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Abstract. Let E be a sublattice of a vector lattice F . (xα) ⊆ E is said to be õrder

convergent to a vector x (in symbols xα
Fo−→ x), whenever there exists another net

(yα) in F with the same index set satisfying yα ↓ 0 in F and |xα − x| ≤ yα for all
indexes α. If F = E∼∼, this convergence is called b-order convergence and we write

xα
bo−→ x. In this manuscript, first we study some properties of õrder convergence

nets and we extend same results to the general case. In the second part, we introduce
b-order continuous operators and we investigate some properties of this new concept.
An operator T between two vector lattices E and F is said to be b-order continuous, if

xα
bo−→ 0 in E implies Txα

bo−→ 0 in F .
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1. Introduction

Generalizations of vector lattice notions by using subspaces of a vector lattice is
rather common technique going back to [4] where it was applied to the notion of
order ideal (see also [6], [5], and [8] where b-property and un-convergence were
extended to this setting). To state our result, we need to fix some notation and
recall some definitions. Let us say that a vector subspace G of an ordered vector
space E is majorizing in E whenever for each x ∈ E there exists some y ∈ G with
x ≤ y. A vector sublattice G of vector lattice E is said to be order dense in E
whenever for each 0 < x ∈ E there exists some y ∈ G with 0 < y ≤ x. A Dedekind
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complete vector lattice E is said to be a Dedekind completion of the vector lattice
G whenever E is lattice isomorphism to a majorizing order dense sublattice of E. A
subset A of a vector lattice E is said to be order closed if it follows from {xα} ⊆ A

and xα
o→ x in E that x ∈ A. A vector sublattice G of vector lattice E is said to

be regular, if the embedding mapping of E into F preserves arbitrary suprema and
infima. Let E, F be vector lattices. An operator T : E → F is said to be order
bounded if it maps each order bounded subset of E into order bounded subset of
F . The collection of all order bounded operators from a vector lattice E into a
vector lattice F will be denoted by Lb(E,F ). The vector space E∼ of all order
bounded linear functionals on vector lattice E is called the order dual of E, i.e.,
E∼ = Lb(E,R). Let A be a subset of vector lattice E and QE be the natural
mapping from E into E∼∼. If QE(A) is order bounded in E∼∼, then A is said
to b−order bounded E, see [3]. It is clear that every order bounded subset of E
is b−order bounded. However, the converse is not true in general. For example,
A = {en | n ∈ N} b−order bounded in c0 but A is not order bounded in c0. A linear
operator between two vector lattices is order continuous (resp. σ-order continuous)
if it maps order null nets (resp. sequences) to order null nets (resp. sequences). The
collection of all order continuous (resp. σ-order continuous) linear operators from
vector lattice E into vector lattice F will be denoted by Ln(E,F ) (resp. Lc(E,F )).
For unexplained terminology and facts on Banach lattices and positive operators,
we refer the reader to [1, 2].

2. õrder convergence on vector lattices

In all parts of this section E is a vector sublattice of vector lattice F . Let A ⊆ E.
We say that inf A exists in E with respect to F , if inf A exits in F and inf A ∈ E,
in this case we write infF A exists,. For a net (xα)α ⊆ E and x ∈ E, the notation
xα ↓F x means that xα ↓ and inf (xα) = x holds in F . The meanings of xα ↑ and
xα ↑F x are analogous. Obviously if xα ↓F 0, then xα ↓ 0, but as following example
the converse in general not holds.

Example 2.1. Assume that F is a set of real valued functions on [0, 1] of form f = g+h
where g is continuous and h vanishes except at finitely many point. Let E = C([0, 1]) and
fn(t) = tn where t ∈ [0, 1]. It is clear that fn ↓ 0 in E and infF fn not exists in E, but we
have fn ↓ χ{1} in F .

It is obvious that if E is regular in F , then for each net (xα)α ⊆ E and x ∈ E,
xα ↓F x if and only if xα ↓ x.

The notation xα ↓b x means that xα ↓ and inf (xα) = x holds in E∼∼. The
meanings of xα ↑b x is analogous.

Definition 2.1. (xα) ⊆ E is said to be õrder convergent (in short õ-convergent)

to a vector x ∈ F (in symbols xα
Fo−→ x ), whenever there exists another net (yα)

in F with the same index set satisfying yα ↓ 0 and |xα − x| ≤ yα for all indexes α.



A Generalization of Order Convergence in the Vector Lattices 523

In the same way, a net (xα) of E is said to be b-order convergent (in short bo-

convergent) to a vector x (in symbols xα
bo−→ x ), whenever there exists another

net (yα) in E∼∼ with the same index set satisfying yα ↓ 0 and |xα − x| ≤ yα for all
indexes α.

It is clear that every order convergent net in vector lattice E is õrder convergent,
but as following example the converse in general not holds.

Example 2.2. Suppose that E = c0 and (en) is the standard basis of c0. We know that
(en) is not order convergent to zero, but (en) is õrder (or b-order) convergent to zero in
ℓ∞.

It can easily be seen that a net in vector lattice E can have at most one õrder
limit. The basic properties of õrder convergent are summarized in the next theorem.

Theorem 2.1. Assume that the nets (xα) and (yβ) of a vector lattice E satisfy

xα
Fo−→ x and yβ

Fo−→ y. Then we have

1. |xα|
Fo−→ |x|; x+

α
Fo−→ x+ and x−

α
Fo−→ x−.

2. λxα + µyβ
Fo−→ λx+ µy for all λ, µ ∈ R.

3. xα ∨ yβ
Fo−→ x ∨ y and xα ∧ yβ

Fo−→ x ∧ y.

4. For each z ∈ F , if xα ≤ z for all α ≥ α0, then x ≤ z.

5. If 0 ≤ xα ≤ yα, then 0 ≤ x ≤ y.

6. If P is order projection, then Pxα
Fo−→ Px.

Definition 2.2. A ⊆ E is said to be F -order closed whenever (xα) ⊆ A and

xα
Fo−→ x imply x ∈ A.

The set A ⊆ E is F -order closed means that A is order closed with respect to vector
lattice F . If A ⊆ E is order closed in E, then it is clear that A is F -order closed,
but the converse in general not holds. For example c0 is order closed, but is not
ℓ∞-order closed.

Lemma 2.1. Let A ⊆ E be a solid subset of F . Then A is F -order closed if and
only if (xα) ⊆ A and 0 ≤ xα ↑F x imply x ∈ A.

Proof. Suppose that A is a F -order closed, and (xα) ⊆ A and 0 ≤ xα ↑F x.

Therefore 0 ≤ |xα−x| ≤ x−xα ↓F 0. It follows that xα
Fo−→ x, and since A is order

closed, it implies that x ∈ A.

Conversely assume that (xα) ⊆ A and xα
Fo−→ x. Set a net (yα) in F with same

index net satisfying yα ↓F 0 and |xα − x| ≤ yα for each α. Since (|x| − yα)
+ ≤ |xα|

for each α and A is solid, follows that ((|x| − yα)
+
)α ⊆ A. Obviously that 0 ≤

(|x| − yα)
+ ↑b |x|, and so by hypothesis we have x ∈ A. It follows that A is F -order

closed.
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Definition 2.3. 1. E is said to be F -Dedekind (or F -order) complete, if every
nonempty A ⊆ E that is bounded from above in F has supermum in E. In
case F = E∼∼, we say that E is b-Dedekind complete.

2. A subset A of E is called F -order bounded, if A is order bounded in F . In
case F = E∼∼, we say that A is b-order bounded.

3. If each F -order bounded subset of E is order bounded in E, then E is said to
have the F -property. In case F = E∼∼, we say that E has b-property.

Remark 2.1. Every majorizing sublattice E of F has the F -property. Since E∼ has
b-property, E∼ is b-Dedekind complete. If E is F -Dedekind complete, then E is Dedekind
complete, but the converse in general not holds, of course c0 is Dedekind complete, but is
not ℓ∞-Dedekind complete. Let K be a compact Hausdorff space and let C(K) and B(K)
be vector lattices of real valued continuous and bounded functions on K, respectively,
under pointwise order and algebric operations. By easy calculation, it is obvious that
C(K) is both B(K)-Dedekind complete and b-Dedekind complete. It is clear that E is
F -Dedekind complete if and only if E is Dedekind complete with F -property. It is easy
to show that a vector lattice E has F -property if and only if for each net (xα) in E with
xα ↑≤ y for some y ∈ F , (xα) is order bounded in E.

Theorem 2.2. Assume that E is a Banach lattice with order continuous norm
and vector subspace of a vector lattice F . E is KB-space iff E has property (F ).

Proof. Let E be a KB-space and net (xα) ⊆ E such that 0 ≤ xα ↑≤ x and x ∈ F .
We have x−xα ↓ 0. Since E has order continuous norm, therefore limα xα = x. On
the other hand E is Dedekind complete, hence there exists y ∈ E that y = supα xα.
So y = supα xα = limα xα = x. Hence x ∈ E. Thus E has prperty (F ).
Conversely, by assumption it is clear that E has property (b). By Proposition 2.1
of [3], it follows that E is a KB-space, and proof follows.

Corollary 2.1. If E is a Banach lattice with order continuous and property (b),
then it has property (F ) for each vector lattice F that E is a sublattice of F .

Note that c0 has property (cu0 )(universal completion). Since c0 has order continuous
norm and it is not KB-space, therefore it has not property (b).

Let E be a vector sublattice of F and I be an ideal in E. In general, I is not
an ideal in F . For example, set F = R3 and define the order on F in the following
way:

x = (x1, x2, x3) < y = (y1, y2, y3)

whenever one of the following relations hold

1. x1 < y1 or;

2. x1 = y1, x2 < y2 or;
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3. x1 = y1, x2 = y2, x3 < y3.

It is clear F with this order is a vector lattice. Now if we take E = {(x, y, 0) : x, y ∈
R} and I = {(0, y, 0) : y ∈ R}, then obviously that I is an ideal in E, but is not
ideal in F .
The above example shows that the property of being ideal thus depends on the
space in which I is embedded. Now if E is F -Dedekind complete and order dense
in F , the following theorem shows that I is an ideal in E if and only if I is an ideal
in F .

Theorem 2.3. Assume that E is F -Dedekind complete. The following statements
hold.

1. Each F -order convergent net in E is order convergent in E.

2. If E is order dense in F , then B is a band in E if and only if B is a band in
F .

3. By assumption (2), if F = E∼∼, then Eδ = E∼∼.

4. If F = E∼∼ and E∼ = E∼
n , then E is perfect.

Proof. 1. Assume that (xα)α ⊆ E is F -order convergent to x in E. Then there
exists a net (yα)α ⊆ F such that yα ↓ 0 and |xα − x| ⩽ yα for all indexes α.
Set zα = |xα − x| and take wα =

∨
β⩾α zβ . Since E is F -Dedekind complete,

(wα)α ⊆ E. It follows that |xα − x| ⩽ wα ⩽ yα and wα ↓ 0 in E. Thus (xα)α
is order convergence to x in E.

2. If B is a band in F , it is clear that B is a band in E. Now assume that
B is a band in E. First we prove that I is an ideal in F . Let x ∈ F
and y ∈ I such that 0 < |x| < |y|. Since E is order dense in F , there
is a z ∈ E such that 0 < z ⩽ x+ ⩽ |x|, which follows that z ∈ B. Put
sup{z ∈ B : 0 < z ⩽ x+} = w. By F -Dedekind completeness of E, we have
w ∈ E, and so w ∈ B. If w < x+, then 0 < x+ − w. Since E is order dense
in F , there is v ∈ E such that 0 < v < x+ − w, and so 0 < w + v < x+. It
follows that w + v ∈ B, which is impossible. Thus w = x+ belong to B. In
the same way x− ∈ B, and so x ∈ B. This shows that B is an ideal in F .
Now since E is F -Dedekind complete, by using Lemma 2.1, B is order closed
in F and proof follows.

3. By Proposition 8 from [6], proof follows.

4. By Corollary 10 from [6], proof follows.
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3. b-order continuous operators

Let E and F be two vector lattices. An operator T : E → F is called b-order
bounded operator if it maps b-order bounded subset of E into b-order bounded
subset of F . The collection of b-order bounded operators will be denoted by:

Lb∼ (E,F ) := {T ∈ L (E,F ) : T is b− order bounded operator}.

An order bounded operator between two vector lattices is b-order bounded, but as
Example 2.4, [3], the converse, in general, not holds.

Proposition 3.1. Let T be an order bounded operator from a vector lattice E into
Dedekind complete vector lattice F . Then T ∈ Lb∼ (E,F ) if and only if |T∼∼| ∈
Lb∼ (E∼∼, F∼∼)

Proof. Assume that T ∈ Lb∼ (E,F ), we shows that |T | ∈ Lb∼ (E,F ). Let (xα)α be
a net in E+ with xα ↑ x′′ for some x′′ ∈ E∼∼. Let A be the solid hull of (xα)α in
E. Since (xα)α is order bounded in E∼∼, A is b-order bounded in E. Then T (A) is
b-order bounded in F . Since F∼∼ is Dedekind complete, supT (A) exists in F∼∼.
Let y ∈ E with |y| ≤ xα for fix α ∈ I. Then y ∈ A and T (y) ≤ supT (A). It follows
that |T |(xα) ≤ supT (A). By Dedekind completeness of F∼∼, supα |T |(xα) exists in
F∼∼. This shows that |T∼∼| ∈ Lb∼ (E∼∼, F∼∼). The converse by easy calculation
follows.

By the conditions of above proposition, Lb∼ (E∼∼, F∼∼) is a lattice, and so is a vec-
tor lattice. So it is easy to shows that Lb∼ (E∼∼, F∼∼) is an ideal in Lb (E

∼∼, F∼∼).

Theorem 3.1. Let E be a Banach lattice. Then each operator T from E into a
AL-space F is a b-order bounded.

Proof. Assume that A ⊆ E is b-order bounded. Since F is an AM -space, follows
that F is a KB-space, and therefore by Theorem 4.60 of [2], c0 is not embeddable
in F . Hence by Proposition 2.2 of [7], T is b-weakly compact operator. So T (A)
is a relatively weakly compact subset of F and therefore by Theorem 4.27 of [2], it
is a relatively weakly compact in L1(µ) for some finite measures. We know that,
T (A) is a almost bounded in L1(µ) if and only if T (A) is relatively weakly compact.
Therefore T (A) is bounded, and so is b-order bounded in F .

Definition 3.1. An operator T : E → F between two vector lattices is said to be

b-order continuous, if xα
bo−→ 0 in E implies Txα

bo−→ 0 in F .

Proposition 3.2. If T is b-order continuous operator between two vector lattices
E and F . Then T is b-order bounded.

Proof. Suppose that T : E → F is a b-order continuous operator. Let A = [0, x′′]∩E
for some x′′ ∈ E∼∼. Let Λ = {β : 0 ≤ β ≤ x′′} and we write α ⪯ β if and only if
α ≥ β. We consider a net (xα)α∈Λ as follows

xα =

{
α α ∈ A;
0 α /∈ A
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Therefore xα
bo−→ 0, since if we set yα = α then yα ↓b 0 and |xα| ≤ yα. By the

b-order continuity of T , there exists a net (zα) of F
∼∼ with the same index Λ such

that |Txα| ≤ zα ↓b 0. Consequently, if α ∈ Λ then we have |Txα| ≤ zα ≤ zx′′ that
zx′′ ∈ F∼∼, and this show that T is a b-order bounded operator.

As above proposition, the class of b-order continuous operators is a subspace of
Lb∼ (E,F ) and will be denoted by Ln∼ (E,F ), that is

Ln∼ (E,F ) := {T ∈ Lb∼ (E,F ) : T is b− order continuous}.

Proposition 3.3. Let E and F be vector lattices, T and S are operators from E
into F and 0 ≤ S ≤ T . If T ∈ Ln∼ (E,F ), then S ∈ Ln∼ (E,F ).

Proof. Let (xα) be net in E that xα
bo−→ 0. Since T is b-order continuous, there exists

yα ∈ F∼∼ such that |T |xα|| = T |xα| ≤ yα ↓b 0. On the other hand, |S (xα) | ≤
S|xα| ≤ T |xα| ≤ yα ↓b 0 for every xα in E, and this yields that S is b-order
continuous.

Lemma 3.1. Let E and F be two vector lattices with Dedekind complete. Then
0 < T ∈ Ln∼ (E,F ) if and only if for each net (xα) in E, xα ↓b 0 implies Txα ↓b 0.

Proof. Assume that 0 < T ∈ Ln∼ (E,F ) and xα ↓b 0. It follows that xα
bo−→ 0, and

so Txα
bo−→ 0. Then there is a net (yα) in F∼∼ such that Txα = |Txα| ≤ yα ↓ 0,

which follows that Txα ↓b 0.
Conversely, Let (xα) ⊆ E such that xα

bo−→ 0 in E. Then there is a net (yα) in
E∼∼ such that |xα| ≤ yα ↓ 0 in E∼∼. Set wα =

∨
β≥α |xβ | < yα. Then we have

wα ↓b 0, and so Twα ↓b 0. Since |Txα| ≤ T |xα| ≤ Twα, Txα
bo−→ 0 in F , and proof

follows.

As an application of Lemma 3.1, we have the following corollary, in which the
techniques of this corollary has been similar argument like as Theorem 1.56 [1] and
we omit its proof.

Corollary 3.1. Let E and F be two vector lattices with Dedekind complete. Then
the following assertions are equivalent.

1. T ∈ Ln∼ (E,F ).

2. xα ↓b 0 implies Txα ↓b 0.

3. xα ↓b 0 implies infb |Txα| = 0.

4. T−, T+ and |T | belong to Ln∼ (E,F ).

Proposition 3.4. Let E and F be both vector lattices. Then we have the following
assertions.
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1. If F is a b-Dedekind complete, then Lb(E,F ) = Lb∼(E,F ).

2. If E and F are both b-Dedekind complete, then Ln∼ (E,F ) = Ln (E,F ).

3. Ln∼ (E,F ) is a band of Lb∼ (E,F ).

Proof. 1. Obviously that Lb(E,F ) ⊆ Lb∼(E,F ). Now we prove Lb∼(E,F ) ⊆
Lb(E,F ). Let A be an order bounded subset of E and T ∈ Lb∼(E,F ). Then
T (A) is an b-order bounded subset of F . Since F be b-Dedekind complete,
follows that supb T (A) exists in E. It follows that T (A) is order bounded in
E, and so proof follows.

2. Assume that T ∈ Ln (E,F ). Let (xα) be a net in E that xα
bo−→ 0. Since E

is b-Dedekind complete, by using Theorem 2.3, xα
o→ 0. By assumption, we

have Txα
o→ 0, which follows that Txα

bo−→ 0, and so T ∈ Ln∼ (E,F ).

Now let T ∈ Ln∼ (E,F ) and (xα) ⊆ E such that xα
o→ 0. It follows that

xα
bo−→ 0, and so Txα

bo−→ 0. By Dedekind completeness of F and an-
other using Theorem 2.3, we have Txα

o→ 0, which follows that Ln∼ (E,F ) ⊆
Ln (E,F ), and proof down.

3. Proof has the similar argument from Theorem 1.57 [1].
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