SOME FIXED POINT RESULTS ON RECTANGULAR b-METRIC SPACE

Dinanath Barman ${ }^{1}$, Krishnadhan Sarkar ${ }^{2}$ and Kalishankar Tiwary ${ }^{1}$
${ }^{1}$ Department of Mathematics, Raiganj University, P.O. Raiganj, Uttar Dinajpur, West Bengal, India-733134
${ }^{2}$ Department of Mathematics, Raniganj Girls' College, Paschim Bardhaman, West Bengal, India-713358

Abstract

In this paper we have obtained some results on a complete rectangular $b-$ metric space and these results generalized many existing results in this literature. Keywords: rectangular $b-$ metric space.

1. Introduction and Preliminaries

The Banach fixed point theorem in metric space has generalized by many researchers in various branches such as cone metric space, $b-$ metric space, Generalized metric space, Fuzzy metric space etc. Many researchers such as Tiwary et al.[12], Sarkar et al.([10], [11]), S. Czerwik[3], H. Huang et al.[7], Ding et.al[5], Ozturk[9] and others have worked on Cone Banach Space, b-metric space, rectangular b-metric space. George et al.[6] have proved some results in rectangular b-metric space and have left two open problems for further investigations. Z. D. Mitrović and S. Radenović [8] has given a partial solutions of Reich and Kannan Type contraction in rectangular $b-$ metric space. In this paper we have given partial solution of Cirić Type, Cirić almost contraction Type, Hardy Rogers Type contraction condition in rectangular b-metric space with some corollaries.

The following definitions are required to prove the main results.

[^0](C) 2021 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

Definition 1.1. [1] Let X be a non-empty set $s \geq 1$ a real number. A function $d: X \times X \rightarrow \mathbb{R}$ is a said to be a b - metric if for a distinct point $u \in X$, different from x and y, the following conditions holds:
(i) $d(x, y) \geq 0$ and $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$;
(iii) $d(x, y) \leq s[d(x, u)+d(u, y)]$.

The pair (X, d) is called a $b-$ metric space (in short bMS) with coefficient $s \geq 1$.

Definition 1.2. [6] Let X be a non-empty set $s \geq 1$ a real number. A function $d: X \times X \rightarrow \mathbb{R}$ is a said to be a rectangular $b-$ metric if for all distinct points $u_{1}, u_{2} \in X$, all are different from x and y, the following conditions holds:
(i) $d(x, y) \geq 0$ and $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$;
(iii) $d(x, y) \leq s\left[d\left(x, u_{1}\right)+d\left(u_{1}, u_{2}\right)+d\left(u_{2}, y\right)\right]$.

The pair (X, d) is called a rectangular b-metric space (in short RbMS) with coefficient $s \geq 1$.

If $s=1$ then (X, d) is called a rectangular metric space (in short RMS).
Definition 1.3. [6] Let (X, d) be a rectangular b-metric space, $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$.
Then
i) the sequence $\left\{x_{n}\right\}$ is said to be convergent in (X, d) and converges to x if for every $\epsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x\right)<\epsilon$ for all $n \geq n_{0}$ and this fact is represented by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow \infty$;
ii) The sequence $\left\{x_{n}\right\}$ is said to be Cauchy sequence in (X, d) if for every $\epsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x_{n+p}\right)<\epsilon$ for all $n \geq n_{0} ; p>0$ or equivalently, if $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$ for all $p>0$;
iii) (X, d) is said to be a complete rectangular b-metric space if every Cauchy sequence in X converges to some $x \in X$.
R. George et al. [6] has proved the result.

Theorem 1.1. ([6], Theorem 2.1) Let (X, d) be a complete rectangular $b-m e t r i c$ space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying

$$
d(T x, T y)<\lambda d(x, y)
$$

for all $x, y \in X$ with $x \neq y$, where $\lambda \in\left[0, \frac{1}{s}\right]$. Then T has a unique fixed point.

2. Main Results

Our main resuts are as follows:
Theorem 2.1. Let (X, d) be a complete rectangular b-metric space with coefficient $s>1$ and $\left\{T^{i}\right\}$ be a sequence of self-maps satisfying the condition
$d\left(T^{i} x, T^{j} y\right) \leq \alpha \max \left\{d(x, y), d\left(x, T^{i} x\right), d\left(y, T^{j} y\right), d\left(x, T^{j} y\right), d\left(y, T^{i} x\right)\right\}+L d\left(y, T^{i} x\right)$, where the constants $\alpha, L \geq 0$ and $\alpha+L<1$. Then the sequence $\left\{T^{i}\right\}$ have unique common fixed point in X.

Proof. Let $x_{0} \in X$ be an arbitrary. We construct a sequence for a fixed $i \in \mathbb{N}$ such that $x_{n}=T^{i} x_{n-1}$ where $n \in \mathbb{N}$.

Let, $d_{n}=d\left(x_{n}, x_{n+1}\right)$ and $d_{n}^{*}=d\left(x_{n}, x_{n+2}\right)$.
Then
$d\left(x_{n}, x_{n+1}\right)=d\left(T^{i} x_{n-1}, T^{j} x_{n}\right)$
$\leq \alpha \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, T^{i} x_{n_{1}}\right), d\left(x_{n}, T^{j} x_{n}\right), d\left(x_{n-1}, T^{j} x_{n}\right), d\left(x_{n}, T^{i} x_{n-1}\right)\right\}+$ $L d\left(x_{n}, T^{i} x_{n-1}\right)$
$\leq \alpha \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n+1}\right), d\left(x_{n}, x_{n}\right)\right\}+L d\left(x_{n}, x_{n}\right)$.

$$
\begin{equation*}
\leq \alpha \max \left\{d_{n-1}, d_{n}, d_{n-1}^{*}\right\} \tag{2.1}
\end{equation*}
$$

Suppose, $\left\{d_{n}\right\}$ is monotone increasing sequence. Then from equation (2.1) we get,

$$
d_{n} \leq \alpha \max \left\{d_{n}, d_{n-1}^{*}\right\}
$$

If $d_{n}>d_{n-1}^{*}$, then from (2.1) we get, $d_{n} \leq \alpha d_{n}$ which implies, $1 \leq \alpha$, a contradiction.
Therefore,

$$
d_{n} \leq d_{n-1}^{*}
$$

Then from (2.1), we get

$$
d_{n} \leq \alpha d_{n-1}^{*} \leq \alpha^{2} d_{n-2}^{*} \leq \ldots \leq \alpha^{n} d_{0}^{*}
$$

implies, $d_{n}=0$ as $n \rightarrow \infty$. Suppose, $\left\{d_{n}\right\}$ is monotone decreasing sequence. then from (2.1), we get

$$
\begin{equation*}
d_{n} \leq \alpha \max \left\{d_{n-1}, d_{n-1}^{*}\right\} \tag{2.2}
\end{equation*}
$$

If $d_{n-1} \leq d_{n-1}^{*}$, then from (2.2), we get

$$
d_{n}=\alpha d_{n-1}^{*} \leq \alpha^{2} d_{n-2}^{*} \leq \ldots \leq \alpha^{n} d_{0}^{*}
$$

implies,

$$
\lim _{n \rightarrow \infty} d_{n}=0
$$

Again suppose $d_{n-1}^{*} \leq d_{n-1}$, then from (2.2) we have,

$$
d_{n}=\alpha d_{n-1} \leq \alpha^{2} d_{n-2} \leq \ldots \leq \alpha^{n} d_{0}
$$

implies, $\lim _{n \rightarrow \infty} d_{n}=0$.
Thus for all cases $\lim _{n \rightarrow \infty} d_{n}=0$.
Now we show

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0 \tag{2.3}
\end{equation*}
$$

holds good by Mathematical Induction on $p \in \mathbb{N}$.
Clearly, (2.3) hold for $p=1$.
Suppose it holds for p i.e., $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$. So $\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n+p+1}\right)=$ 0.

We have to show

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p+1}\right)=0 .
$$

Since

$$
d\left(x_{n}, x_{n+p+1}\right) \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+p}\right)+d\left(x_{n+p}, x_{n+p+1}\right)\right] .
$$

Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p+1}\right) \leq s \lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n+p}\right) . \tag{2.4}
\end{equation*}
$$

Case I: If $p=2 m, m \in \mathbb{N}$. Then from (2.4) we get,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p+1}\right) \leq s \lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n+2 m}\right) \\
& \leq s^{2} \lim _{n \rightarrow \infty} d\left(x_{n+1+1}, x_{n+2 m-1}\right) \\
& \leq s^{3} \lim _{n \rightarrow \infty} d\left(x_{n+1+2}, x_{n+2 m-2}\right) \\
& \vdots \\
& \leq s^{m+1} \lim _{n \rightarrow \infty} d\left(x_{n+m}, x_{n+m+1}\right) \\
&=0 .
\end{aligned}
$$

Case II: If $p=2 m+1, m \in \mathbb{N}$, then from (2.4) we get,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+2 m+1+1}\right) & \leq s \lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n+2 m+1}\right) \\
& \leq s^{2} \lim _{n \rightarrow \infty} d\left(x_{n+1+1}, x_{n+2 m-1}\right) \\
& \leq s^{3} \lim _{n \rightarrow \infty} d\left(x_{n+1+2}, x_{n+2 m-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq s^{m} \lim _{n \rightarrow \infty} d\left(x_{n+m}, x_{n+m+1}\right) \\
& =0
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p+1}\right)=0
$$

Therefore, by Mathematical Induction $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$ for all $p \in \mathbb{N}$. So $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete, there exists an $x \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. So $\lim _{n \rightarrow \infty} T^{i} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=x$ i.e., $\lim _{n \rightarrow \infty} d\left(T^{i} x_{n}, x\right)=0$.

Now

$$
\begin{align*}
\lim _{n \rightarrow \infty} d\left(T^{i} x_{n}, x\right) & \leq \lim _{n \rightarrow \infty} s\left[d\left(T^{i} x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)+d\left(x_{n}, x\right)\right] \\
& =s \lim _{n \rightarrow \infty} d\left(T^{i} x_{n}, x_{n+1}\right) . \tag{2.5}
\end{align*}
$$

Again,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} d\left(T^{i} x, x_{n+1}\right) \\
& =\lim _{n \rightarrow \infty} d\left(T^{i} x, T^{j} x_{n}\right) \\
& \leq \lim _{n \rightarrow \infty} \alpha \max \left\{d\left(x, x_{n}\right), d\left(x, T^{i} x\right), d\left(x_{n}, T^{j} x_{n}\right), d\left(x, T^{j} x_{n}\right), d\left(x_{n}, T^{i} x\right)\right\} \\
& +L d\left(x_{n}, T^{i} x\right)
\end{aligned}
$$

$$
\begin{equation*}
=\alpha \max \left\{0, \lim _{n \rightarrow \infty} d\left(x, T^{i} x\right), 0,0, \lim _{n \rightarrow \infty} d\left(x_{n}, T^{i} x\right)\right\}+L d\left(x_{n}, T^{i} x\right) \tag{2.6}
\end{equation*}
$$

If

$$
\left.\lim _{n \rightarrow \infty} d\left(x, T^{i} x\right) \leq \lim _{n \rightarrow \infty} d\left(x_{n}, T^{i} x\right)\right\}
$$

then from above (2.6) we get,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} d\left(T^{i} x, x_{n+1}\right)\left.\leq \lim _{n \rightarrow \infty}(\alpha+L) d\left(x_{n}, T^{i} x\right)\right\} \\
& \leq\left.\lim _{n \rightarrow \infty}(\alpha+L)^{2} d\left(x_{n-1}, T^{i} x\right)\right\} \\
& \vdots \\
&\left.\leq \lim _{n \rightarrow \infty}(\alpha+L)^{n+1} d\left(x_{0}, T^{i} x\right)\right\}
\end{aligned}
$$

implies,

$$
\lim _{n \rightarrow \infty} d\left(T^{i} x, x_{n+1}\right)=0[\text { since } \alpha+L<1] .
$$

Again form (2.5) we get,

$$
\lim _{n \rightarrow \infty} d\left(T^{i} x, x\right) \leq \lim _{n \rightarrow \infty} s d\left(T^{i} x, x_{n+1}\right)=0
$$

Therefore, $d\left(T^{i} x, x\right)=0$ implies, $T^{i} x=x$.
If $\lim _{n \rightarrow \infty} d\left(T^{i} x, x_{n}\right) \leq \lim _{n \rightarrow \infty} d\left(T^{i} x, x\right)$, then from (2.6) we get,

$$
\left.\lim _{n \rightarrow \infty} d\left(T^{i} x, x_{n+1}\right) \leq \lim _{n \rightarrow \infty}(\alpha+L) d\left(T^{i} x, x\right)\right\}
$$

Therefore from (2.5) we get,

$$
\left.d\left(T^{i} x, x\right) \leq \lim _{n \rightarrow \infty}(\alpha+L) d\left(T^{i} x, x\right)\right\}<d\left(T^{i} x, x\right)
$$

a contradiction.
Thus x is a common fixed point of $\left\{T^{i}\right\}$.
Let, y be another common fixed point.
Then
$d(x, y)=d\left(T^{i} x, T^{j} y\right)$
$\leq \alpha \max \left\{d(x, y), d\left(x, T^{i} x\right), d\left(y, T^{j} y\right), d\left(x, T^{j} y\right), d\left(y, T^{i} x\right)\right\}+L d\left(y, T^{i} x\right)$
$=\alpha \max \{d(x, y), d(x, x), d(y, y), d(x, y), d(y, x)\}+L d(y, x)$
$=(\alpha+L) d(x, y)$
$<d(x, y)$,
which is a contradiction.
Therefore, $d(x, y)=0$ implies, $x=y$.
Hence $\left\{T^{i}\right\}$ have unique common fixed point in X.
Note: The theorem is a partial solution of Open Problem 2 of George et al.[6] another Cirić type [c.f [2]].

Corollary 2.1. Let (X, d) be a complete rectangular b-metric space with coefficient $s>1$ and T_{1} and T_{2} be two self-maps satisfying the condition
$d\left(T_{1} x, T_{2} y\right) \leq \alpha \max \left\{d(x, y), d\left(x, T_{1} x\right), d\left(y, T_{2} y\right), d\left(x, T_{2} y\right), d\left(y, T_{1} x\right)\right\}+L d\left(y, T_{1} x\right)$,
where the constants $\alpha, L \geq 0$ and $\alpha+L<1$. Then the sequence T_{1} and T_{2} have unique common fixed point in X.

Proof. Putting $T^{i}=T_{1}$ and $T^{j}=T_{2}$ in the above Theorem 2.1 we get the result.

Corollary 2.2. Let (X, d) be a complete rectangular b-metric space with coefficient $s>1$ and T be a self-map satisfying the condition

$$
d(T x, T y) \leq \alpha \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}+L d(y, T x)
$$

where the constants $\alpha, L \geq 0$ and $\alpha+L<1$. Then the sequence T have a unique fixed point in X.

Proof. Putting $T^{i}=T^{j}=T$ in the above Theorem 2.1 we get the desired result.

Theorem 2.2. Let (X, d) be a complete rectangular b-metric space with coefficient $s>1$. Let $T: X \rightarrow X$ satisfying

$$
d(T x, T y) \leq k \max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}[d(x, T x)+d(y, T y)]\right\}
$$

where $k \in(0,1)$. Then T has a unique fixed point.
Proof. Let us consider x_{0} in X as an initial point. Let $\left\{x_{n}\right\}$ be a sequence given by $x_{n}=T x_{n-1}$ for all $n \in \mathbb{N}$. If $x_{n}=T x_{n}$ i.e., $x_{n}=x_{n+1}$, then for all $n \in \mathbb{N}$, x_{n} is a fixed point of T. So we assume that $x_{n} \neq x_{n+1}$.
Now

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & =d\left(T x_{n-1}, T x_{n}\right) \\
\leq & k \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right)\right. \\
& \left.\frac{1}{2}\left[d\left(x_{n-1}, T x_{n-1}\right)+d\left(x_{n}, T x_{n}\right)\right]\right\} \\
\leq & k \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right)\right\} \\
\leq & k \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right) .\right\}
\end{aligned}
$$

Suppose $d\left(x_{n-1}, x_{n}\right) \leq d\left(x_{n}, x_{n+1}\right)$. Then from above we get

$$
d\left(x_{n}, x_{n+1}\right) \leq k d\left(x_{n}, x_{n+1}\right)
$$

which is a contradiction.
Therefore, $d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n-1}, x_{n}\right)$. Thus $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is a monotone decreasing sequence of non-negative real numbers. So it converges to a (say).
Then

$$
\begin{aligned}
a= & \lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=\lim _{n \rightarrow \infty} d\left(T x_{n-1}, T x_{n}\right) \\
& \leq k \lim _{n \rightarrow \infty} \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right),\right. \\
& \left.\frac{1}{2}\left[d\left(x_{n-1}, T x_{n-1}\right)+d\left(x_{n}, T x_{n}\right)\right]\right\} \\
& =k \lim _{n \rightarrow \infty} \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} \\
& =k \lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n}\right)=k a
\end{aligned}
$$

implies, $a=0$ i.e., $\lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n}\right)=0$.
Next, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence i.e., $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$.
First we suppose that $p=$ odd i.e., $p=2 m+1, m \in \mathbb{N}$.
Then

$$
d\left(x_{n}, x_{n+2 m+1}\right) \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+2 m+1}\right)\right]
$$

$$
\begin{aligned}
\leq & 2 s d\left(x_{n}, x_{n+1}\right)+s^{2}\left[d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)+d\left(x_{n+4}, x_{n+2 m+1}\right)\right] \\
\leq & 2 s d\left(x_{n}, x_{n+1}\right)+2 s^{2} d\left(x_{n+2}, x_{n+3}\right)+\ldots+2 s^{m} d\left(x_{n+2 m}, x_{n+2 m+1}\right) \\
& \leq 2 s\left[1+s+s^{2}+\ldots+s^{m-1}\right] d\left(x_{n}, x_{n+1}\right) \\
& =2 s\left(\frac{s^{m-1}-1}{s-1}\right) d\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

Therefore,
$\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$ as $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$.
Again suppose $p=$ even $=2 m, m \in \mathbb{N}$.
Then

$$
\begin{aligned}
& d\left(x_{n}, x_{n+2 m}\right) \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+2 m}\right)\right] \\
\leq & 2 s d\left(x_{n}, x_{n+1}\right)+2 s^{2}\left[d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)+d\left(x_{n+4}, x_{n+2 m}\right)\right. \\
\leq & 2 s d\left(x_{n}, x_{n+1}\right)+2 s^{2} d\left(x_{n+2}, x_{n+3}\right)+\ldots+2 s^{m} d\left(x_{n+2 m-1}, x_{n+2 m}\right) \\
\leq & 2 s\left[1+s+s^{2}+\ldots+s^{m-1}\right] d\left(x_{n}, x_{n+1}\right) \\
= & 2 s\left(\frac{s^{m-1}-1}{s-1}\right) d\left(x_{n}, x_{n+1}\right) .
\end{aligned}
$$

Therefore again we get,

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is a complete space, there exists an $x \in X$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0
$$

Now we show that x is a fixed point of T.
Since

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} d\left(x_{n+1}, T x\right)=\lim _{n \rightarrow \infty} d\left(T x_{n}, T x\right) \\
& \leq k \lim _{n \rightarrow \infty} \max \left\{d\left(x_{n}, x\right), d\left(x_{n}, T x_{n}\right), d(x, T x), \frac{1}{2}\left[d\left(x_{n}, T x_{n}\right)+d(x, T x)\right]\right\} \\
& \leq k \lim _{n \rightarrow \infty} \max \left\{d\left(x_{n}, x\right), d\left(x_{n}, x_{n+1}\right), d(x, T x)\right\} \\
& \leq k \lim _{n \rightarrow \infty} d(x, T x)
\end{aligned}
$$

which implies, $d(x, T x)=0$ i.e., x is a fixed point of T.
To show the uniqueness, let x^{\prime} be another fixed point of T.
Then

$$
d\left(x, x^{\prime}\right)=d\left(T x, T x^{\prime}\right)
$$

$\leq k \max \left\{d\left(x, x^{\prime}\right), d(x, T x), d\left(x^{\prime}, T x^{\prime}\right), \frac{1}{2}\left[d(x, T x)+d\left(x^{\prime}, T x^{\prime}\right)\right]\right\}$
$\leq k \max \left\{d\left(x, x^{\prime}\right), d(x, x), d\left(x^{\prime}, x^{\prime}\right), \frac{1}{2}\left[d(x, x)+d\left(x^{\prime}, x^{\prime}\right)\right]\right\}$
$=k d\left(x, x^{\prime}\right)$
which implies, $d\left(x, x^{\prime}\right)=0$ i.e., x is unique.
Hence the result.

Note: This theorem is a partial solution of the Open Problem 2 of George et al.[6] of Cirić type.

The next theorem is also a partial solution of Open Problem 2 of George et al.[6] of Hardy-Rogers Type contraction.

Theorem 2.3. Let (X, d) be a complete rectangular $b-m e t r i c ~ s p a c e ~ w i t h ~ c o e f f i-~$ cient $s>1$. Let $T: X \rightarrow X$ be a self-map satisfying the relation
(2.7) $d(T x, T y) \leq \alpha_{1} d(x, y)+\alpha_{2} d(x, T x)+\alpha_{3} d(y, T y)+\alpha_{4} d(x, T y)+\alpha_{5} d(y, T x)$
where $\alpha_{i} \geq 0, \forall i=1,2,3,4,5$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}<\frac{1}{s}$. Then T has a unique fixed point.

Proof. Let $x_{0} \in X$ be an initial approximation. We construct a sequence $\left\{x_{n}\right\}$ in X such that $x_{n}=T x_{n-1}$ for all $n \in \mathbb{N}$. Suppose $d_{n}\left(x_{n}, x_{n+1}\right)$ and $d_{n}^{*}\left(x_{n}, x_{n+2}\right)$. Then byn the given condition (2.7) we get

$$
\begin{aligned}
d_{n}= & d\left(x_{n}, x_{n+1}\right)=d\left(T x_{n-1}, T x_{n}\right) \\
\leq & \alpha_{1} d\left(x_{n-1}, x_{n}\right)+\alpha_{2} d\left(x_{n-1}, T x_{n-1}\right)+ \\
& \alpha_{3} d\left(x_{n}, T x_{n}\right)+\alpha_{4} d\left(x_{n-1}, T x_{n}\right) \\
& +\alpha_{5} d\left(x_{n}, T x_{n-1}\right) \\
= & \alpha_{1} d\left(x_{n-1}, x_{n}\right)+\alpha_{2} d\left(x_{n-1}, x_{n}\right)+\alpha_{3} d\left(x_{n}, x_{n+1}\right)+\alpha_{4} d\left(x_{n-1}, x_{n+1}\right) \\
& +\alpha_{5} d\left(x_{n}, x_{n}\right) \\
= & \left(\alpha_{1}+\alpha_{2}\right) d_{n-1}+\alpha_{3} d_{n}+\alpha_{4} d_{n-1}^{*}
\end{aligned}
$$

$$
\begin{equation*}
\text { implies, }\left(1-\alpha_{3}\right) d_{n} \leq\left(\alpha_{1}+\alpha_{2}\right) d_{n-1}+\alpha_{4} d_{n-1}^{*} \tag{2.8}
\end{equation*}
$$

If $d_{n-1} \leq d_{n-1}^{*}$, then from (2.8) we get,

$$
\left(1-\alpha_{3}\right) d_{n} \leq\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right) d_{n-1}^{*}
$$

implies,
$d_{n} \leq\left(\frac{\alpha_{1}+\alpha_{2}+\alpha_{4}}{1-\alpha_{3}}\right) d_{n-1}^{*}=k d_{n-1}^{*} \leq k^{2} d_{n-2}^{*} \leq \cdots \leq k^{n} d_{0}^{*} \quad\left[k=\frac{\alpha_{1}+\alpha_{2}+\alpha_{4}}{1-\alpha_{3}}<1\right]$
implies, $d_{n} \rightarrow 0$ as $n \rightarrow \infty$.
If $d_{n-1^{*}} \leq d_{n-1}$, then from (2.8), we get

$$
\left(1-\alpha_{3}\right) d_{n} \leq\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right) d_{n-1}
$$

implies,

$$
d_{n} \leq\left(\frac{\alpha_{1}+\alpha_{2}+\alpha_{4}}{1-\alpha_{3}}\right) d_{n-1}
$$

from which we get as above $d_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Now we show that $\left\{x_{n}\right\}$ isa a Cauchy sequence. We show this by Marthematical Induction on $p \in \mathbb{N}$ to established

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0 \tag{2.9}
\end{equation*}
$$

Clearly (2.9) holds for $p=1$. Suppose it holds for p i.e., $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$. So $\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n+p+1}\right)=0$.
Thus

$$
\begin{align*}
& \lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p+1}\right)=\lim _{n \rightarrow \infty} d\left(T x_{n-1}, T x_{n+p}\right) \\
& \leq \lim _{n \rightarrow \infty}\left[\alpha_{1} d\left(x_{n-1}, x_{n+p}\right)+\alpha_{2} d\left(x_{n-1}, T x_{n-1}\right)+\alpha_{3} d\left(x_{n+p}, T x_{n+p}\right)\right. \\
& \left.+\alpha_{4} d\left(x_{n-1}, T x_{n+p}\right)+\alpha_{5} d\left(x_{n+p}, T x_{n-1}\right)\right] \\
& \leq \lim _{n \rightarrow \infty}\left[\alpha_{1} d\left(x_{n-1}, x_{n+p}\right)+\alpha_{2} d\left(x_{n-1}, x_{n}\right)+\alpha_{3} d\left(x_{n+p}, x_{n+p+1}\right)\right. \\
& \left.+\alpha_{4} d\left(x_{n-1}, x_{n+p+1}\right)+\alpha_{5} d\left(x_{n+p}, x_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} \alpha_{1} d\left(x_{n-1}, x_{n+p}\right)+\lim _{n \rightarrow \infty} \alpha_{4} d\left(x_{n-1}, x_{n+p+1}\right) \\
& \leq \lim _{n \rightarrow \infty} \alpha_{1} s\left[d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)+d\left(x_{n}, x_{n+p}\right)\right] \\
& +\lim _{n \rightarrow \infty} \alpha_{4} s\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+p+1}\right)\right] \\
& =\lim _{n \rightarrow \infty} \alpha_{1} s d_{n-1}^{*}+\lim _{n \rightarrow \infty} \alpha_{4} s .0 \\
& =\lim _{n \rightarrow \infty} s \alpha_{1} d_{n-1}^{*} . \tag{2.10}
\end{align*}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} d_{n-1}^{*}=\lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n+1}\right)=\lim _{n \rightarrow \infty} d\left(T x_{n-2}, T x_{n}\right) \\
& \leq \lim _{n \rightarrow \infty}\left[\alpha_{1} d\left(x_{n-2}, x_{n}\right)+\alpha_{2} d\left(x_{n-2}, T x_{n-2}\right)+\alpha_{3} d\left(x_{n}, T x_{n}\right)\right. \\
& \left.\quad+\quad \alpha_{4} d\left(x_{n-2}, T x_{n}\right)+\alpha_{5} d\left(x_{n}, T x_{n-2}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\alpha_{1} d\left(x_{n-2}, x_{n}\right)+\alpha_{2} d\left(x_{n-2}, x_{n-1}\right)+\alpha_{3} d\left(x_{n}, x_{n+1}\right)\right. \\
& \left.\quad+\alpha_{4} d\left(x_{n-2}, x_{n+1}\right)+\alpha_{5} d\left(x_{n}, x_{n-1}\right)\right] \\
& =\lim _{n \rightarrow \infty} \alpha_{1} d\left(x_{n-2}, x_{n}\right)+\lim _{n \rightarrow \infty} \alpha_{4} s\left[d\left(x_{n-2}, x_{n-1}\right)+d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right] \\
& =\lim _{n \rightarrow \infty} \alpha_{1} d_{n-2}^{*} \\
& \leq \lim _{n \rightarrow \infty} \alpha_{1}^{2} d_{n-3}^{*}
\end{aligned} \quad \begin{aligned}
& \quad \vdots \\
& \leq \lim _{n \rightarrow \infty} \alpha_{1}^{n-1} d_{0}^{*} \\
& =0
\end{aligned}
$$

Thus from (2.10) we get, $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p+1}\right)=0$.
Therefore, $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$ for all $p \in \mathbb{N}$.
Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is a complete RbMS, there exists
an $x \in x$ such that $\lim _{n \rightarrow \infty} x_{n}=x$.
Now

$$
\begin{aligned}
& \quad d(T x, x) \leq s\left[d\left(T x, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)+d\left(x_{n}, x\right)\right] \\
& =s\left[d\left(T x, T x_{n}\right)+d\left(x_{n+1}, x_{n}\right)+d\left(x_{n}, x\right)\right] \\
& \leq s\left[\alpha_{1} d\left(x, x_{n}\right)+\alpha_{2} d(x, T x)+\alpha_{3} d\left(x_{n}, T x_{n}\right)\right. \\
& \left.\quad+\alpha_{4} d\left(x, T x_{n}\right)+\alpha_{5} d\left(x_{n}, T x\right)+d\left(x_{n+1}, x_{n}\right)+d\left(x_{n}, x\right)\right] \\
& (2.11) \quad=s\left[\alpha_{1} d\left(x, x_{n}\right)+\alpha_{2} d(x, T x)+\alpha_{3} d\left(x_{n}, x_{n+1}\right)+\alpha_{4} d\left(x, x_{n+1}\right)\right. \\
& \left.\quad+\alpha_{5} d\left(x_{n}, T x\right)+d\left(x_{n+1}, x_{n}\right)+d\left(x_{n}, x\right)\right] .
\end{aligned}
$$

Again,

$$
d\left(x_{n}, T x\right)=d\left(T x_{n-1}, T x\right)
$$

$\leq \alpha_{1} d\left(x_{n-1}, x\right)+\alpha_{2} d\left(x_{n-1}, T x_{n-1}\right)+\alpha_{3} d(x, T x)+\alpha_{4} d\left(x_{n-1}, T x\right)+\alpha_{5} d\left(x, T x_{n-1}\right)$

$$
\begin{equation*}
=\alpha_{1} d\left(x_{n-1}, x\right)+\alpha_{2} d\left(x_{n-1}, x_{n}\right)+\alpha_{3} d(x, T x)+\alpha_{4} d\left(x_{n-1}, T x\right)+\alpha_{5} d\left(x, x_{n}\right) \tag{2.12}
\end{equation*}
$$

Suppose, $d(x, T x) \leq d\left(x_{n-1}, T x\right)$. Then from (2.12) we get,

$$
d\left(x_{n}, T x\right) \leq \alpha_{1} d\left(x_{n-1}, x\right)+\alpha_{2} d\left(x_{n-1}, x_{n}\right)+\left(\alpha_{3}+\alpha_{4}\right) d\left(x_{n-1}, T x\right)+\alpha_{5} d\left(x, x_{n}\right)
$$

implies,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} d\left(x_{n}, T x\right) \leq \lim _{n \rightarrow \infty}\left(\alpha_{3}+\alpha_{4}\right) d\left(x_{n-1}, T x\right) \\
\leq \lim _{n \rightarrow \infty}\left(\alpha_{3}+\alpha_{4}\right)^{2} d\left(x_{n-2}, T x\right) \\
\vdots \\
\leq \lim _{n \rightarrow \infty}\left(\alpha_{3}+\alpha_{4}\right)^{n} d\left(x_{0}, T x\right)=0
\end{gathered}
$$

Thus from (2.11) we get,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} d(T x, x) \leq s \alpha_{2} \lim _{n \rightarrow \infty} d(T x, x) \\
& \text { implies, } \quad d(T x, x)=0 \\
& \text { implies, } \quad T x=x
\end{aligned}
$$

Again suppose, $d\left(x_{n-1}, T x\right) \leq d(x, T x)$. Then from (2.12) we get,

$$
d\left(x_{n}, T x\right) \leq \alpha_{1} d\left(x_{n-1}, x\right)+\alpha_{2} d\left(x_{n-1}, x_{n}\right)+\left(\alpha_{3}+\alpha_{4}\right) d(x, T x)+\alpha_{5} d\left(x, x_{n}\right)
$$

Therefore,

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, T x\right) \leq \lim _{n \rightarrow \infty}\left(\alpha_{3}+\alpha_{4}\right) d(x, T x)
$$

From (2.11) we get,

$$
\begin{aligned}
d(T x, x) & \leq s\left[\alpha_{2} d(x, T x)+\lim _{n \rightarrow \infty} \alpha_{5} d\left(x_{n}, T x\right)\right] \\
& \leq s \alpha_{5}\left(\alpha_{3}+\alpha_{5}\right)\left(\alpha_{3}+\alpha_{4}\right) d(x, T x) \\
& \leq s \alpha_{5} d(T x, x) \\
\text { implies, } & d(T x, x)=0 .
\end{aligned}
$$

Therefore, x a fixed point of T.
Suppose, y be another fixed point of T.
Then

$$
\left.\begin{array}{rl}
d(x, y) & =d(T x, T y) \leq \alpha_{1} d(x, y)+\alpha_{2} d(x, T x)+\alpha_{3} d(y, T y)+\alpha_{4} d(x, T y)+\alpha_{5} d(y, T x) \\
& =\alpha_{1} d(x, y)+\alpha_{2} d(x, x)+\alpha_{3} d(y, y)+\alpha_{4} d(x, y)+\alpha_{5} d(y, x) \\
& =\left(\alpha_{1}+\alpha_{4}+\alpha_{5}\right) d(x, y),
\end{array}\right\} \text { implies, }\left[1-\left(\alpha_{1}+\alpha_{4}+\alpha_{5}\right)\right] d(x, y)=0 \text { i.e., } x=y . ~ \$
$$

Thus x is a unique fixed point of T.
Hence the theorem.

3. Acknowledgement

The authors are thankful to the learned referee for his kind suggestions towards the improvement of the paper.

REFERENCES

1. I.A. Bakhtin: The contraction principle in quasimetric spaces, Funct. Anal. 30 (1989), 26-37.
2. V. Berinde: Some remarks on a fixed point theorem for Cirić-Type almost contraction, Carpathian J. Math., 25 (2) (2009), 157-162.
3. S. Czerwik: Contraction mappings in b-metric spaces, Acta Math. Inform., Univ. Ostrav. 1 (1993), 5-11.
4. H. Ding et al.: On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab J Math Sci, 22 (2016), 151-164.
5. H. Ding, V. Ozturk, S. Radenovic: On some fixed point results in brectangular metric spaces, Journal Of Nonlinear Sciences And Applications, 8 (4) (2015), 378386.
6. R. George, S. Radenović, K.P. Reshma, S. Shukla: Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl. 8 (2015), 1005-1013.
7. H. Huang, G. Deng, Z. Chen, S. Radenović: On some recent fixed point results for α-admissible mappings in b-metric spaces, J. Computational Analysis and applications, 25 (2) (2018), 255-269.
8. Z. D. Mitrović and S. Radenović: The Banach and Reich contractions in $b_{v}(s)$ metric spaces, Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam, doi 10.1007/s11784-017-0469-2.
9. V. Ozturk: Fixed point theorems in b-rectangular metric spaces, Universal Journal Of Mathematics, 3 (1) (2020), 28-32.
10. K. Sarkar and K. S. Tiwary: Common Fixed Point Theorems for Weakly Compatible Mappings on Cone Banach Space, International Journal of Scientific Research in Mathematical and Statistical Sciences, 5 (2) (2018), 75-79.
11. K. Sarkar and K. S. Tiwary: Fixed point theorem in cone banachspaces, International Journal of Statistics and Applied Mathematics, 3(4), (2018), 143-146.
12. K. S. Tiwary, K. Sarkar and T. Gain: Some Common Fixed Point Theorems in B-Metric Spaces, International Journal of Computational Research and Development, 3 (1) (2018), 128-130.

[^0]: Received June 20, 2007.
 Communicated by Marija Stanić
 Corresponding Author: Krishnadhan Sarkar, Department of Mathematics, Raniganj Girls' College, Paschim Bardhaman, West Bengal, India-713358 | E-mail: sarkarkrishnadhan@gmail.com
 2010 Mathematics Subject Classification. Primary 54H25; Secondary 47H10

