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Abstract. In this paper, we discuss the existence of fixed points for Berinde type
multivalued θ- contractions. An example is provided to demonstrate our findings and,
as an application, the existence of the solutions for a nonlinear fractional inclusions
boundary value problem with integral boundary conditions is given to illustrate the
utility of our results.
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1. Introduction and preliminaries

Multivalued fixed point theory has been known some development, starting with
the results of Nadler [21], where he proved the existence of multivalued fixed point
using the Hausdorff metric, later, some generalizations were given in this way, for
example, see [4, 10, 13, 27] and references therein.
Berinde [7] introduced the concept of almost contractions as a generalization to
weak contractions notion in the context of single valued mappings, which was later
extended to the multivalued case in [8, 9], and some results were obtained using
this concept. .
Samet et al. [23] introduced a new concept called α-admissible and they obtained
some fixed point results for α − ψ-contractive mappings, later, some results were
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established in this direction, see for example [2, 14, 15, 20]. Recently, Jleli and
Samet [18] introduced θ-contractions type and demonstrated the existence of fixed
points for such contractions. It is worth noting here, that a Banach contraction
is a particular case of θ contraction, whereas there are some θ-contractions that
are not Banach contraction. Following that, several authors investigated various
variants of θ-contraction for single-valued and multivalued mappings, for example,
see [1, 11, 12, 28].
In this work, we combine the concept of α-admissible mappings with the concept
of θ-contractions type in the context of multivalued mappings to demonstrate the
existence of a fixed point for such new contractions type in complete metric spaces.
Using our main results, we also deduce the existence of a fixed point in partially
ordered metric spaces and in metric spaces endowed with a graph. Finally, to
demonstrate the significance of the obtained results, we provide an example and an
application of the existence of solutions for a fractional differential inclusion.
Denote by CL(X) the family of nonempty and closed subsets of X, the family of
nonempty, bounded and closed subsets of X is denoted by CB(X) and the family
of nonempty and compact subsets of X is denoted by K(X).
Let (X, d) be a metric space, and the Pompeiu-Hausdorff metric is defined as a
function H:CL(X)× CL(X)→ [0,∞] which is defined by:

H(A,B) =

 max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
if the maximum exists;

∞, otherwise,

where d(a,B) = inf{d(a, b): b ∈ B}. Note that, if A = {a} (singleton) and
B = {b}, then H(A,B) = d(a, b).

Lemma 1.1. [21] Let (X, d) be a metric space and A,B ∈ CL(X) with H(A,B) >
0. Then, for each h > 1 and for each a ∈ A, there exists b = b(a) ∈ B such that
d(a, b) < hH(A,B).

Now, we’ll look at some fundamental definitions of α-admissibility and α-continuity
concepts.

Definition 1.1. Let (X, d) be a metric space and α : X×X → [0,+∞) be a given
mapping. A mapping T : X → CL(X) is

� α-admissible [2], if for each x ∈ X and y ∈ Tx with α(x, y) ≥ 1 we have
α(y, z) ≥ 1, for all z ∈ Ty.

� α-lower semi-continuous [14], if for x ∈ X and a sequence {xn} in X with
limn→∞ d(xn, x) = 0 and α(xn, xn+1) ≥ 1, for all n ∈ N, implies

lim
n→∞

inf d(xn, Txn) ≥ d(x, Tx).

Definition 1.2. [18] Let Θ be the set of all functions θ : (0,+∞) → (1,+∞)
satisfying:
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(θ1) : θ is non decreasing,

(θ2) : for each sequence {tn} in (0,+∞), lim
n→∞

tn = 1 if and only if lim
n→∞

tn = 0,

(θ3) : there exists r ∈ (0, 1) and l ∈ (0,∞] such that lim
t→0+

θ(t)− 1

tr
= l.

Example 1.1. Let θi : (0,+∞)→ (1,+∞), i ∈ {1, 2, 3}, defined by:

1. θ1(t) = et.

2. θ2(t) = ete
t

.

3. θ3(t) = e
√
x.

4. θ4(t) = e
√
tet .

Then θi ∈ Θ, for each i ∈ {1, 2, 3}.

Throughout this paper, we will denote by Φ the set of all continuous functions
ψ : [0,+∞)→ [0,+∞) satisfying:

(1) : ψ is nondecreasing ,

(2) :

∞∑
i=1

ψn(t) <∞, for all t ∈ [0,+∞).

Clearly, if ψ ∈ Ψ, then ψ(t) < t, for all t ∈ [0,+∞).

2. Main results

Definition 2.1. Let (X, d) be a metric space and α : X × X → R. A mapping
T : X → CL(X) is called a generalized almost (α,ψ, θ, k) contraction, if there exists
a function θ ∈ Θ, ψ ∈ Ψ, L ≥ 0 and k : (0,∞) → [0, 1) satisfies lim

t→s+
sup k(t) < 1

for all s ∈ (0,∞) such that

θ(H(Tx, Ty)) ≤
[
θ(ψ(M(x, y))

]k(M(x,y))

+ LN(x, y),(2.1)

for all x, y ∈ X with α(x, y) ≥ 1 and H(Tx, Ty) > 0, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

and N(x, y) = min{d(x, Ty), d(y, Tx)}.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → K(X) be a
generalized almost (α,ψ, θ, k) contraction, with θ ∈ Θ. Assume that the following
conditions are satisfied:
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1. T is α-admissible.

2. There exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1.

3. T is α-lower semi-continuous, or X is α-regular, that is, for every sequence
{xn} in X such that xn → x ∈ X and α (xn, xn+1) ≥ 1 for all n ∈ N, then
α (xn, x) ≥ 1 for all n ∈ N.

Then T has a fixed point.

Proof. From (2) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1, then
H(Tx0, Tx1) ≥ d(x1, Tx1) > 0, otherwise x1 ∈ Tx1, or, x0 = x1, which implies x1

is a fixed point and the proof completes. For H(Tx0, Tx1) > 0 using (2.1) we get:

θ(d(x1, Tx1)) ≤ θ(H(Tx0, Tx1))

≤
[
θ(ψ(d(x0, x1)))

]k(d(x0,x1)

+ Ld(x1, Tx0) < [θ(M(x0, x1))]k(M(x0,x1).

If d(x0, x1) ≤ d(x1, Tx1), we get

θ(d(x1, Tx1)) ≤
[
θ(ψ(d(x1, Tx1)))

]k(d(x1,Tx1))

+ LN(x0, x1) < θ(d(x1, Tx1),

which is a contradiction. Then we have

θ(d(x1, Tx1)) ≤ θ(H(Tx0, Tx1)) ≤
[
θ(ψ(d(x0, x1)))

]k(d(x0,x1)

.

Since Tx1 is compact, then there exists x2 ∈ Tx1 such that

θ(d(x1, x2)) = θ(d(x1, Tx1)) ≤ θ(H(Tx0, Tx1))

≤
[
θ(d(x0, x1))

]k(d(x0,x1)

< θ(d(x0, x1)).

If x1 = x2, or x2 ∈ Tx2, then x2 is a fixed point. Suppose x1 6= x2 and x2 6∈ Tx2,
so H(Tx2, Tx1) > 0 and since T is α-admissible we have α(x1, x2) ≥ 1. Using (2.1)
we get:

θ(d(x2, Tx2)) ≤ θ(H(Tx1, Tx2)) ≤
[
θ(ψ(M(x1, x2)))

]k(M(x1,x2)

+ LN(x1, x2)

=
[
θ(d(x1, x2))

]k(M(x1,x2))

.

If d(x1, x2) ≤ d(x2, Tx2), we get

θ(d(x2, Tx2)) ≤
[
θ(ψ(d(x2, Tx2)))

]k(d(x2,Tx2))

+ LN(x1, x2) < θ(d(x2, Tx2),

which is a contradiction. Then we have

θ(d(x2, Tx2)) ≤ θ(H(Tx0, Tx1)) ≤
[
θ(ψ(d(x1, x2)))

]k(d(x1,x2)

.
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The compactness of Tx2 implies that there exists x3 ∈ Tx2 such that

θ(d(x2, x3)) = θ(d(x2, Tx2)) ≤ θ(H(Tx1, Tx2))

≤
[
θ(d(x1, x2))

]k(d(x1,x2))

< θ(d(x1, x2)).

Continuing in this manner we can construct a sequence (xn) in X, if xn = xn+1 or
xn+1 ∈ Txn+1, then xn+1 is a fixed point, otherwise we get

θ(d(xn, Txn+1)) ≤
[
θ(ψ(M(xn, xn−1)))

]k(M(xn,xn−1)

+ LN(xn, xn−1).

As the same arguments in previous steps, we get

d(xn+1, Txn+1) ≤ d(xn, xn+1),

so we obtain

θ(d(xn, xn+1)) ≤ θ(H(Txn, Txn−1)) ≤
[
θ(ψ(d(xn, xn−1)))

]k(d(xn,xn+1)

=
[
θ(ψ(d(xn, xn−1)))

]k(d(xn,xn−1))

< θ(d(xn, xn−1)).

Since θ is increasing, then the sequence (d(xn, xn+1))n is decreasing, further it is
bounded at below so it is convergent. On the other hand, lim

t→s+
sup k(t) < 1, then

there exists δ ∈ (0, 1) and n0 ∈ N such that k(d(xn, xn+1)) < δ, for all n ≥ n0.
Thus we have

1 < θ(d(xn, xn+1)) ≤
[
θ(d(xn0 , xn0+1))

]δn−n0

,(2.2)

for all n ≥ n0.
Letting n→∞ in (2.2), we get

lim
n→∞

θ(d(xn, xn+1)) = 1,

By (θ2), we infer that
lim
n→∞

d(xn, xn+1) = 0.

Now, we prove {xn} is a Cauchy sequence, from (θ3) there exist r ∈ [0, 1) and
l ∈ (0,∞] such that

lim
n→∞

θ(d(xn, xn+1))− 1

(d(xn, xn+1)r
= l.

If l <∞, let 2ε = l, so from the definition of limit there exists n1 ∈ N such that for
all n ≥ n1, we have

ε = l − ε < θ(d(xn, xn+1))− 1

(d(xn, xn+1)r

(d(xn, xn+1))r <
θ(d(xn, xn+1))− 1

ε
.
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Then (2.2) gives

n(d(xn, xn+1))r <
n(θ(d(x0, x1))δ

n−n0 − 1)

ε
.(2.3)

In the case where l = ∞, let A be an arbitrary positive real number, so from the
definition of the limit there exists n1 ∈ N such that for all n ≥ n0, we have

θ(d(xn, xn+1))− 1

(d(xn, xn+1))r
> A,

which implies that

n(d(xn, xn+1))r ≤ n(θ(d(x0, x1))δ
n−n0 − 1)

A
.(2.4)

Letting n→∞ in (2.4)(or in (2.3), we obtain

lim
n→∞

n(d(xn, xn+1))r = 0.

From the definition of the limit, there exists n2 ≥ max{n0, n1} such that for all
n ≥ n2, we have

d(xn, xn+1) ≤ 1

n
1
r

,

This implies
∞∑

n=n2

d(xn, xn+1) ≤
∞∑
1

1

n
1
r

<∞.

Then {xn} is a Cauchy sequence.
The completness of (X, d) implies that {xn} converges to a some x ∈ X.
Now, we show that x is a fixed point of T . In fact, if T is α-lower continuous, then
for all n ∈ N we have

0 ≤ d(xn, Txn) ≤ d(xn, xn+1).

Letting n→ +∞, we get
lim
n→∞

d(xn, Txn) = 0.

The α-lower semi continuity of T implies

0 ≤ d(x, Tx) < lim
n→∞

inf d(xn, Txn) = 0.

Hence d(x, Tx) = 0 and x is a fixed point of T .
If X is regular, so α(xn, x) ≥ 1 and H(Txn, Tx) > 0, by using (2.1) we get

1 < θ(d(xn+1, Tx)) ≤ θ(H(Txn, Tx)) <
[
θ(d(x0, x1))

]δn−n0

.

Letting n→ +∞, we get
lim
n→∞

θ(d(xn, Tx)) = 1,
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so (θ2) gives
lim
n→∞

d(xn, Tx) = 0,

which implies that x ∈ Tx.

Theorem 2.2. Let (X, d) be a complete metric space and let T : X → CB(X) be
a generalized almost (α,ψ, θ) contraction, with θ is right continuous. Assume that
the following conditions are satisfied:

(H1) : T is α-admissible,

(H2) : there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1,

(H3) : for every sequence {xn} in X converging to x ∈ X with α(xn, xn+1) ≥ 1, for
all n ∈ N, then α(xn, x) ≥ 1, for all n ∈ N.

Then T has a fixed point.

Proof. From (H2) there are x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1, if x0 =
x1, or, x1 ∈ Tx1, so x1 is a fixed point. Suppose the contrary, then H(Tx0, Tx1) ≥
d(x1, Tx1) > 0 and by using (2.1) we get

θ(d(x1, Tx1)) ≤ θ(H(Tx0, Tx1)) ≤
[
θ(ψ(M(x0, x1)))

]k(M(x0,x1)

+ LN(x0, x1)

<
[
θ(M(x0, x1))

]k(M(x0,x1)

+ LN(x0, x1).

By right continuity of θ, there exists h > 1 such that

θ(hH(Tx0, Tx1)) ≤
[
θ(ψ(M(x0, x1)))

]k(M(x0,x1))

+ LN(x0, x1).

As in proof of Theorem 2.1 we get M(x0, x1) = d(x0, x1) and N(x0, x1) = 0, then
by using Lemma 1.1, there exist x2 ∈ Tx1 and h1 > 1 such that

θ(d(x1, x2)) ≤ θ(h1H(Tx0, Tx1)) ≤
[
θ(ψ(d(x0, x1)))

]k(d(x0,x1))

<
[
θ(ψ(d(x0, x1)))

]k(d(x0,x1))

< θ(d(x0, x1)).

Since T is α-admissible, then α(x1, x2) ≥ 1. Assume that x1 6= x2 and x2 ∈ Tx2,
so H(Tx1, Tx2) ≥ d(x2, Tx2) > 0 and using (2.1), we obtain

1 < θ(d(x2, Tx2)) ≤ θ(H(Tx1, Tx2)) ≤
[
θ(ψ(M(x1, x2)))

]k(M(x1,x2))

+ LN(x1, x2)

<
[
θ(d(x1, x2))

]k(d(x1,x2))

.
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As in previous step, we have M(x1, x2) = d(x1, x2), so we get

θ(d(x2, Tx2)) ≤ θ(H(Tx1, Tx2)) ≤
[
θ(ψ(d(x1, x2)))

]k(d(x1,x2))

<
[
θ(d(x1, x2))

]k(d(x1,x2))

.

Since θ is right continuous and from Lemma 1.1, there exists h2 > 1 and x3 ∈ Tx2

such that

θ(d(x2, x3)) ≤ θ(h2H(Tx1, Tx2)) ≤
[
θ(ψ(d(x1, x2)

]k(d(x1,x2))

.

<
[
θ(d(x1, x2))

]k(d(x1,x2))

< θ(d(x1, x2)).

Continuing in this manner, we can construct two sequences {xn} ⊂ X and (hn) ⊂
(1,∞) such that xn 6= xn+1, xn+1 ∈ Txn, α(xn, xn+1) ≥ 1 and

1 < θ(d(xn, xn+1)) ≤ θ(hnH(Txn−1, Txn))

≤
[
θ(d(xn, xn−1))

]k(d(xn,xn−1))

+ LN(xn, Txn−1)

< θ(d(xn, xn−1)),

which implies that (d(xn, xn+1))n is a decreasing sequence and bounded at below,
so there exist δ ∈ (0, 1) and n0 ∈ N such that k(d(xn, xn+1)) < δ, for all n ≥ n0.
Thus we have

1 < θ(d(xn, xn+1)) <
[
θ(d(x0, x1))

]δn−n0

,(2.5)

for all n ≥ n0.
On taking the limit as n→∞, we get lim

n→∞
θ(d(xn, xn+1)) = 1, (θ2) gives

lim
n→∞

d(xn, xn+1) = 0.

The rest of the proof is like in the proof of Theorem 2.1.

Corollary 2.1. Let (X, d) be a complete metric space, α:X × X → [0,+∞) be
a function and T :X → K(X) (resp CB(X) with θ is right continuous) be an α-
admissible multivalued mapping and the following assertions hold:

(i) T is α-admissible.

(ii) There exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1.

(iii) T is α-lower semi-continuous, or, for every sequence {xn} in X such that
xn → x ∈ X and α (xn, xn+1) ≥ 1, for all n ∈ N, we have α(xn, x) ≥ 1, for
all n ∈ N.
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(iv) There exist θ ∈ Θ, ψ ∈ Ψ and a function k : (0,∞) → [0, 1) satisfying
lim
t→s+

sup k(t) < 1 such for x, y ∈ X H(Tx, Ty) > 0 implies

α(x, y)θ
(
H(Tx, Ty)

)
≤ θ
[
(ψ(M(x, y)))

]k(M(x,y))

+ LN(x, y),(2.6)

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
(d(x, Ty) + d(y, Tx))}

and N(x, y) = min{d(x, Ty), d(y, Tx)}.

Then T has a fixed point.

Proof. Let x, y ∈ X be such that α (x, y) ≥ 1 and H(Tx, Ty) > 0. So from (2.7) we
get

θ
(
H(Tx, Ty)

)
≤ α(x, y)θ

(
H(Tx, Ty)

)
≤ θ
[
(ψ(M(x, y)))

]k(M(x,y))

+ LN(x, y),

which implies that the inequality (2.1) holds. Thus, the rest of proof is like in the
proof of Theorem 2.2 (resp. Theorem 2.1).

If α(x, y) = 1, for all x, y ∈ X, we get the following corollary.

Corollary 2.2. Let (X, d) be a complete metric space and T :X → K(X) (resp.
CB(X) with θ is right continuous) be a multivalued mapping such that there exists
θ ∈ Θ, ψ ∈ Ψ and a function k : (0,∞)→ [0, 1) satisfying lim

t→s+
sup k(t) < 1 for all

s ∈ (0,∞) such that

θ
(
H(Tx, Ty)

)
≤ θ
[
(ψ(M(x, y)))

]k(M(x,y))

+ LN(x, y),(2.7)

for x, y ∈ X with H(Tx, Ty) > 0 where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
(d(x, Ty) + d(y, Tx))}

and N(x, y) = min{d(x, Ty), d(y, Tx)}. Then T has a fixed point in X.

Example 2.1. Let X = {1, 2, 3} and d(x, y) = |x − y|. Define T :X → CB(X) and
α : X ×X → [0,∞) by

Tx =

{
{1}, x ∈ {1, 2}
{2}, x = 3

and α(x, y) = e|x−y|. Taking θ(t) = et, ψ(t) = 4
5
t and k(t) = 1

2
.

Now, we show that the contractive condition holds.
For x, y ∈ X, we have |x− y| ≥ 0, which implies e|x−y| ≥ 1. Then T is α-admissible.
On other hand, H(Tx, Ty) > 0 and α(x, y) ≥ 1 for all (x, y) ∈ {(1, 3), (3, 1), (2, 3), (3, 2)}.
Then we have the following cases:
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1. for x = 1 and y = 3, we have

H(T1, T3) = 1, d(1, 3) = 2, ψ(d(1, 3)) =
8

5
and d(3, T1) = 2,

then
e = eH(T1,T3) < (eψ(d(1,3)))

1
2 + d(3, T1)

= e
4
5 + 2.

2. For x = 2 and y = 3, we have

H(T2, T3) = 1, d(2, 3) = 1, ψ(d(1, 3)) =
4

5
and d(3, T2) = 2,

then
e = eH(T2,T3) < (eψ(d(1,3)))

1
2 + d(3, T2)

= e
2
5 + 2.

There exists x0 = 2 and x1 = 1 ∈ Tx0 such that α (2, 1) ≥ 1.

It is clear that T is α- lower semi continuous. Consequently, all conditions of Theorem 2.1
are satisfied. Then T has a fixed point which is 1.

3. Fixed point on partially ordered metric spaces

Now, we give an existence theorem of fixed point in a partially order metric
space, by using the results provided in previous section.

Theorem 3.1. Let (X,�, d) be a complete ordered metric space and T :X →
CB(X) be a multivalued mapping. Assume that the following assertions hold:

1. For each x ∈ X and y ∈ Tx with x � y, we have y � z for all z ∈ Ty;

2. There exists x0 ∈ X and x1 ∈ Tx0 such that x0 � x1.

3. For every nondecreasing sequence {xn} in X such that xn → x ∈ X, we have
xn � x, for all n ∈ N.

4. There exists a right continuous function θ ∈ Θ, ψ ∈ Ψ and k : (0,∞)→ [0, 1)
satisfies lim

t→s+
sup k(t) < 1 for all s ∈ (0,∞) such that

θ(H(Tx, Ty)) ≤
[
θ(ψ(M(x, y)))

]k(M(x,y)

+ LN(x, y),(3.1)

for all x, y ∈ X with x � y and H(Tx, Ty) > 0, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
(d(x, Ty) + d(y, Tx))

and N(x, y) = min{d(x, Ty), d(y, Tx)}.

Then T has a fixed point.
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Proof. Define α:X ×X → [0,+∞) as follows:

α(x, y) =

{
1, if x � y,
0, otherwise.

From (1), for each x ∈ X and y ∈ Tx with x � y, i.e., α(x, y) = 1 ≥ 1, we have
z � y, for all z ∈ Ty, i.e., α(x, y) = 1 ≥ 1. Thus T is α-admissible.
From (2), there exit x0 ∈ X and x1 ∈ Tx0 such that x0 � x1, i.e., α(x0, x1) = 1 ≥ 1.
Condition (3) implies α- lower semi continuity of T , or regularity of X.
From (4), for x � y, we have α(x, y) = 1 ≥ 1 then the inequality (2.1) holds, which
implies that T is a generalized almost (α,ψ, θ, k) contraction.

4. Fixed point on metric spaces endowed with a graph

In this section, as a consequence of our main results, we present an existence
theorem of fixed point for a multivalued mapping in a metric space X, endowed
with a graph, into the space of nonempty closed and bounded subsets of the metric
space. Consider a graph G such that the set V (G) of its vertices coincides with
X and the set E (G) of its edges contains all loops; that is, E (G) ⊇ ∆, where
∆ = {(x, x) : x ∈ X}. We assume G has no parallel edges, so we can identify G
with the pair (V (G) , E (G)).

Theorem 4.1. Let (X, d) be a complete metric space endowed with a graph G and
T :X → CB(X) be a multivalued mapping. Assume that the following conditions
are satisfied:

1. For each x ∈ X and y ∈ Tx with (x, y) ∈ E(G), we have (y, z) ∈ E(G) for all
z ∈ Ty;

2. There exists x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E(G);

3. T is G-lower semi-continuous, that is, for x ∈ X and a sequence {xn} in X
with
limn→∞ d(xn, x) = 0 and (xn, xn+1) ∈ E(G) for all n ∈ N, implies

lim inf
n→∞

d(xn, Txn) ≥ d(x, Tx)

or, for every sequence {xn} in X such that xn → x ∈ X and (xn, xn+1) ∈
E(G) for all n ∈ N, we have (xn, x) ∈ E(G) for all n ∈ N;

4. There exists a right continuous function θ ∈ Θ, ψ ∈ Ψ and k : (0,∞)→ [0, 1)
satisfing lim

t→s+
sup k(t) < 1 for all s ∈ (0,∞) such that

θ(H(Tx, Ty)) ≤
[
θ(ψ(M(x, y)))

]k(M(x,y)

+ LN(x, y),(4.1)

for all x, y ∈ X with (x, y) ∈ E(G) and H(Tx, Ty) > 0, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
(d(x, Ty) + d(y, Tx))

and N(x, y) = min{d(x, Ty), d(y, Tx)}.



1058 M. Meneceur and S. Beloul

Then T has a fixed point.

Proof. This result is a direct consequence of results of Theorem 2.1 by taking the
function α:X ×X → [0,+∞) defined by:

α (x, y) =

{
1, if (x, y) ∈ E (G) ,
0, otherwise,

5. Application to fractional differential inclusions

Consider the following boundary value problem of fractional order differential in-
clusion with boundary integral conditions:

cDqx(t) ∈ F (t, x(t)), 0 ≤ t ≤ 1, 1 < q ≤ 2
ax(0)− bx′(0) = 0

x(1) =
∫ 1

0
h(s)g(s, x(s))ds

(5.1)

where cDq , 1 < q ≤ 2 is the Caputo fractional derivative, F , g, and h are given
continuous functions, where
F : [0, 1]×R×R −→ K(R), g : [0, 1]×R→ R, h ∈ L1([0, 1]), a+ b > 0, a

a+b < q− 1
and h0 = ‖h‖L1 .
Denote by X = C([0, 1],R) the Banach space of continuous functions x : [0, 1] −→ R,
with the supermum norm

‖ x ‖∞= sup{‖ x(t) ‖, t ∈ I = [0, 1]}.

X can be endowed with the partial order relationship �, that is, for all x, y ∈ X
x � y if and only if x(t) ≤ y(t), so (X, d∞,�) is a complete order metric space.
x is a solution of problem (5.1) if there exists v(t) ∈ F (t, x(t))), for all t ∈ I such
that 

cDqx(t) = v(t), 0 ≤ t ≤ 1, 1 < q ≤ 2
ax(0)− bx′(0) = 0

x(1) =
∫ 1

0
h(s)g(s))ds

(5.2)

Lemma 5.1. Let 1 < q ≤ 2 and v ∈ AC(I,R) = {v : I → R, f is absolutely continuous}.
A function x is a solution of (5.2) if and only if it is a solution of the integral equa-
tion:

x(t) =

∫ 1

0

G(t, s)v(s)ds+
at+ b

a+ b

∫ 1

0

h(s)g(s)ds,

where G is the Green function given by

G(t, s) =

{
(at+b)(1−s)q−1

(a+b)Γ(q) − (t−s)q−1

Γ(q) , s ≤ t
(at+b)(1−s)q−1

(a+b)Γ(q) , t ≤ s.
(5.3)
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Proof. The problem (5.2) can be reduced to an equivalent integral equation:

x(t) =
1

Γ(q)

∫ t

0

(t− s)q−1v(s)ds+ c0 + c1t,

for some constants c0, c1 ∈ X.
Using the boundary conditions on (5.2), we get

ac0 − bc1 = 0,

1

Γ(q)

∫ 1

0

(1− s)q−1v(s)ds+ c0 + c1 =

∫ 1

0

h(s)g(s)ds.

Therefore

c0 =
b

a+ b

[
1

Γ(q)

∫ 1

0

(1− s)q−1g(s, x(s))ds+

∫ 1

0

h(s)g(s, x(s))ds

]
.

c1 =
a

a+ b

[
1

Γ(q)

∫ 1

0

(1− s)q−1v(s)ds+

∫ 1

0

h(s)g(s, x(s))ds

]
.

It means that

x(t) =
1

Γ(q)

∫ t

0

(t−s)q−1v(s)ds+
b

a+ b

[
1

Γ(q)

∫ 1

0

(1− s)q−1v(s)ds+

∫ 1

0

h(s)g(s, x(s))ds

]

+
at

a+ b

[
1

Γ(q)

∫ 1

0

(1− s)q−1v(s)ds+

∫ 1

0

h(s)g(s, x(s))ds

]
=

∫ t

0

[
(at+ b)(1− s)q−1

(a+ b)Γ(q)
− (t− s)q−1

Γ(q)

]
v(s)ds+

∫ 1

t

(at+ b)(1− s)q−1

(a+ b)Γ(q)
v(s)ds

+
at+ b

a+ b

∫ 1

0

h(s)g(s, x(s))ds =

∫ 1

0

G(t, s)v(s)ds+
at+ b

a+ b

∫ 1

0

h(s)g(s)ds.

Moreover, we have∫ 1

0

G(t, s)ds =
(1

Γ(q)

[ ∫ t

0

(t− s)q−1ds+
at+ b

a+ b

∫ 1

0

(1− s)q−1ds
]

≤ 1

Γ(q + 1)
tq +

1

Γ(q + 1)
≤ 2

Γ(q + 1)
.

Define a set valued mapping

Tx1(t) = {z ∈ X, z(t) =

∫ 1

0

G(t, s)v(s)ds+
at+ b

a+ b

∫ 1

0

h(s)g(s, x1(s)ds}.

The problem (5.1) has a solution if and only if T has a fixed point. Assume that
the following assumptions hold:
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� (A1) : For each x1 ∈ X and x2 ∈ Tx1 with x1 � x2 we have x2 � x3 for all
x3 ∈ Tx2.

� (A2) : There exists x0 ∈ X and x1 ∈ Tx0 such that x0 � x1.

� (A3) : There exists K > 0 and L > 0 such that for all x1, x2 ∈ R, we have

H(F (t, x1(t))− F (t, x2(t))) ≤ K|x1 − x2|)

and
|g(t, x1(t))− g(t, x2(t))| ≤ L|x1 − x2|,

with k0 = 2K
Γ(q+1) + h0L <

1
2 .

Theorem 5.1. Under the assumptions (A1)−(A3) the problem (5.1) has a solution
in X.

Proof. Since F is continuous, it has a selection, i,e., there exists a continuous func-
tion v1 ∈ F (t, x1(t)) such that Tx1 is nonempty and has compact values.
Let x1, x2 ∈ X and z1 ∈ Tx1, then there exists v1 ∈ F (t, x1(t)) such that

z1(t) =

∫ 1

0

G(t, s)v1(s)ds+
at+ b

a+ b

∫ 1

0

h(s)g(s, x1(s))ds.

Then by using (A2), we get

d(v1, Fx2) = inf
u∈Fx2

|v1 − u| ≤ H(F (t, x1(t))− F (t, x2(t)))

≤ K‖x1 − x2‖,

the compactness of F (t, x2(t)) implies that there exists u∗ ∈ F (t, x2(t)) such that

d(v1, Fx2) = |v1 − u∗| ≤ K|x1 − x2|.

Define an operator P (t) = {u∗ ∈ R, |u1(t) − u∗| ≤ K|x1(t) − x2(t)|}. Clearly
P ∩ F (t, x2(t)) is continuous, so it has a selection v2 such that

|u1 − u2| ≤ K|x1 − x2|.

Define

z2 =

∫ 1

0

G(t, s)u2(s)ds+
at+ b

a+ b

∫ 1

0

h(s)g(s, x2(s)ds.

For all t ∈ I, we have

|z1 − z2| ≤
∫ 1

0

|G(t, s)||u1 − u2|ds+
at+ b

a+ b

∫ 1

0

|h(s)||g(s, x1(s))− g(s, x2(s))|ds
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≤ K|x1 − x2|)
∫ 1

0

|G(t, s)|ds+
at+ b

a+ b
h0L|x1(s)− x2(s)|

≤ (
2K

Γ(q + 1)
+ h0L)|x1 − x2| = k0|x1 − x2|

Then, we have
sup

z1∈Tx1

[
inf

z2∈Tx2

|z1 − z2|
]
≤ k0‖x1 − x2‖.

Hence, by interchanging the role of x1 and x2 we obtain

H(Tx1, Tx2) ≤ k0|x1 − x2|).

On taking the exponential of two sides, we get

eH(Tx1,Tx2) ≤ (e2k0|x1−x2|)
1
2

≤ ek0|x1−x2| + d(x2, Tx1).

If {xn} is a nondecreasing sequence in X which converges to x ∈ X, so for all t ∈ I
and n ∈ N we have xn(t) ≤ x(t), which implies that x is an upper bound for all
terms xn (see [22]), then xn � x.
Consequently, all the conditions of Theorem 3.1 are satisfied, with θ(t) = et, ψ(t) =
2k0t and k(t) = k0.
Hence, T has a fixed point which is a solution of the problem (5.1).
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