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Abstract. Let M be a (pseudo-)Riemannian manifold and TM be its tangent bundle
with the semi-symmetric metric connection ∇. In this paper, we examine some special
vector fields, such as incompressible vector fields, harmonic vector fields, concurrent
vector fields, conformal vector fields and projective vector fields on TM with respect to
the semi-symmetric metric connection ∇ and obtain some properties related to them.
Key words: Complete lift metric, semi-symmetric metric connection, tangent bundle,
vector fields.

1. Introduction

Friedmann and Schouten introduced the notion of a semi-symmetric linear con-
nection on a differentiable manifold [1]. Semi-symmetric metric connections play an
important role in the study of Riemannian manifolds. In [2], Hayden introduced the
idea of a metric connection with torsion on a Riemannian manifold. Using Hayden’s
idea, Yano [6] studied a semi-symmetric metric connection on a Riemannian man-
ifold. He proved that a Riemannian manifold endowed with the semi-symmetric
metric connection has vanishing curvature tensor if and only if the Riemannian
manifold is conformally flat. After that, the generalization of this result for van-
ishing Ricci tensor of the semi-symmetric metric connection was shown by Imai in
[3, 4].
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The geometry of tangent bundle TM is based on the fundamental paper of Sasaki
[5] published in 1958. He used a given Riemannian metric g on a differentiable
manifold M to construct a metric g̃ on the tangent bundle TM of M . Today
this metric is called the Sasaki metric. The well-known Riemannian or pseudo-
Riemannian metrics on TM are constructed from the Riemannian metric g given
on M by classical lifts, such as

1. The complete lift metric or the metric II;

2. The metric I + II;

3. The Sasaki metric or the metric I + III;

4. The metric II+ III; where I = gijdx
idxj , II = 2gijdx

iδyj , III = gijδy
iδyj

are all quadratic differential forms defined globally on the tangent bundle TM over
M [8].

In our paper [9], we originally define a semi-symmetric metric connection on
the tangent bundle equipped with complete lift metric. We compute all forms
of the curvature tensors of the semi-symmetric metric connection and study their
properties. Also, we have investigated conditions for the tangent bundle with this
connection and the complete lift metric to be locally conformally flat. The goal
of the present paper is to characterize some vector fields such as incompressible,
harmonic, concurrent, conformal, projective with respect to the semi-symmetric
metric connection on the tangent bundle over a Riemannian manifold.

2. Preliminaries

Let M be an n−dimensional differentiable manifold and TM be its tangent bundle
with the natural projection π : TM 7−→M . Coordinate systems in M are denoted
by (U, xh), where U is the coordinate neighborhood and (xh), h = 1, ..., n are the

coordinate functions. Let (yh) = (xh), h = n+1, ..., 2n be the Cartesian coordinates
in each tangent space TpM at p ∈M with respect to natural basis

{
∂
∂xh
|p
}

, where

p is an arbitrary point in U with local coordinates (xh). Then we can introduce
the local coordinates (xh, yh) on the open set π−1(U) ⊂ TM . Here, the coordinate

system of (xh, yh) = (xh, xh) is called induced coordinates on π−1(U) from (U, xh).
In the paper, we use Einstein’s convention on repeated indices.

Let X = Xh ∂
∂xh

be the local expression in U of a vector field X on M . Let ∇
be a (torsion-free) linear connection on M . The vertical lift VX, the horizontal lift
HX and the complete lift CX of X are given respectively by

VX = Xh∂h,

HX = Xh∂h − ysΓhskXk∂h

and

CX = Xh∂h + ys∂sX
h∂h
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with respect to the induced coordinates, where ∂h = ∂
∂xh

, ∂h = ∂
∂yh

and Γhjk are the
components of the connection ∇.

Suppose that a (p, q) tensor field S on M , q > 1, is given. We then define a
(p, q − 1) tensor field γS on TM by

γS = (ysS
j1...jp
si2...iq

)∂j1 ⊗ ...⊗ ∂jp ⊗ dx
i2 ⊗ ...⊗ dxiq

with respect to the induced coordinates (xi, yi) [8]. The tensor field γS determines
a global tensor field on TM . We easily see that for any (1, 1) tensor field P , γP has
components

(γP ) =

(
0

yjP
i
j

)
and γP is a vertical vector field on TM .

With the connection ∇, the set of the 2n linearly independent vector fields on
each induced coordinate neighbourhood π−1(U) of TM which are the following
forms:

Ej = ∂j − ysΓhsj∂h,
Ej = ∂j .

is a frame field [8]. We call it the adapted frame and it will be written by {Eβ} ={
Ej , Ej

}
. With respect to adapted frame {Eβ}, the vertical lift VX, the horizontal

lift HX and the complete lift CX of X are respectively expressed by [8]

VX = XjEj ,(2.1)
HX = XjEj ,
CX = XjEj + ys∇sXjEj .

The complete lift metric Cg on the tangent bundle TM over a (pseudo-)Riemannian
manifold (M, g) is defined as follows:

Cg
(
HX,HY

)
= 0,

Cg
(
HX,V Y

)
= Cg

(
VX,HY

)
= g (X,Y ) ,

Cg
(
VX,V Y

)
= 0

for all vector fields X and Y on M [8]. Note that Cg is a pseudo-Riemannian metric
on TM . The covariant and contravariant components of the complete lift metric
Cg on TM are respectively given in the adapted local frame by

Cgαβ =

(
0 gij
gij 0

)
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and

Cgαβ =

(
0 gij

gij 0

)
.

The semi-symmetric metric connection ∇ on TM with respect to the complete
lift metric Cg is given as follows.

Proposition 2.1. [9]The semi-symmetric metric connection ∇ on the tangent
bundle TM with the complete lift metric Cg over a (pseudo-)Riemannian mani-
fold (M, g) is given by

∇EiEj = ΓkijEk + {ysR k
sij + yjδ

k
i − ykgij}Ek,

∇EiEj = ΓkijEk,

∇EiEj = 0,∇EiEj = 0

(2.2)

with respect to the adapted frame {Eβ}, where Γhij and R s
hji respectively denote

components of the Levi-Civita connection ∇ and the Riemannian curvature tensor
field R of the pseudo-Riemannian metric g on M .

3. Some Vector Fields on TM with respect to Semi-symmetric Metric
Connection

In this section, we firstly search the properties of being harmonic and incompresible
of the lifting vector fields. After that we will find the general forms of concur-
rent, conformal, projective vector fields with respect to the semi-symmetric metric
connection on the tangent bundle TM and give some important results related to
them.

3.1. Lifting vector fields being incompressible (divergence-free) and
harmonic

Firstly, we shall give the definition of an incompressible vector field on TM with
respect to the semi-symmetric metric connection.

Definition 3.1. Let M be a (pseudo-)Riemannian manifold and TM be its tan-

gent bundle with the semi-symmetric metric connection ∇. A vector field Ṽ =

vhEh + vhEh on TM is called incompressible vector field with respect to the semi-

symmetric metric connection if Ṽ satisfies the following condition

trace(∇Ṽ ) = ∇αṼ α = 0.

Proposition 3.1. Let M be a (pseudo-)Riemannian manifold and TM be its tan-
gent bundle with the semi-symmetric metric connection ∇. Then, for any vector
field V on M ,
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i) The vertical lift V V is an incompressible vector field on TM with respect to
the semi-symmetric metric connection ∇;

ii) The horizontal lift HV or the complete lift CV is an incompressible vector
field on TM with respect to the semi-symmetric metric connection ∇ if and only if
the vector field V is incompressible on M with respect to the Levi-Civita connection
∇.

Proof. Using (2.1) and (2.2), we calculate

trace(∇V V ) = ∇αV V α = ∇hv
h = 0

trace(∇HV ) = ∇αHV α = ∇hvh

= (∂h − ysΓmsh∂m) vh + Γ
h

hmv
m

= ∇hvh = trace(∇V )

trace(∇CV ) = ∇αCV α = ∇hvh +∇hv
h

= (∂h − ysΓmsh∂m) vh + Γ
h

hmv
m + ∂h

(
ys∇svh

)
= 2∇hvh = 2trace(∇V )

from which, it is easy to see that the results (i) and (ii).

Definition 3.2. Let M be a (pseudo-)Riemannian manifold and TM be its tan-

gent bundle with the semi-symmetric metric connection ∇. A vector field Ṽ =

vhEh + vhEh on TM is called a harmonic vector field with respect to the semi-

symmetric metric connection ∇ if Ṽ satisfies the following condition(
∇iṼ ε

)
Cgεj −

(
∇j Ṽ ε

)
Cgεi = 0,

where Cgij are the components of the complete lift metric Cg on TM .

The following lemma comes immediate from standard calculations.

Lemma 3.1. Let M be a (pseudo-)Riemannian manifold and TM be its tangent
bundle with the semi-symmetric metric connection ∇. Then

i) For the vertical lift V V , we get

(
∇αV V ε

)
Cgεβ −

(
∇Vβ V ε

)
Cgεα =

(
∇ivj −∇jvi 0

0 0

)
;(3.1)

ii) For the horizontal lift HX, we get(
∇αHV ε

)
Cgεβ −

(
∇βHV ε

)
Cgεα(3.2)

=

(
ys
[
Rsiaj −Rsjai + gsigja − gsjgia

]
va ∇ivj

−∇jvi 0

)
;
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iii) For the complete lift CV , we get(
∇αCV ε

)
Cgεβ −

(
∇βCV ε

)
Cgεα(3.3)

=

(
ys [∇s (∇ivj −∇jvi) + (gsigja − gsjgia) va] ∇ivj −∇jvi

∇ivj −∇jvi 0

)
.

A manifold whose curvature tensor is of the form

Rijkl = κ(gilgjk − gjlgik)

is called a manifold of constant curvature [7]. Here κ is the sectional curvature of
the manifold.

From (3.2) and the above definition, we write

Rsiaj = κ(gsjgia − gijgsa)
Rsjai = κ(gsigja − gjigsa)

(3.4)

⇒ Rsiaj −Rsjai = κ(gsjgia − gsigja).

When we use the above equation (3.4) on the equation (3.2) and take κ = 1, we
obtain

ys
[
Rsiaj −Rsjai + gsigja − gsjgia

]
va

= ys [κ(gsjgia − gsigja) + gsigja − gsjgia] va

= ys [(gsjgia − gsigja) + gsigja − gsjgia] va

= 0.

Hence, as a corollary of Lemma 3.1, we obtain

Proposition 3.2. Let M be a (pseudo-)Riemannian manifold and TM be its tan-
gent bundle with the semi-symmetric metric connection ∇. Then, for any vector
field V on M ,

i) The vertical lift V V is a harmonic vector field on TM with respect to the
semi-symmetric metric connection ∇ if and only if the vector field V is a harmonic
vector field with respect to the Levi-Civita connection ∇;

ii) The complete lift CV is a harmonic vector field on TM with respect to the
semi-symmetric metric connection ∇ if and only if the vector field V is a harmonic
vector field with respect to the Levi-Civita connection ∇ and gsigja − gsjgia = 0;

iii) The horizontal lift HV is a harmonic vector field on TM with respect to the
semi-symmetric metric connection ∇ if and only if the vector field V is parallel with
respect to the Levi-Civita connection ∇ and M has constant sectional curvature 1.
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3.2. Concurrent vector fields

Definition 3.3. A vector field Ṽ = vhEh + vhEh on TM is called a concurrent
vector field with respect to the semi-symmetric metric connection ∇ if it satisfies

∇βṼ ε = ∇Eβ Ṽ ε = k̃δεβ ,(3.5)

where k̃ is a function on TM and δεβ is the Kronecker symbol.

Proposition 3.3. Let M be a (pseudo-)Riemannian manifold and TM be its tan-

gent bundle with the semi-symmetric metric connection ∇. The vector field Ṽ on
TM is concurrent with respect to semi-symmetric metric connection ∇ if and only
if the vector field Ṽ has the form

Ṽ =

(
vh

1
n [trace (∇V )] yh

)
and the following condition is satisfied

1

n

[
∇j (trace (∇V )) yh

]
+
(
ysR h

sja + yaδ
h
j − yhgja

)
va = 0.

Proof. With respect to the adapted frame, firstly putting ε = h, β = j in (3.5), it
follows that

∇jv
h = Ejv

h + Γ
h

jav
a + Γ

h

jav
a = k̃δh

j

⇒ ∂jv
h = 0

⇒ vh = vh
(
xh
)
.

Similarly putting ε = h, β = j and ε = h, β = j, we respectively get

∇jvh = Ejv
h + Γ

h

jav
a + Γ

h

jav
a = k̃.δhj

⇒ ∂jv
h + Γhjav

a = k̃.δhj

⇒ ∇jvh = k̃.δhj (h→ j)

⇒ 1

n
∇jvj = k̃

and

∇jv
h = Ejv

h + Γ
h

jav
a + Γ

h

jav
a = k̃.δh

j

⇒ ∂jv
h =

1

n
∇jvj .δhj

⇒ ∂jv
h =

1

n

[
trace (∇V ) δh

j

]
⇒ ∂jv

h =
1

n

[
trace (∇V )

(
∂jy

h
)]
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⇒ ∂jv
h = ∂j

[
1

n
trace (∇V ) yh

]
⇒ vh =

1

n
[trace (∇V )] yh.

Finally putting ε = h, β = j, we find

∇jvh = Ejv
h + Γ

h

jav
a + Γ

h

jav
a = k̃δhj

⇒ Ej
[
1
n [trace (∇V )] yh

]
+
(
ysR h

sja + yaδ
h
j − yhgja

)
va

+Γhja
[
1
n [trace (∇V )] ya

]
= 0

⇒
(
∂j − ysΓmsj∂m

) [
1
n [trace (∇V )] yh

]
+
(
ysR h

sja + yaδ
h
j − yhgja

)
va + yaΓhja

[
1
n [trace (∇V )]

]
= 0

⇒
1
n

[
∂j (trace (∇V )) yh

]
− ysΓhsj

[
1
n [trace (∇V )]

]
+
(
ysR h

sja + yaδ
h
j − yhgja

)
va + yaΓhja

[
1
n [trace (∇V )]

]
= 0

⇒ 1

n

[
∂j (trace (∇V )) yh

]
+
(
ysR h

sja + yaδ
h
j − yhgja

)
va = 0

⇒ 1

n

[
∇j (trace (∇V )) yh

]
+
(
ysR h

sja + yaδ
h
j − yhgja

)
va = 0.

3.3. Conformal vector fields

Let Ṽ be a vector field on TM with components
(
vh, vh

)
with respect to the

adapted frame {Eβ}. Then Ṽ is a fibre-preserving vector field on TM if and only
if vh depends only on the variables

(
xh
)
.

Definition 3.4. A vector field Ṽ = vhEh + vhEh on TM is called a fibre-
preserving conformal vector field with respect to the semi-symmetric metric con-
nection ∇ if it satisfies

LṼ
Cgαβ = (∇αṼ ∈)Cg∈β + (∇βṼ ∈)Cg∈α = 2Ω̃Cgαβ .

Putting (α, β) = (i, j), (i, j) and (i, j), from the above equation, it can be written
the following system

i)
(
∇ivh

)
ghj +

(
Ejv

h
)
ghi = 2Ω̃gij ,

ii)
(
Eiv

h
)
ghj +

(
∇jvh

)
ghi = 2Ω̃gij ,

iii)

[
Eiv

h +
(
ysR h

sia + yaδ
h
i − yhgia

)
va + Γ h

iav
a
]
ghj

+
[
Ejv

h +
(
ysR h

sja + yaδ
h
j − yhgja

)
va + Γ h

jav
a
]
ghi

= 0.

(3.6)

Proposition 3.4. The scalar function Ω̃ on TM depends only on the variables(
xh
)

with respect to the induced coordinates
(
xh, yh

)
.
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Proof. Applying Ek to the both sides of the equation (ii) in (3.6), we have

ghjEkEiv
h = 2Ek

(
Ω
)
gij

from which we get

Ek
(
Ω
)
gij = Ei

(
Ω
)
gkj .

It follows that

(n− 1)Ek
(
Ω
)

= 0.

This shows that the scalar function Ω̃ on TM depends only on the variables
(
xh
)

with respect to the induced coordinates
(
xh, yh

)
. Thus we can regard Ω̃ as a function

on M and in the following we write ρ instead of Ω̃.

From (3.6) and Proposition 3.4, Ei

(
vh
)

depends only the variables
(
xh
)
, thus

we can put

vh = yaAha +Bh,(3.7)

where Aha and Bh are certain functions which depend only on the variable
(
xh
)
.

Furthermore, we can easily show that Aha and Bh are the components of a (1, 1)
tensor field and a contravariant vector field on M , respectively.

Any vector field V on a (pseudo-)Riemannian manifold (M, g) is a Killing vector
field if LV gij = ∇ivj +∇jvi = 0.

Proposition 3.5. If we put

B = Bh
∂

∂xh
,

then the vector field B on M is a Killing vector field with respect to the Levi-Civita
connection ∇.

Proof. Substituting (3.7) into the equation (iii) in (3.6) we have

∇iBj +∇jBi = 0(3.8)

and

va(Rsiaj +Rsjai + gsagij − giagsj + gsagji − gjagsi)
+∇iAsj +∇jAsi = 0(3.9)

where Bi = gimB
m and Asj = ghjA

h
s . Hence by (3.8), it follows

LBgij = ∇iBj +∇jBi = 0.

This shows B is a Killing vector field on M with respect to the Levi-Civita connec-
tion ∇.
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Substituting (3.7) into the equation (ii) in (3.6), we have

Ei

(
vh
)
ghj +

(
∇jvh

)
ghi = 2ρgij(3.10)

⇒ ∂i
(
ysAhs +Bh

)
ghj +

(
∇jvh

)
ghi = 2ρgij

⇒ Ahi ghj +
(
∇jvh

)
ghi = 2ρgij

⇒ ghjA
h
i = 2ρgij − ghi

(
∇jvh

)
.

Let ∇ be a linear connection on M . A vector field V on M is said to be a
projective vector field if there exists a 1-form θ such that

(LV∇)(X,Y ) = θ(X)Y + θ(Y )X

for any vector fields X and Y on M . In this case θ is called the associated 1-form
of V . It can locally be expressed in the following form

LV Γhij = θiδ
h
j + θjδ

h
i .

Proposition 3.6. The vector field V with components
(
vh
)

is a projective vector
field on M with respect to the Levi-Civita connection ∇, if δhagij − giaδhj + δhagji −
gjaδ

h
i = 0.

Proof. Applying the covariant derivative ∇k to the both sides of (3.10), we obtain

ghj∇kAhi = ∇k
[
2ρgij − ghi

(
∇jvh

)]
(3.11)

= 2 (∇kρ) gij − ghi∇k∇jvh

= 2ρkgij − ghi
(
LV Γ h

kj −R h
akjv

a
)

∇kAij = 2ρkgij − LV Γ h
kjghi −Rakijva.

Substituting (3.11) into (3.9), we have

va(Rsiaj +Rsjai + gsagij − giagsj + gsagji − gjagsi) +∇iAsj +∇jAsi = 0

va(Rsiaj +Rsjai + gsagij − giagsj + gsagji − gjagsi)
+2ρigsj − LV Γ h

ij ghs −Raisjva + 2ρjgsi − LV Γ h
ji ghs −Rajsiva

= 0

va (gsagij − giagsj + gsagji − gjagsi) + 2 (ρigsj + ρjgsi) = 2LV Γ h
ij ghs

LV Γ h
ij = ρiδ

h
j + ρjδ

h
i +

1

2
va
(
δhagij − giaδhj + δhagji − gjaδhi

)
,

where ρi = ∇iρ. Hence, V is a projective vector field on M with respect to the
Levi-Civita connection ∇.
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Now we consider the converse problem, that is, let M admit a projective vector
field V = vh ∂

∂xh
with respect to the Levi-Civita connection ∇. Then we have the

following proposition.

Proposition 3.7. The vector field Ṽ on TM defined by

Ṽ = vhEh +
(
ysAhs +Bh

)
Eh

is a fibre-preserving conformal vector field on TM with respect to the semi-symmetric
metric connection ∇, where Ahi = ghaAai, Aij = 2ρgij − ∇jvi, and gjiB

j = Bi,
2pigsj − LV Γhijghs + (gsmgij − gimgsj) = 0.

Proof. If Bh, v
h and Ahi are given so that they satisfy the above assumptions, we

see that Ṽ = vhEh+
(
ysAhs +Bh

)
Eh is a fibre-preserving conformal vector field on

TM with respect to the semi-symmetric metric connection ∇. We omit standard
calculations.

3.4. Projective vector fields

In this section, we study fibre-preserving projective vector fields on TM with respect
to the semi-symmetric metric connection ∇. We shall first state following lemma
which is needed later on.

Lemma 3.2. The Lie derivations of the adapted frame with respect to the fibre-

preserving vector field Ṽ = vhEh + vhEh are given as follows

LṼ Eh = −(∂hv
a)Ea +

{
ybvcRahcb − vbΓabh − (Ehv

a
}
Ea,

LṼ Eh =
{
vbΓabh − (Ehv

a)
}
Ea.

The general form of fibre-preserving vector fields on TM with respect to the
semi-symmetric metric connection ∇ are given by

Theorem 3.1. Let M be a (pseudo-)Riemannian manifold and TM be its tangent

bundle with the semi-symmetric metric connection ∇. Then a vector field Ṽ is a
fibre-preserving projective vector field with associated 1-form θ on TM with respect
to the semi-symmetric metric connection ∇ if and only if the vector field Ṽ has the
following form

Ṽ =H V +V B + γA,
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where the vector fields V = (vh), B = (Bh), the (1, 1)−tensor field A = (Ahi ) and
the associated 1-form θ satisfy the following conditions

(i)θ = θidx
i,

(ii)∇iθj = (n− 1) (LV gij) ,
(iii)∇jAhi = θjδ

h
i − vcR h

cji ,
(iv)∇i∇jvh +R h

aij v
a = θiδ

h
j + θjδ

h
i ,

(v)∇i∇jBk +R k
hijB

h +Bhghjδ
k
i −Bkgij = 0,

(vi)LV Γhij = θiδ
h
j + θjδ

h
i .

Proof. A vector field Ṽ = vhEh + vhEh on TM is a fibre-preserving projective
vector field with respect to the semi-symmetric metric connection ∇ if and only if

there exists a 1-form θ̃ with components
(
θ̃i, θ̃i

)
on TM such that(

LX̃∇
)

(Ỹ , Z̃) = LX̃(∇Ỹ Z̃)−∇Ỹ (LX̃ Z̃)−∇(L
X̃
Ỹ )Z̃

= θ̃(Ỹ )Z̃ + θ̃(Z̃)Ỹ

for any vector fields Ỹ and Z̃ on TM . We compute the following system(
LṼ∇

)
(Ei, Ej) = LṼ (∇EiEj)−∇E

i
(LṼ Ej)−∇(LṼ Ei)

Ej(3.12)

= θ̃(Ei)Ej + θ̃(Ej)Ei,

(
LṼ∇

)
(Ei, Ej) = LṼ (∇EiEj)−∇E

i
(LṼ Ej)−∇(LṼ Ei)

Ej(3.13)

= θ̃(Ei)Ej + θ̃(Ej)Ei,

(
LṼ∇

)
(Ei, Ej) = LṼ (∇EiEj)−∇Ei

(LṼ Ej)−∇(LṼ Ei)
Ej(3.14)

= θ̃(Ei)Ej + θ̃(Ej)Ei.

From (3.12), by virtue of (2.2) and Lemma 3.2 we obtain{
∂i(∂jv

a
}
Ea = θ̃iEj + θ̃jEi.(3.15)

Similarly, from (3.13) we get{
−vcR a

jci + (Eiv
b)Γabj + Ei(Ejv

a)
}
Ea = θ̃iEj + θ̃jEi(3.16)

from which, we have
θ̃i = 0.(3.17)

Due to θ̃i = 0, (3.15) to

∂i(∂jv
a) = 0,
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and we obtain
va = ysAas +Ba,(3.18)

where Aas and Ba are certain functions which depend only on the variables
(
xh
)

and the coordinate transformation rule implies that A is a (1, 1)-tensor field with
components (Aas) and B is a vector field with components (Ba). Hence, the fibre-

preserving projective vector field Ṽ on TM can be expressed in the following form

Ṽ = vhEh + vhEh = vhEh + {ysAas +Ba}Eh(3.19)

= HV +V B + γA.

Substituting (3.18) into (3.16), we obtain

R h
aji v

a +∇jAhi = δhi θj .(3.20)

Substituting (3.18) and (3.20) into (3.14), we have

{∇i∇jvh +R h
aijv

a}Eh + {∇i∇jBk +R k
hijB

h +Bhghjδ
k
i(3.21)

−Bkgij + ys(∇i∇jAks +AhsR
k

hij −R a
sijA

k
a + vh∇hR k

sij

−vh∇iR k
jhs +∇jvhR k

sih +∇ivhR k
sjh +∇jvagsaδki

−∇jvaδks gia +∇ivagsjδka −∇ivaδks gaj +Ahsghjδ
k
i − gsjAki )}Eh

= θ̃iEj + θ̃jEi.

From (3.21), we have

∇i∇jvh +R h
aijv

a = θ̃iδ
h
j + θ̃jδ

h
i ,(3.22)

∇i∇jBk +R k
hijB

h +Bhghjδ
k
i −Bkgij = 0,(3.23)

∇i∇jAks +AhsR
k

hij −R a
sijA

k
a + vh∇hR k

sij(3.24)

−vh∇iR k
jhs +∇jvhR k

sih +∇ivhR k
sjh

+∇jvagsaδki −∇jvaδks gia +∇ivagsjδka
−∇ivaδks gaj +Ahsghjδ

k
i − gsjAki

= 0.

The equation (3.22) shows that the induced vector field V = vh ∂
∂xh

is a projective
vector field with respect to the Levi-Civita Connection ∇. Hence we obtain

LVRij = −(n− 1)∇iθj .(3.25)

Contracting k and s in (3.24) and using (3.20) and (3.25), we get

∇iθj = (n− 1) (LV g)ij .
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In the case, (3.24) is reduced to

AhsR
k

hij −R a
sijA

k
a + vh∇hR k

sij +∇jvhR k
sih

+∇ivhR k
shj +∇jvsδki +∇ivkgsj +Asjδ

k
i − gsjAki

= 0.

Conversely, if Bh, vh, θh and Ahi are given so that they satisfy (i)-(vi), reserving the

above steps, we see that X̃ =H V +V B+γA is a fibre-preserving projective vector
field on TM with respect to the semi-symmetric metric connection ∇. Hence, the
proof is complete.

Let Ṽ be a fibre-preserving vector field on TM with components (vh, vh). It

is well-known that every fibre-preserving vector field Ṽ on TM induces a vector
field V on M with components (vh). The below result follows immediately from
Theorem 3.1 and from its Proof.

Corollary 3.1. Let M be a (pseudo-)Riemannian manifold and TM be its tan-
gent bundle with the semi-symmetric metric connection ∇. Every fibre-preserving
projective vector field Ṽ is of the form (3.19) and it naturally induces a projective
vector field V on M.

Let Ṽ be a vector field on TM with components (vh, vh) with respect to the

adapted frame {Eβ}. Then Ṽ is a vertical vector field on TM if and only if vh = 0.

In the present case, the vector field Ṽ in Theorem 3.1 reduces to Ṽ =V B + γA.
Hence, from the Theorem 3.1, we obtain the following conclusion.

Corollary 3.2. Let M be a (pseudo-)Riemannian manifold and TM be its tangent
bundle with the semi-symmetric metric connection ∇. If TM admits a vertical
projective vector field Ṽ ,then the vector field Ṽ is defined by

Ṽ =V B + γA,

where the vector field B =
(
Bh
)
, the (1, 1)-tensor field A =

(
Ahi
)

and the associated

1-form θ̃ satisfy the following conditions

(i)θ = θidx
i,

(ii)∇jAhi = θjδ
h
i ,

(iii)∇iθj = 0,
(iv)∇i∇jBk +R k

hijB
h +Bhghjδ

k
i −Bkgij = 0,

(v)AhsR
k

hij −R a
sijA

k
a +Asjδ

k
i − gsjAki = 0.
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