ON CARTAN NULL BERTRAND CURVES IN MINKOWSKI 3-SPACE

Fatma Gökcek and Hatice Altın Erdem
Kırıkkale University, Faculty of Sciences and Arts, Department of Mathematics, 71450 Kırıkkale, Turkey

Abstract

In this paper, we consider Cartan null Bertrand curves in Minkowski 3space. Since the principal normal vector of a null curve is a spacelike vector, the Bertrand mate curve of a null curve can be a timelike curve and a spacelike curve with spacelike principal normal. We give the necessary and sufficient conditions for these cases to be Bertrand curves and we also give the related examples.

Keywords: Bertrand curve, Minkowski 3-space, Cartan null curve, non-null curve.

1. Introduction

In the theory of curves in Euclidean space, one of the important and interesting problem is characterization of a regular curve. In the solution of the problem, the curvature functions κ_{1} (or \varkappa) and κ_{2} (or τ) of a regular curve have an effective role. For example: if $\kappa_{1}=0=\kappa_{2}$, then the curve is a geodesic or if $\kappa_{1}=$ constant $\neq 0$ and $\kappa_{2}=0$, then the curve is a circle with radius $\left(1 / \kappa_{1}\right)$, etc. Another way in the solution of the problem is the relationship between the Frenet vectors and Frenet planes of the curves ([8],[13]). Mannheim curves is an interesting examples for such classification. If there exists a corresponding relationship between the space curves α and β such that, at the corresponding points of the curves, the principal normal lines of α coincides with the binormal lines of β, then α is called a Mannheim curve, β is called Mannheim partner curve of α. Mannheim partner curves was studied by Liu and Wang (see [10]) in Euclidean 3-space and Minkowski 3-space.

[^0]Another interesting example is Bertrand curves. A Bertrand curve is a curve in the Euclidean space such that its principal normal is the principal normal of the second curve $([3],[18])$. The study of this kind of curves has been extended to many other ambient spaces. In [12], Pears studied this problem for curves in the n-dimensional Euclidean space $\mathbb{E}^{n}, n>3$, and showed that a Bertrand curve in \mathbb{E}^{n} must belong to a three-dimensional subspace $\mathbb{E}^{3} \subset \mathbb{E}^{n}$. This result is restated by Matsuda and Yorozu [11]. They proved that there was not any special Bertrand curves in $\mathbb{E}^{n}(n>3)$ and defined a new kind, which is called (1,3)-type Bertrand curves in 4-dimensional Euclidean space. Bertrand curves and their characterizations were studied by many researchers in Minkowski 3-space and Minkowski space-time (see [1], [2], [6], [7], [14], [15]) as well as in Euclidean space. In addition, $(1,3)$-type Bertrand curves were studied in semi-Euclidean 4 -space with index 2 ([16],).

Following [17], in this paper, we consider Cartan null Bertrand curves in Minkowski 3 -space. Since the principal normal vector of a null curve is a spacelike vector, the Bertrand mate curve of a null curve can be a null curve, a timelike curve and a spacelike curve with spacelike principal normal. The case where the Bertrand mate curve is a null curve, were studied in [2]. Thus, we give the necessary and sufficient conditions for other cases to be Bertrand curves and we also give the related examples.

2. Preliminaries

The Minkowski space \mathbb{E}_{1}^{3} is the Euclidean 3 -space \mathbb{E}^{3} equipped with indefinite flat metric given by

$$
g=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system of \mathbb{E}_{1}^{3}. Recall that a vector $v \in \mathbb{E}_{1}^{3} \backslash\{0\}$ can be spacelike if $g(v, v)>0$, timelike if $g(v, v)<0$ and null (lightlike) if $g(v, v)=0$ and $v \neq 0$. In particular, the vector $v=0$ is a spacelike. The norm of a vector v is given by $\|v\|=\sqrt{|g(v, v)|}$, and two vectors v and w are said to be orthogonal, if $g(v, w)=0$. An arbitrary curve $\alpha(s)$ in \mathbb{E}_{1}^{3}, can locally be spacelike, timelike or null (lightlike), if all its velocity vectors $\alpha^{\prime}(s)$ are respectively spacelike, timelike or null ([9]). Spacelike curve in \mathbb{E}_{1}^{3} is called pseudo null curve if its principal normal vector N is null [4]. A null curve α is parameterized by pseudo-arc s if $g\left(\alpha^{\prime \prime}(s), \alpha^{\prime \prime}(s)\right)=1$. Also null curve is called null Cartan curve if it is parameterized by pseudo-arc function. A spacelike or a timelike curve $\alpha(s)$ has unit speed, if $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)= \pm 1([4])$.

Let $\{T, N, B\}$ be the moving Frenet frame along a curve α in \mathbb{E}_{1}^{3}, consisting of the tangent, the principal normal and the binormal vector fields respectively. Depending on the causal character of α, the Frenet equations have the following forms.

Case I. If α is a non-null curve, the Frenet equations are given by ([9]):

$$
\left[\begin{array}{c}
T^{\prime} \tag{2.1}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \epsilon_{2} k_{1} & 0 \\
-\epsilon_{1} k_{1} & 0 & \epsilon_{3} k_{2} \\
0 & -\epsilon_{2} k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

where k_{1} and k_{2} are the first and the second curvature of the curve respectively. Moreover, the following conditions hold:

$$
g(T, T)=\epsilon_{1}= \pm 1, g(N, N)=\epsilon_{2}= \pm 1, g(B, B)=\epsilon_{3}= \pm 1
$$

and

$$
g(T, N)=g(T, B)=g(N, B)=0
$$

Case II. If α is a null Cartan curve, the Cartan equations are given by ([4])

$$
\left[\begin{array}{l}
T^{\prime} \tag{2.2}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
k_{2} & 0 & -k_{1} \\
0 & -k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

where the first curvature $k_{1}=0$ if α is straight line, or $k_{1}=1$ in all other cases. In particular, the following conditions hold:

$$
g(T, T)=g(B, B)=g(T, N)=g(N, B)=0, g(N, N)=g(T, B)=1
$$

3. Cartan Null Bertrand curves in Minkowski 3-space

In this section, we consider the Cartan null Bertrand curves in \mathbb{E}_{1}^{3}. We get the necessary and sufficient conditions for the Cartan null curves to be Bertrand curves in \mathbb{E}_{1}^{3} and we also give the related examples.

Definition 3.1. A Cartan null curve $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ with $\kappa_{1}(s) \neq 0$ is a Bertrand curve if there is a curve $\alpha^{*}: I^{*} \rightarrow \mathbb{E}_{1}^{3}$ such that the principal normal vectors of $\alpha(s)$ and $\alpha^{*}\left(s^{*}\right)$ at $s \in I, s^{*} \in I^{*}$ are equal. In this case, $\alpha^{*}\left(s^{*}\right)$ is the Bertrand mate of $\alpha(s)$.

Let $\beta: I \rightarrow \mathbb{E}_{1}^{3}$ be a Cartan null Bertrand curve in \mathbb{E}_{1}^{3} with the Frenet frame $\{T, N, B\}$ and the curvatures κ_{1}, κ_{2}, and $\beta^{*}: I \rightarrow \mathbb{E}_{1}^{3}$ be a Bertrand mate curve of β with the Frenet frame $\left\{T^{*}, N^{*}, B^{*}\right\}$ and the curvatures $\kappa_{1}^{*}, \kappa_{2}^{*}$.

Theorem 3.1. Let $\beta: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{3}$ be a Cartan null curve parametrized by pseudo arc parameter with curvatures $\kappa_{1} \neq 0, \kappa_{2}$. Then the curve β is a Bertrand curve with Bertrand mate β^{*} if and only if one of the following conditions holds:
(i) there exists constant real numbers λ and h satisfying

$$
\begin{equation*}
h<0, \quad 1+\lambda \kappa_{2}=-h \lambda \kappa_{1}, \quad \kappa_{2}-h \kappa_{1} \neq 0, \quad \kappa_{2}+h \kappa_{1} \neq 0 \tag{3.1}
\end{equation*}
$$

In this case, β^{*} is a timelike curve in \mathbb{E}_{1}^{3}.
(ii) there exists constant real numbers λ and h satisfying

$$
\begin{equation*}
h>0, \quad 1+\lambda \kappa_{2}=-h \lambda \kappa_{1}, \quad \kappa_{2}-h \kappa_{1} \neq 0, \quad \kappa_{2}+h \kappa_{1} \neq 0 \tag{3.2}
\end{equation*}
$$

In this case, β^{*} is a spacelike curve with spacelike principal normal in \mathbb{E}_{1}^{3}.
Proof. Assume that β is a Cartan null Bertrand curve parametrized by pseudo arc parameter s with $\kappa_{1} \neq 0, \kappa_{2}$ and the curve β^{*} is the Bertrand mate curve of the curve β parametrized by with arc-length or pseudo arc s^{*}.
(i) Let β^{*} be a timelike curve. Then, we can write the curve β^{*} as

$$
\begin{equation*}
\beta^{*}\left(s^{*}\right)=\beta^{*}(f(s))=\beta(s)+\lambda(s) N(s) \tag{3.3}
\end{equation*}
$$

for all $s \in I$ where $\lambda(s)$ is C^{∞}-function on I. Differentiating (3.3) with respect to s and using (2.1),(2.2), we get

$$
\begin{equation*}
T^{*} f^{\prime}=\left(1+\lambda \kappa_{2}\right) T+\lambda^{\prime} N-\lambda \kappa_{1} B \tag{3.4}
\end{equation*}
$$

By taking the scalar product of (3.4) with N, we have

$$
\begin{equation*}
\lambda^{\prime}=0 \tag{3.5}
\end{equation*}
$$

Substituting (3.5) in (3.4), we find

$$
\begin{equation*}
T^{*} f^{\prime}=\left(1+\lambda \kappa_{2}\right) T-\lambda \kappa_{1} B \tag{3.6}
\end{equation*}
$$

By taking the scalar product of (3.6) with itself, we obtain

$$
\begin{equation*}
\left(f^{\prime}\right)^{2}=2 \lambda \kappa_{1}\left(1+\lambda \kappa_{2}\right) \tag{3.7}
\end{equation*}
$$

If we denote

$$
\begin{equation*}
\delta=\frac{1+\lambda \kappa_{2}}{f^{\prime}} \text { and } \gamma=\frac{-\lambda \kappa_{1}}{f^{\prime}} \tag{3.8}
\end{equation*}
$$

we get

$$
\begin{equation*}
T^{*}=\delta T+\gamma B \tag{3.9}
\end{equation*}
$$

Differentiating (3.9) with respect to s and using (2.1),(2.2), we find

$$
\begin{equation*}
f^{\prime} \kappa_{1}^{*} N^{*}=\delta^{\prime} T+\left(\delta \kappa_{1}-\gamma \kappa_{2}\right) N+\gamma^{\prime} B . \tag{3.10}
\end{equation*}
$$

By taking the scalar product of (3.10) with itself, we get

$$
\begin{equation*}
\delta^{\prime}=0 \text { and } \gamma^{\prime}=0 \tag{3.11}
\end{equation*}
$$

Since $\gamma \neq 0$, we have $1+\lambda \kappa_{2}=-h \lambda \kappa_{1}$ where $h=\delta / \gamma$. Substituting (3.11) in (3.10), we find

$$
\begin{equation*}
f^{\prime} \kappa_{1}^{*} N^{*}=\left(\delta \kappa_{1}-\gamma \kappa_{2}\right) N \tag{3.12}
\end{equation*}
$$

By taking the scalar product of (3.12) with itself, using (3.7) and (3.8), we have

$$
\begin{equation*}
\left(f^{\prime}\right)^{2}\left(\kappa_{1}^{*}\right)^{2}=-\frac{\left(\kappa_{2}-h \kappa_{1}\right)^{2}}{2 h} \tag{3.13}
\end{equation*}
$$

where $\kappa_{2}-h \kappa_{1} \neq 0$ and $h<0$. If we put $v=\frac{\delta \kappa_{1}-\gamma \kappa_{2}}{f^{\prime} \kappa_{1}^{*}}$, we get

$$
\begin{equation*}
N^{*}=v N \tag{3.14}
\end{equation*}
$$

Differentiating (3.14) with respect to s and using (2.1),(2.2), we find

$$
\begin{equation*}
f^{\prime} \kappa_{2}^{*} B^{*}=v \kappa_{2} T-v \kappa_{1} B-f^{\prime} \kappa_{1}^{*} T^{*} \tag{3.15}
\end{equation*}
$$

where $v^{\prime}=0$. Rewriting (3.15) by using (3.6), we get

$$
f^{\prime} \kappa_{2}^{*} B^{*}=P(s) T+Q(s) B
$$

where

$$
\begin{aligned}
& P(s)=\frac{\lambda \kappa_{1}\left(\kappa_{2}-h \kappa_{1}\right)\left(\kappa_{2}+h \kappa_{1}\right)}{2\left(f^{\prime}\right)^{2} \kappa_{1}^{*}} \\
& Q(s)=\frac{-\lambda \kappa_{1}\left(\kappa_{2}-h \kappa_{1}\right)\left(\kappa_{2}+h \kappa_{1}\right)}{2 h\left(f^{\prime}\right)^{2} \kappa_{1}^{*}}
\end{aligned}
$$

which implies that $\kappa_{2}+h \kappa_{1} \neq 0$.
Conversely, assume that β is a Cartan null curve parametrized by pseudo arc parameter s with $\kappa_{1} \neq 0, \kappa_{2}$ and the conditions of (3.1) holds for constant real numbers λ and h. Then, we can define a curve β^{*} as

$$
\begin{equation*}
\beta^{*}\left(s^{*}\right)=\beta(s)+\lambda N(s) . \tag{3.16}
\end{equation*}
$$

Differentiating (3.16) with respect to s and using (2.2), we find

$$
\begin{equation*}
\frac{d \beta^{*}}{d s}=-\lambda \kappa_{1}\{h T+B\} \tag{3.17}
\end{equation*}
$$

which leads to that

$$
f^{\prime}=\sqrt{\left|g\left(\frac{d \beta^{*}}{d s}, \frac{d \beta^{*}}{d s}\right)\right|}=m_{1} \lambda \kappa_{1} \sqrt{-2 h}
$$

where $m_{1}= \pm 1$ such that $m_{1} \lambda \kappa_{1}>0$. Rewriting (3.17), we obtain

$$
\begin{equation*}
T^{*}=\frac{-m_{1}}{\sqrt{-2 h}}\{h T+B\}, \quad g\left(T^{*}, T^{*}\right)=-1 \tag{3.18}
\end{equation*}
$$

Differentiating (3.18) with respect to s and using (2.2), we get

$$
\frac{d T^{*}}{d s^{*}}=\frac{m_{1}\left(\kappa_{2}-h \kappa_{1}\right)}{f^{\prime} \sqrt{-2 h}} N
$$

which causes that

$$
\begin{equation*}
\kappa_{1}^{*}=\left\|\frac{d T^{*}}{d s^{*}}\right\|=\frac{m_{2}\left(\kappa_{2}-h \kappa_{1}\right)}{f^{\prime} \sqrt{-2 h}} \tag{3.19}
\end{equation*}
$$

where $m_{2}= \pm 1$ such that $m_{2}\left(\kappa_{2}-h \kappa_{1}\right)>0$. Now, we can find N^{*} as

$$
\begin{equation*}
N^{*}=m_{1} m_{2} N, \quad g\left(N^{*}, N^{*}\right)=1 . \tag{3.20}
\end{equation*}
$$

Differentiating (3.20) with respect to s, using (3.18) and (3.19), we get

$$
\frac{d N^{*}}{d s^{*}}-\kappa_{1}^{*} T^{*}=\frac{m_{1} m_{2}\left(\kappa_{2}+h \kappa_{1}\right)}{2 h f^{\prime}}\{h T-B\}
$$

which bring about that

$$
\kappa_{2}^{*}=\frac{m_{3}\left(\kappa_{2}+h \kappa_{1}\right)}{f^{\prime} \sqrt{-2 h}},
$$

where $m_{3}= \pm 1$ such that $m_{3}\left(\kappa_{2}+h \kappa_{1}\right)>0$. Lastly, we define B^{*} as

$$
B^{*}=\frac{m_{1} m_{2} m_{3} \sqrt{-2 h}}{2}\left\{T-\frac{1}{h} B\right\}, \quad g\left(B^{*}, B^{*}\right)=1 .
$$

Then β^{*} is a timelike curve and the Bertrand mate curve of β. Thus β is a Bertrand curve.
(ii) Let β^{*} be a spacelike curve with spacelike principal normal in \mathbb{E}_{1}^{3}. Then the proof can be done similarly to (i).

In the following results, the relationships between the Frenet vectors and curvature functions of Cartan Null Bertrand Curve and its Bertrand Mate curve are given

Corollary 3.1. Let $\beta: I \rightarrow \mathbb{E}_{1}^{3}$ be a Cartan null Bertrand curve with the Frenet frame $\{T, N, B\}$ and the curvatures κ_{1}, κ_{2}, and $\beta^{*}: I \rightarrow \mathbb{E}_{1}^{3}$ be a spacelike Bertrand mate curve with spacelike principal normal of β with the Frenet frame $\left\{T^{*}, N^{*}, B^{*}\right\}$ and the curvatures $\kappa_{1}^{*}, \kappa_{2}^{*}$. Then the curvatures of β and β^{*} satisfy the relations

$$
\begin{aligned}
\kappa_{1}^{*} & =\frac{\lambda\left(\kappa_{2}-h\right)}{\left(f^{\prime}\right)^{2}} \\
\kappa_{2}^{*} & =\frac{1}{\left(f^{\prime}\right)^{3}} \sqrt{-2\left(h \lambda\left(\lambda \kappa_{2}-h \lambda\right)-\kappa_{2}\left(f^{\prime}\right)^{2}\right)\left(\lambda\left(\lambda \kappa_{2}-h \lambda\right)+\left(f^{\prime}\right)^{2}\right)}
\end{aligned}
$$

and the corresponding frames of β and β^{*} are related by

$$
\begin{aligned}
T^{*} & =\left(\frac{h \lambda}{f^{\prime}}\right) T-\left(\frac{\lambda}{f^{\prime}}\right) B \\
N^{*} & =N
\end{aligned}
$$

$$
\begin{aligned}
B^{*}= & \left(\frac{h \lambda\left(\lambda \kappa_{2}-h \lambda\right)-\kappa_{2}\left(f^{\prime}\right)^{2}}{\sqrt{-2\left(h \lambda\left(\lambda \kappa_{2}-h \lambda\right)-\kappa_{2}\left(f^{\prime}\right)^{2}\right)\left(\lambda\left(\lambda \kappa_{2}-h \lambda\right)+\left(f^{\prime}\right)^{2}\right)}}\right) T+ \\
& \left(\frac{\lambda\left(\lambda \kappa_{2}-h \lambda\right)+\left(f^{\prime}\right)^{2}}{\sqrt{-2\left(h \lambda\left(\lambda \kappa_{2}-h \lambda\right)-\kappa_{2}\left(f^{\prime}\right)^{2}\right)\left(\lambda\left(\lambda \kappa_{2}-h \lambda\right)+\left(f^{\prime}\right)^{2}\right)}}\right) B
\end{aligned}
$$

where $\left(f^{\prime}\right)^{2}=2 \lambda^{2} h$ and $1+\lambda \kappa_{2}=-h \lambda, h>0, \lambda \neq 0$.

Corollary 3.2. Let $\beta: I \rightarrow \mathbb{E}_{1}^{3}$ be a Cartan null Bertrand curve with the Frenet frame $\{T, N, B\}$ and the curvatures κ_{1}, κ_{2}, and $\beta^{*}: I \rightarrow \mathbb{E}_{1}^{3}$ be a timelike Bertrand mate curve of β with the Frenet frame $\left\{T^{*}, N^{*}, B^{*}\right\}$ and the curvatures $\kappa_{1}^{*}, \kappa_{2}^{*}$. Then the curvatures of β and β^{*} satisfy the relations

$$
\begin{aligned}
& \kappa_{1}^{*}=\frac{\lambda\left(\kappa_{2}-h\right)}{\left(f^{\prime}\right)^{2}}, \\
& \kappa_{2}^{*}=\frac{1}{\left(f^{\prime}\right)^{3}} \sqrt{2\left(h \lambda\left(\lambda \kappa_{2}-h \lambda\right)+\kappa_{2}\left(f^{\prime}\right)^{2}\right)\left(\lambda\left(\lambda \kappa_{2}-h \lambda\right)-\left(f^{\prime}\right)^{2}\right)}
\end{aligned}
$$

and the corresponding frames of β and β^{*} are related by

$$
\begin{aligned}
T^{*} & =\left(\frac{-h \lambda}{f^{\prime}}\right) T-\left(\frac{\lambda}{f^{\prime}}\right) B, \\
N^{*} & =N, \\
B^{*} & =\left(\frac{h \lambda\left(\lambda \kappa_{2}-h \lambda\right)+\kappa_{2}\left(f^{\prime}\right)^{2}}{\sqrt{2\left(h \lambda\left(\lambda \kappa_{2}-h \lambda\right)+\kappa_{2}\left(f^{\prime}\right)^{2}\right)\left(\lambda\left(\lambda \kappa_{2}-h \lambda\right)-\left(f^{\prime}\right)^{2}\right)}}\right) T+ \\
& \left(\frac{\lambda\left(\lambda \kappa_{2}-h \lambda\right)-\left(f^{\prime}\right)^{2}}{\sqrt{2\left(h \lambda\left(\lambda \kappa_{2}-h \lambda\right)+\kappa_{2}\left(f^{\prime}\right)^{2}\right)\left(\lambda\left(\lambda \kappa_{2}-h \lambda\right)-\left(f^{\prime}\right)^{2}\right)}}\right) B
\end{aligned}
$$

where $\left(f^{\prime}\right)^{2}=-2 \lambda^{2} h$ and $1+\lambda \kappa_{2}=-h \lambda, h<0, \lambda \neq 0$.
Remark 3.1. It can easily be proved that a Cartan null curve has no pseudo null Bertrand mate in \mathbb{E}_{1}^{3}.

Example 3.1. Let us consider a Cartan null curve in \mathbb{E}_{1}^{3} parametrized by

$$
\beta(s)=(\sinh s, \cosh s, s)
$$

with

$$
\begin{aligned}
& T(s)=(\cosh s, \sinh s, 1), \\
& N(s)=(\sinh s, \cosh s, 0), \\
& B(s)=\left(-\frac{\cosh s}{2},-\frac{\sinh s}{2}, \frac{1}{2}\right) \\
& \kappa_{1}(s)=1 \quad \text { and } \quad \kappa_{2}(s)=1 / 2 .
\end{aligned}
$$

If we take $h=-3 / 2$ and $\lambda=1$ in (i) of theorem 3.1, then we get the curve β^{*} as follows:

$$
\beta^{*}(s)=\beta(s)+N(s)=(2 \sinh s, 2 \cosh s, s)
$$

By straight calculations, we get

$$
\begin{aligned}
& T^{*}(s)=\left(\frac{2 \cosh s}{\sqrt{3}}, \frac{2 \sinh s}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \\
& N^{*}(s)=(\sinh s, \cosh s, 0), \\
& B^{*}(s)=\left(-\frac{\cosh s}{\sqrt{3}},-\frac{\sinh s}{\sqrt{3}},-\frac{2}{\sqrt{3}}\right), \\
& \kappa_{1}^{*}(s)=2 / 3, \quad \kappa_{2}^{*}(s)=1 / 3 .
\end{aligned}
$$

It can be easily seen that the curve β^{*} is a timelike Bertrand mate curve of the curve β.

Example 3.2. For the same Cartan null curve β in Example 1, if we take $h=3 / 2$ and $\lambda=-1 / 2$ in (ii) of theorem 3.1, then we get the curve β^{*} as follows:

$$
\beta^{*}(s)=\beta(s)-\frac{1}{2} N(s)=\left(\frac{\sinh s}{2}, \frac{\cosh s}{2}, s\right)
$$

By straight calculations, we get

$$
\begin{aligned}
& T^{*}(s)=\left(\frac{\cosh s}{\sqrt{3}}, \frac{\sinh s}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right), \\
& N^{*}(s)=(\sinh s, \cosh s, 0), \\
& B^{*}(s)=\left(-\frac{2 \cosh s}{\sqrt{3}},-\frac{2 \sinh s}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right), \\
& \kappa_{1}^{*}(s)=2 / 3, \quad \kappa_{2}^{*}(s)=4 / 3 .
\end{aligned}
$$

It can be easily seen that the curve β^{*} is a spacelike Bertrand mate curve of the curve β.

In the graphic below, the curves given in Example 3.1 and Example 3.2 are illustrated together.

Fig. 3.1: Cartan null Bertrand curve β (red) and its spacelike (blue) and timelike (green) Bertrand mates curves in \mathbb{E}_{1}^{3}

REFERENCES

1. H. Balgetir, M. Bektaş and M. Ergüt: Bertrand curves for non-null curves in 3-dimensional Lorentzian space. Hadronic J. 27 (2) (2004), 229-236.
2. H. Balgetir, M. Bektaş and J. Inoguchi: Null Bertrand curves in Minkowski 3-space and their characterizations. Note Mat. 23 (1) (2004/05), 7-13.
3. J. M. Bertrand:, Mémoire sur la théorie des courbes á double courbure. Comptes Rendus. 36, (1850).
4. W. B. Bonnor: Null curves in a Minkowski space-time. Tensor 20 (1969), 229242.
5. W. B. Bonnor: Curves with null normals in Minkowski space-time. In: A random walk in relativity and cosmology, Wiley Easten Limited (1985), 33-47.
6. N. Ekmekci and K. İlarslan: On Bertrand curves and their characterization. Differ. Geom. Dyn. Syst. 3 (2) (2001), 17-24.
7. D. H. JIn: Null Bertrand curves in a Lorentz manifold. J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 15 (3) (2008), 209-215.
8. S. Özkaldi Karakuş, K. İlarslan and Y. Yayli: A new approach for characterization of curve couples in Euclidean 3-space. Honam Mathematical J. 36 (1) (2014), 113-129.
9. W. Kuhnel: Differential geometry: curves-surfaces-manifolds. Braunschweig, Wiesbaden, (1999).
10. H. Liu and F. Wang: Mannheim partner curves in 3-space. Journal of Geometry. 88 (2008), 120-126.
11. H. Matsuda and S. Yorozu: Notes on Bertrand curves. Yokohama Math. J. 50 (1-2) (2003), 41-58.
12. L. R. Pears: Bertrand curves in Riemannian space. J. London Math. Soc. Volumes 1-10 (2) (1935), 180-183.
13. A. UÇum, K. İlarslan and S. Özkaldi Karakuş: On curve couples with joint lightlike Frenet planes in Minkowski 3-space. Acta Univ. Apulensis Math. Inform. 41 (2015), 111-129.
14. A. UÇUM, K. İLARSLAN AND M. SAKAKI: On (1,3)-Cartan Null Bertrand curves in Semi-Euclidean 4-Space with index 2. J. Geom. 107 (2016), 579-591.
15. A. UÇum, O. Keçilioğlu and K. İlarslan: Generalized Pseudo Null Bertrand curves in Semi-Euclidean 4-Space with index 2. Rend. Circ. Mat. Palermo, II. Ser, 65 (2016), 459-472.
16. A. UÇUm, O. Keçilioğlu and K. İlarslan: Generalized Bertrand curves with spacelike (1,3)-normal plane in Minkowski space-time. Turk J Math. 40 (2016), 487-505.
17. A. UÇUm and K. İLarslan: On timelike Bertrand Curves in Minkowski 3-space. Honam Mathematical J. 38(3) (2016), 467-477.
18. B. Saint Venant: Mémoire sur les lignes courbes non planes. Journal de l'Ecole Polytechnique. 18 (1845), 1-76.

[^0]: Received April 25, 2021. accepted June 08, 2021.
 Communicated by Mića Stanković
 Corresponding Author: Fatma Gökcek, Kırıkkale University, Faculty of Sciences and Arts, Department of Mathematics, 71450 Kırıkkale, Turkey | E-mail: fatmagokcek06@icloud.com
 2010 Mathematics Subject Classification. Primary 53C50; Secondary 53C40

