{1}{v}\left[\left(1+r \varepsilon_{1} k_{n}\right) T+r \varepsilon_{2} \tau_{g} b\right] \tag{3.10}\\
\bar{N}^{r}=\frac{1}{v^{4} \sqrt{\left.{\overline{k_{g}}}^{r}\right)^{2}-\left({\overline{k_{n}}}^{r}\right.}{ }^{2}}\left[-r v^{3} \tau_{g}{\overline{k_{g}}}^{r} T+\varepsilon_{1} v^{3}{\overline{k_{g}}}^{r}\left(1+r \varepsilon_{1} k_{n}\right) b-\varepsilon_{3}{\overline{k_{n}}}^{r} v^{4} n\right] \\
\bar{B}^{r}=\frac{1}{v^{3} \sqrt{\left.{\overline{k_{g}}}^{r}\right)^{2}-\left({\overline{k_{n}}}^{r}\right)^{2}}\left[r v^{2} \tau_{g}{\overline{k_{n}}}^{r} T-\varepsilon_{1} v^{2}{\overline{k_{n}}}^{r}\left(1+r \varepsilon_{1} k_{n}\right) b+v^{3} \varepsilon_{3}{\overline{k_{g}}}^{r} n\right],}
\end{array}\right.
$$

where $v=\left\|\beta^{\prime}(s)\right\|=\left|\left(1+r \varepsilon_{1} k_{n}\right)^{2} \varepsilon_{1}+\varepsilon_{2} r^{2} \tau_{g}^{2}\right|^{1 / 2},{\overline{k_{g}}}^{r},{\overline{k_{n}}}^{r}$ are the geodesic curvature and the normal curvature of the image curve $\beta(s)$ and k_{g}, k_{n}, τ_{g} are the geodesic, the normal curvature and the geodesic torsion of $\alpha(s)$, respectively.

Now, suppose that $\alpha(s)$ is a common spacelike asymptotic and parameter curve with timelike binormal on the spacelike surface pencil. Our objective is to find sufficient constraints for the curve $\beta(s)$ to be both an asymptotic curve and parameter curve on the offset surface pencil $\bar{\varphi}(s, t)$.

Observe that, by Eqn. (3.7), $\beta(s)$ is a parameter curve on each offset.
The necessary and sufficient condition forthe image curve $\beta(s)$ to be an asymptotic curve on the offset surface $\bar{\varphi}(s, t)$ is

$$
\begin{equation*}
\left\langle\frac{\partial \bar{n}^{r}}{\partial s}\left(s, t_{0}\right), \bar{T}^{r}(s)\right\rangle=0, \tag{3.11}
\end{equation*}
$$

where $\bar{T}^{r}(s)$ is the tangent vector field of the image curve $\beta(s)$ and $\bar{n}^{r}\left(s, t_{0}\right)$ is the unit normal vector field of $\bar{\varphi}(s, t)$ through the image curve. According to [19], we have $\bar{n}^{r}\left(s, t_{0}\right)= \pm n\left(s, t_{0}\right)$. Now, we have the following equivalent asymptotic requirement

$$
\begin{equation*}
\left\langle\frac{\partial n}{\partial s}\left(s, t_{0}\right), \bar{T}^{r}(s)\right\rangle=0 \tag{3.12}
\end{equation*}
$$

where $n\left(s, t_{0}\right)$ is the normal vector field of $\varphi(s, t)$. By the asymptotic requirement of $\alpha(s)$, we have

$$
\begin{equation*}
n\left(s, t_{0}\right)=\frac{\partial y}{\partial s}\left(s, t_{0}\right) B(s) . \tag{3.13}
\end{equation*}
$$

With the help of Eqns. (2.4), (2.7), (3.10) and (3.12) we obtain

$$
\begin{equation*}
\tau(s) \tau_{g}(s) \frac{\partial y}{\partial t}\left(s, t_{0}\right) \operatorname{ch} \theta(s)=\tau_{g}(s) \frac{\partial^{2} y}{\partial s \partial t}\left(s, t_{0}\right) \operatorname{sh} \theta(s) \tag{3.14}
\end{equation*}
$$

for $\beta(s)$ to be an asymptotic curve on every spacelike offset surface pencil $\bar{\varphi}(s, t)$.
Note that, if $\alpha(s)$ is a line of curvature, i.e $\tau_{g}(s) \equiv 0$, then Eqn. (3.14) is satisfied and $\beta(s)$ be an asymptotic curve on the spacelike offset surface pencil $\bar{\varphi}(s, t)$.

Theorem 3.4. Let $\varphi(s, t)$ be a spacelike surface pencil with a common spacelike parametric and asymptotic curve $\alpha(s)$ with timelike binormal. The image curve $\beta(s)$ of $\alpha(s)$ is a common asymptotic curve on the spacelike offset surface pencil $\bar{\varphi}(s, t)$, if

$$
\left\{\begin{array}{c}
x\left(s, t_{0}\right)=y\left(s, t_{0}\right)=z\left(s, t_{0}\right) \equiv 0 \tag{3.15}\\
y(s, t)=e^{\int \tau(s) \operatorname{coth} \theta(s) d s} \int \psi(t) d t+\xi(s)
\end{array}\right.
$$

where $A_{1} \leq s \leq A_{2}, \quad B_{1} \leq t \leq B_{2}, \psi \in C^{2}, \xi \in C^{1}$.

Proof. Since the $\alpha(s)$ curve is a parameter curve on the surface $\varphi(s, t)$, we have

$$
x\left(s, t_{0}\right)=y\left(s, t_{0}\right)=z\left(s, t_{0}\right) \equiv 0 .
$$

For the image curve $\beta(s)$ of $\alpha(s)$ to be a common asymptotic curve on the spacelike offset surface pencil $\bar{\varphi}(s, t)$, we can use Eqn. (3.12). If Eqns. (3.4), (3.10) and (2.7) are written in Eqn. (3.12), then we obtain a second- order linear partial differential equation with variable coefficients as follows,

$$
\begin{equation*}
\tau \cosh \theta \frac{\partial y\left(s, t_{0}\right)}{\partial t}=\sinh \theta \frac{\partial^{2} y\left(s, t_{0}\right)}{\partial s \partial t} \tag{3.16}
\end{equation*}
$$

where since $\alpha(s)$ is an asymptotic on the surface pencil $\varphi(s, t)$, we have $\tau_{g} \neq 0$. The desired result is obtained from the solution of Eqn. (3.17).

Now, suppose that $\varphi(s, t)$ is a timelike surface with a common timelike asymptotic curve $\alpha(s)$. Hence, the offset surface $\bar{\varphi}(s, t)$ of $\varphi(s, t)$ is also a timelike surface.

By a similar investigation we obtain the following theorem:
Theorem 3.5. Let $\varphi(s, t)$ be a timelike surface pencil with a common timelike parametric and asymptotic curve $\alpha(s)$ or spacelike parametric and asymptotic curve $\alpha(s)$ with spacelike binormal. The image curve $\beta(s)$ of $\alpha(s)$ is a common asymptotic curve on the timelike offset surface pencil $\bar{\varphi}(s, t)$, if

$$
\left\{\begin{array}{c}
x\left(s, t_{0}\right)=y\left(s, t_{0}\right)=z\left(s, t_{0}\right) \equiv 0 \tag{3.17}\\
y(s, t)=e^{\int \tau(s) \cot \theta(s) d s} \int \psi(t) d t+\xi(s)
\end{array}\right.
$$

where $A_{1} \leq s \leq A_{2}, \quad B_{1} \leq t \leq B_{2}, \psi \in C^{2}, \xi \in C^{1}$.

4. Examples

4.1. Example 1

Unit speed timelike curve $\alpha(s)=\left(\frac{5}{3} s, \frac{4}{9} \cos (3 s), \frac{4}{9} \sin (3 s)\right)$ has Frenet vector fields as

$$
\left\{\begin{array}{c}
T(s)=\left(\frac{5}{3},-\frac{4}{3} \sin (3 s), \frac{4}{3} \cos (3 s)\right) \\
N(s)=(0,-\cos (3 s),-\sin (3 s)) \\
B(s)=\left(-\frac{4}{3}, \frac{5}{3} \sin (3 s),-\frac{5}{3} \cos (3 s)\right)
\end{array}\right.
$$

and torsion $\tau(s) \equiv 5$. Choosing $\xi(s) \equiv 0, \psi(t) \equiv 1, \quad t_{0}=0$ and $\theta(s)=\frac{\pi}{4}$ yields $y(s, t)=\left(t+c_{1}\right) e^{5 s+c_{2}}$ and for $c_{1}=c_{2}=0, y(s, t)=t e^{5 s}$. Letting $x(s, t)=$ $z(s, t) \equiv 0$ Theorems 3.1 and 3.5 are satisfied. Thus, we obtain the timelike surface

$$
\varphi(s, t)=\left(\frac{5}{3} s,\left(\frac{4}{9}-t e^{5 s}\right) \cos (3 s),\left(\frac{4}{9}-t e^{5 s}\right) \sin (3 s)\right),
$$

FIG. 4.1: Timelike surface $\varphi(s, t)$ and its asymptotic curve $\alpha(s)$.
$0 \leq s \leq 0.3,0 \leq t \leq 0.2$, accepting $\alpha(s)$ as an asymptotic curve (Figure 4.1).
To obtain the offset surface of $\varphi(s, t)$, first we calculate

$$
\widehat{n}(s, t)=\frac{1}{A}\left(4-9 t e^{5 s}, 5 \sin (3 s),-5 \cos (3 s)\right)
$$

where $A=\left|25-\left(9 t e^{5 s}-4\right)^{2}\right|^{\frac{1}{2}}$. Now for $r=3$, the image curve of $\alpha(s)$ is

$$
\begin{aligned}
\beta(s) & =\alpha(s)+3 \widehat{n}(s, 0) \\
& =\left(\frac{5}{3} s+4, \frac{4}{9} \cos (3 s)+5 \sin (3 s), \frac{4}{9} \sin (3 s)-5 \cos (3 s)\right)
\end{aligned}
$$

Using Eqn. (3.6), we get the offset timelike surface

$$
\begin{aligned}
\bar{\varphi}(s, t)= & \left(\frac{5}{3} s-\frac{3\left(9 t e^{5 s}-4\right)}{A},\left(\frac{4}{9}-t e^{5 s}\right) \cos (3 s)+\frac{15 \sin (3 s)}{A},\right. \\
& \left.\left(\frac{4}{9}-t e^{5 s}\right) \sin (3 s)-\frac{15 \cos (3 s)}{A}\right)
\end{aligned}
$$

$0 \leq s \leq 0.3,0 \leq t \leq 0.2$, accepting $\beta(s)$ as an asymptotic curve (Figure 4.2).

4.2. Example 2

The Frenet vector fields of the spacelike curve $\alpha(s)=\left(\frac{1}{3} \sinh (\sqrt{3} s), \frac{2 \sqrt{3}}{3} s, \frac{1}{3} \cosh (\sqrt{3} s)\right)$ with timelike binormal are

$$
\left\{\begin{array}{c}
T(s)=\left(\frac{\sqrt{3}}{3} \cosh (\sqrt{3} s), \frac{2 \sqrt{3}}{3}, \frac{\sqrt{3}}{3} \sinh (\sqrt{3} s)\right) \\
N(s)=(\sinh (\sqrt{3} s), 0, \cosh (\sqrt{3} s)) \\
B(s)=\left(\frac{2 \sqrt{3}}{3} \cosh (\sqrt{3} s), \frac{\sqrt{3}}{3}, \frac{2 \sqrt{3}}{3} \sinh (\sqrt{3} s)\right),
\end{array}\right.
$$

FIG. 4.2: Timelike offset surface $\bar{\varphi}(s, t)$ and its asymptotic curve $\beta(s)$.
and its torsion is $\tau(s) \equiv-2$. Choosing $\xi(s) \equiv 0, \psi(t) \equiv 1, t_{0}=0$ and $\theta(s)=$ $\operatorname{coth}^{-1}\left(-\frac{1}{2}\right)$ yields $y(s, t)=\left(t+c_{1}\right) e^{s+c_{2}}$ and for $c_{1}=c_{2}=0, y(s, t)=t e^{s}$. Letting $x(s, t)=z(s, t) \equiv 0$, Theorems 3.1 and 3.4 are satisfied. Thus, we obtain the spacelike surface

$$
\varphi(s, t)=\left(\left(3+t e^{s}\right) \sinh \frac{s}{4}, \frac{5}{4} s,\left(3+t e^{s}\right) \cosh \frac{s}{4}\right)
$$

$0 \leq s \leq 1,-1 \leq t \leq 1$, accepting $\alpha(s)$ as an asymptotic curve (Figure 4.3).

Fig. 4.3: Spacelike surface $\varphi(s, t)$ and its asymptotic curve $\alpha(s)$.
Using Eqn. (3.6), we get the offset spacelike surface
$\bar{\varphi}(s, t)=\left(\left(3+t e^{s}\right) \sinh \frac{s}{4}+\frac{20}{A} \cosh \frac{s}{4}, \frac{5}{4} s+\frac{4\left(t e^{s}+3\right)}{A},\left(3+t e^{s}\right) \cosh \frac{s}{4}+\frac{20}{A} \sinh \frac{s}{4}\right)$,
$0 \leq s \leq 5,0 \leq t \leq 5$, accepting $\beta(s)$ as an asymptotic curve (Figure 4.4).

Fig. 4.4: Spacelike offset surface $\bar{\varphi}(s, t)$ and its asymptotic curve $\beta(s)$.

REFERENCES

1. E. Bayram: Surface pencil with a common adjoint curve. Turkish Journal of Mathematics 44 (2020), 1649-1659.
2. E. Bayram, E. Ergün and E. Kasap: Surface family with a common natural geodesic lift of a spacelike curve with timelike binormal in Minkowski 3-space. Hagia Sophia Journal of Geometry 1 (2019), 17-23.
3. E. Bayram, F. Güler and E. Kasap: Parametric representation of a surface pencil with a common asymptotic curve. Comput. Aided Design 44 (7) (2012), 637-643.
4. M. Çimdiker and C. Ekici: On the spacelike parallel ruled surfaces with Darboux frame. Math. Comb. Book Series 2 (2017), 60-69.
5. K. L. Duggal and A. Bejman: Ligtlike Submanifolds of Semi Riemannian Manifolds and Applications. Kluwer Academic Publisher, 1976.
6. C. Ekici and A. GörgüLü: Intrinsic equations for a generalized relaxed elastic line on an oriented surface in the Minkowski 3-space E_{1}^{3}. Turk J Math. 33 (2009), 397-402.
7. R. T. Farouki: The approximation of non-degenerate offset surfaces. Comput. Aided Geo. Design 3 (1) (1986), 15-43.
8. F. Güler, E. Bayram and E. Kasap: Offset surface pencil with a common asymptotic curve. Int J Geom Methods M 15 (11) (2018), 1850195.
9. T. Hermann: On the smootthness of offset surfaces. Comput. Aided Geo. Design 15 (1998), 529-533.
10. C. Y. Li, R. H. Wang and C. G. Zhu: Parametric representation of a surface pencil with a common line of curvature. Comput. Aided Design 43 (9) (2011), 1110-1117.
11. T. Maekawa: An overview of offset curves and surfaces. Comput. Aided Design 31 (1999), 165-173.
12. H. P. Moon: Equivolumetric offset surfaces. Comput. Aided Geo. Design 26 (1) (2009), 17-36.
13. M. Önder and H. H. Uğurlu: Frenet frames and invariants of timelike ruled surfaces. Ain Shams Eng. J. 4 (2013), 502-513.
14. D. Pavić and L. Kobbelt: High-resolution volumetric computation of offset surfaces with feature preservation. In Computer Graphics Forum 27 (2008), 165174.
15. B. Pham: Offset curves and surfaces: a brief survey. Comput. Aided Design 24 (4) (1992), 223-229.
16. G. Şaffak Atalay, E. Bayram and E. Kasap: Surface family with a common asymptotic curve in Minkowski 3- space. J Sci. Art. 2 (2018), 357-68.
17. G. Şaffak Atalay and E. Kasap: Surfaces family with common null asymptotic. Applied Mathematics and Computation 26 (2015), 135-139.
18. G. J. Wang, K. Tang and C. L. Tai: Parametric representation of a surface pencil with a common spatial geodesic. Comput. Aided Design 36 (2004), 447-459.
19. T. J. Willmore: An Introduction to Differential Geometry. Oxford University Press, Delhi, 1959.

[^0]: Received March 22, 2021. accepted October 19, 2021.
 Communicated by Ljubica Velimirović
 Corresponding Author: Ergin Bayram, Faculty of Science and Arts, Department of Mathematics,
 P. O. Box 55200, Samsun, Turkey | E-mail: erginbayram@yahoo.com

 2010 Mathematics Subject Classification. Primary 51B20; Secondary 53A35, 53B30

