A FIXED POINT THEOREM FOR F-CONTRACTION MAPPINGS IN PARTIALLY ORDERED BANACH SPACES

Hamid Faraji ${ }^{1}$, Zoran D. Mitrović ${ }^{2}$ and Stojan Radenović ${ }^{3}$
Department of Mathematics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran
${ }^{2}$ University of Banja Luka, Faculty of Electrical Engineering, patre 5, 78000 Banja Luka, Bosnia and Herzegovina.
${ }^{3}$ Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd 35, Serbia.

Abstract

In this paper, we first introduce a new notion of an F-contraction mapping, also we establish a fixed point theorem for such mappings in partially ordered Banach spaces. Moreover, two examples are represented to show the compatibility of our results. Keywords: F-Contraction; Fixed point; Partially ordered.

1. Introduction and Preliminaries

F-contractions were introduced initially by Wardowski [24]. Indeed, Wardowski [24] extended the Banach Contraction Principle and proved some fixed-point results for F-contraction mappings. Since then, several authors proved many fixed point results for F-contraction mappings (refer to $[1,4,5,8,11,12,13,15,19,21,22,25]$).

Let \mathcal{F} be the family of all functions $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ satisfying the following conditions:
$\left(F_{1}\right) \mathrm{F}$ is strictly increasing, i.e., for all $\alpha, \beta \in(0,+\infty)$ with $\alpha<\beta$ we have $F(\alpha)<F(\beta)$,
$\left(F_{2}\right)$ for each sequence $\left\{\alpha_{n}\right\}$ of positive numbers,

$$
\lim _{n \rightarrow+\infty} \alpha_{n}=0 \text { if and only if } \lim _{n \rightarrow+\infty} F\left(\alpha_{n}\right)=-\infty
$$

[^0]$\left(F_{3}\right)$ there exists $k \in(0,+\infty)$ such that $\lim _{\alpha \rightarrow 0^{+}} \alpha^{k} F(\alpha)=0$.
Let $F_{1}(\alpha)=\ln (\alpha), F_{2}(\alpha)=-\frac{1}{\sqrt{\alpha}}$ and $F_{3}(\alpha)=\alpha+\ln (\alpha)$ for $\alpha>0$, then $F_{1}, F_{2}, F_{3} \in$ \mathcal{F}. A mapping $T: X \rightarrow X$ is called an F-contraction if there exists $\tau>0$ and $F \in \mathcal{F}$ shch that
\[

$$
\begin{equation*}
\tau+F(d(T x, T y)) \leq F(d(x, y)) \tag{1.1}
\end{equation*}
$$

\]

holds for all $x, y \in X$ with $d(T x, T y)>0$. From $\left(F_{1}\right)$ and (1.1), we can easily see that any F-contraction is a contractive mapping. Let $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be givin by $F(\alpha)=\ln \alpha$. By (1.1), we obtain

$$
d(T x, T y) \leq e^{-\tau} d(x, y)
$$

for all $x, y \in X$ and $d(T x, T y)>0$. Let $F(\alpha)=\alpha+\ln \alpha$ for $\alpha>0$. From (1.1), we get

$$
\frac{d(T x, T y)}{d(x, y)} e^{d(T x, T y)-d(x, y)} \leq e^{-\tau}
$$

for any $x, y \in X$ and $d(T x, T y)>0$. Wardowski [24] proved the following fixed point theorem.

Theorem 1.1. [24] Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be an F-contraction. Then T has a fixed point x^{*} and for an arbitrary point $x \in X$, the sequence $\left\{T^{n} x\right\}$ is convergent to x^{*}.

Let X be an ordered normed space, i.e., a vector space over the real equipped with a partial order \preccurlyeq and a norm $\|$.$\| . For every \alpha \geq 0$ and $x, y, z \in X$ with $x \preccurlyeq y$ one has that $x+z \preccurlyeq y+z$ and $\alpha x \preccurlyeq \alpha y$. Two elements $x, y \in X$ are called comparable if $x \preccurlyeq y$ or $y \preccurlyeq x$ holds. A self-mapping T on X is called non-decreasing if $T x \preccurlyeq T y$ whenever $x \preccurlyeq y$ for all $x, y \in X$.

Ran and Reurings [18] initiate the fixed point theory in the metric spaces equipped with a partial order relation. Thereafter, several authors obtained many fixed point results in ordered metric space (see $[2,3,6,7,10,16,17,23]$ and references therein).

Definition 1.1. [9] Let E be a Banach space. A subset P of E is called cone if the following conditions are satisfied:

1) P is nonempty closed set and $P \neq\{\theta\}$, where θ denotes the zero element in E;
2) if $x, y \in P$ and $a, b \in \mathbb{R}, a, b \geq 0$, then $a x+b y \in P$;
3) if $x \in P$ and $-x \in P$, then $x=\theta$.

Let $P \subseteq E$ be a cone. We define a partial ordering \preccurlyeq with respect to P by $x \preccurlyeq y$ if and only if $y-x \in P$. A cone P is called normal if there is a number $L>0$ such that

$$
\theta \preccurlyeq x \preccurlyeq y \text { implies }\|x\| \leq L\|y\| \text {, }
$$

for all $x, y \in E$. The least positive number L satisfying the above inequality is called the normal constant of P.

Definition 1.2. [14, 20] A set $P \subseteq E$ is said to be a lattice under the partial ordering \preccurlyeq, if $\sup \{x, y\}$ and $\inf \{x, y\}$ exist for all $x, y \in P$.

Lemma 1.1. [9] A cone P in a normed space $(E,\|\|$.$) is normal if and only if$ there exists a norm $\|.\|_{1}$ on E, equivalent to the given norm $\|$.$\| , such that the cone$ P is monotone w.r.t. $\|.\|_{1}$.

Lemma 1.2. [9] Let E be a real Banach space, P be a normal cone and $\left\{x_{n_{k}}\right\}$ be a subsequence converging to p of monotone sequence $\left\{x_{n}\right\}$. Then $\left\{x_{n}\right\}$ converges to p. Also if $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is an increasing(decreasing) sequence, then $x_{n} \preccurlyeq p\left(p \preccurlyeq x_{n}\right)$ for all $n \in \mathbb{N}$.

2. Main results

In this section, we prove a fixed point result in partially ordered Banach spaces. Let E be a partially ordered Banach space, P be a normal cone and the partial order \preccurlyeq on E be induced by the cone P. We denote by \mathcal{F}, the set of all functions $F: P-\{\theta\} \rightarrow \mathbb{R}$ that satisfying the following conditions:
$\left(F_{1}^{\prime}\right) F$ is strictly increasing, i.e., for all $x, y \in P$ such that $x \prec y, F(x)<F(y)$ or $x \preccurlyeq y$ and $x \neq y$ yields $F(x) \leq F(y)$ and $F(x) \neq F(y)$.
$\left(F_{2}^{\prime}\right)$ For each sequence $\left\{x_{n}\right\}$ in P,

$$
\lim _{n \rightarrow+\infty} x_{n}=\theta \text { if and only if } \lim _{n \rightarrow+\infty} F\left(x_{n}\right)=-\infty
$$

$\left(F_{3}^{\prime}\right)$ There exists $k \in(0,+\infty)$ such that $\lim _{x \rightarrow \theta}\|x\|^{k} F(x)=0$.
Our new result is the following:
Theorem 2.1. Let $X \subseteq E$ be a closed set, $P \subseteq X$ and let $T: X \rightarrow X$ be a self-mapping on X. Suppose that the following hypotheses hold:
(i) X is a lattice;
(ii) T is a decreasing operator, i.e., $x \preccurlyeq y$ implies $T x \succcurlyeq T y$;
(iii) there exsits $\tau>0$ and $F \in \mathcal{F}$ such that

$$
\begin{equation*}
\tau+F(T u-T v) \leq F(v-u) \tag{2.1}
\end{equation*}
$$

for all $u, v \in X$, where $u \preccurlyeq v$ and $T u \neq T v$. Then, T has a unique fixed point $p \in X$.

Proof. Let $x_{0} \in X$ be arbitrary. If $T x_{0}=x_{0}$ the proof is finished, that is T has a fixed point x_{0}. Let $T x_{0} \neq x_{0}$ and we consider the following two case.
Case1. Let x_{0} is comparable with $T x_{0}$. Without loss of generality, we suppose that $x_{0} \prec T x_{0}$. Since T is decreasing, we get $T x_{0} \succcurlyeq T^{2} x_{0}$. We can easily check that T^{2} is increasing. From (2.1), we have

$$
\tau+F\left(T x_{0}-T^{2} x_{0}\right) \leq F\left(T x_{0}-x_{0}\right)
$$

Then, we get

$$
F\left(T x_{0}-T^{2} x_{0}\right) \leq F\left(T x_{0}-x_{0}\right)
$$

Since, F is strictly increasing, we get

$$
T x_{0}-T^{2} x_{0} \preccurlyeq T x_{0}-x_{0}
$$

Then, we have

$$
\begin{equation*}
x_{0} \preccurlyeq T^{2} x_{0} \tag{2.2}
\end{equation*}
$$

Using (2.1), we obtain

$$
\begin{align*}
\tau+F\left(T^{2} v-T^{2} u\right) & \leq F(T u-T v) \\
& \leq F(v-u)-\tau \\
& <F(v-u) \tag{2.3}
\end{align*}
$$

for all $u, v \in X$, where $u \prec v$ or $u \preccurlyeq v$ and $u \neq v$. Let $S x=T^{2} x$ for all $x \in X$. Then, from (2.3), we have

$$
\begin{equation*}
\tau+F(S v-S u) \leq F(v-u) \tag{2.4}
\end{equation*}
$$

for all $u, v \in X$, where $u \prec v$ or $u \preccurlyeq v, u \neq v$ and $F \in \mathcal{F}$. Also, from (2.2) we have $x_{0} \preccurlyeq S x_{0}$. Now, we show that S has a unique fixed point. Consider the iterated sequence $\left\{x_{n}\right\}$, where $x_{n+1}=S x_{n}$ for $n=0,1,2, \ldots$. Since S is increasing, we have $x_{n+1} \preccurlyeq x_{n}$ for all $n=0,1,2, \ldots$ Using (2.4), we have

$$
\begin{equation*}
F\left(x_{n+1}-x_{n}\right) \leq F\left(x_{n}-x_{n-1}\right)-\tau \leq \ldots \leq F\left(x_{1}-x_{0}\right)-n \tau \tag{2.5}
\end{equation*}
$$

Letting $n \rightarrow+\infty$ above inequality, we obtain

$$
\lim _{n \rightarrow+\infty} F\left(x_{n+1}-x_{n}\right)=-\infty
$$

Using F_{2}^{\prime}, we get $\alpha_{n}=x_{n+1}-x_{n} \rightarrow \theta$ as $n \rightarrow+\infty$. This implies that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|\alpha_{n}\right\|=0 \tag{2.6}
\end{equation*}
$$

From $\left(F_{3}^{\prime}\right)$, there exsits $k \in(0,1)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|\alpha_{n}\right\|^{k} F\left(\alpha_{n}\right)=0 \tag{2.7}
\end{equation*}
$$

From, (2.5) we have

$$
\left(\left\|\alpha_{n}\right\|^{k} F\left(\alpha_{n}\right)-\left\|\alpha_{n}\right\|^{k} F\left(\alpha_{0}\right)\right) \leq\left\|\alpha_{n}\right\|^{k}\left(F\left(\alpha_{0}\right)-n \tau\right)-\left\|\alpha_{n}\right\|^{k} F\left(\alpha_{0}\right)=-\left\|\alpha_{n}\right\|^{k} n \tau \leq 0
$$

Using (2.6) and (2.7) and letting $n \rightarrow+\infty$ in above inequality, we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n\left\|\alpha_{n}\right\|^{k}=0 \tag{2.8}
\end{equation*}
$$

It follows from (2.8), there exists $N \in \mathbb{N}$, such that

$$
\begin{equation*}
\left\|\alpha_{n}\right\| \leq \frac{1}{n^{\frac{1}{k}}} \tag{2.9}
\end{equation*}
$$

for all $n>N$. Now, we claim that $\left\{x_{n}\right\}$ is a Cauchy sequence. Suppose $m, n \in \mathbb{N}$ and $m>n>N$.

$$
\left\|x_{m}-x_{n}\right\| \leq\left\|\alpha_{m-1}\right\|+\left\|\alpha_{m-2}\right\|+\ldots+\left\|\alpha_{n}\right\| \leq \sum_{i=n}^{+\infty}\left\|\alpha_{i}\right\| \leq \sum_{i=n}^{+\infty} \frac{1}{i^{\frac{1}{k}}}
$$

Then $\left\|x_{m}-x_{n}\right\| \rightarrow 0$ as $m, n \rightarrow+\infty$, which implies $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is closed, then there exists point p in X such that $\lim _{n \rightarrow+\infty} x_{n}=p$. Using Lemma 1.2, we get $x_{n} \preccurlyeq p$ for all $n \in \mathbb{N}$. From (2.4), we have

$$
F\left(S x_{n}-S p\right) \leq F\left(x_{n}-p\right)-\tau \leq F\left(x_{n}-p\right)
$$

Since F is strictly increasing, we have

$$
\begin{equation*}
S x_{n}-S p \prec x_{n}-p \tag{2.10}
\end{equation*}
$$

for all $n \in \mathbb{N}$. From Lemma (1.1) exists a norm $\|.\|_{1}$ such that is equivalent with ||.|| and

$$
\begin{equation*}
\left\|S x_{n}-S p\right\|_{1} \leq\left\|x_{n}-p\right\|_{1} \tag{2.11}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Using (2.11), we obtain

$$
\begin{aligned}
\|p-S p\|_{1} & \leq\left\|p-x_{n+1}\right\|_{1}+\left\|x_{n+1}-S p\right\|_{1} \\
& \leq\left\|p-x_{n+1}\right\|_{1}+\left\|x_{n}-p\right\|_{1}
\end{aligned}
$$

for all $n \in \mathbb{N}$. Letting $n \rightarrow+\infty$ in above inequality, we get $\|p-S p\|_{1}=0$, which implies $S p=p$. To see the uniqueness of the fixed point, let us consider p and q be two distinct fixed points of S, that is, $S p=p \neq q=S q$. If q comparable with p, without loss of generality, we suppose that $q \preccurlyeq p$. Then, by (2.4), we obtain

$$
\begin{equation*}
\tau \leq F(p-q)-F(S p-S q)=0 \tag{2.12}
\end{equation*}
$$

which is a contradiction. Now, suppose p is not comparable to q. Since X is a lattice, there exists $r \in X$ such that $r=\inf \{p, q\}$, which implies $r \preccurlyeq p$ and $r \preccurlyeq q$. Since S is increasing, we have $S^{n} r \preccurlyeq S^{n} p$ and $S^{n} r \preccurlyeq S^{n} q$. Using (2.4) we obtain,
$F\left(p-S^{n} r\right)=F\left(S^{n} p-S^{n} r\right) \leq F\left(S^{n-1} p-S^{n-1} r\right)-\tau \leq \ldots \leq F(p-r)-n \tau$,
for all $n \in \mathbb{N}$. Letting $n \rightarrow+\infty$ in above inequality, we have $\lim _{n \rightarrow+\infty} F\left(p-S^{n} r\right)=$ $-\infty$ that together with $\left(F_{2}^{\prime}\right)$ gives $\lim _{n \rightarrow+\infty}\left(p-S^{n} r\right)=\theta$. This implies that $\lim _{n \rightarrow+\infty} S^{n} r=p$. Similarly, $\lim _{n \rightarrow+\infty} S^{n} r=q$. So, $p=q$ that is S has a unique
fixed point p. Now, we show that the unique fixed point of S is also the unique fixed point of T. Since S has a fixed point p, we have

$$
\begin{equation*}
S(T p)=T^{2}(T p)=T\left(T^{2} p\right)=T(S p)=T p \tag{2.13}
\end{equation*}
$$

From the uniqueness of the fixed point of S, we know $T p=p$.
Case2. Suppose x_{0} is not comparable to $T x_{0}$. Since X is a lattice, there exists $y \in X$ such that $y=\inf \left\{x_{0}, T x_{0}\right\}$, which implies $y \preccurlyeq x_{0}$ and $y \preccurlyeq T x_{0}$. Since T is decreasing, we have $T x_{0} \preccurlyeq T y$, which implies $y \preccurlyeq T y$. Similarly to the proof of case 1, we can show T has a unique fixed point.

Example 2.1. Let $E=R \times R$ endowed with the norm $\|.\|_{1}$ which is defined as follows $\left\|\left(x_{1}, x_{2}\right)\right\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|, x_{1}, x_{2} \in \mathbb{R}$. Also, we define a partial order on \mathbb{R}^{2} as follows

$$
(a, b) \preccurlyeq(c, d) \text { if and only if } a \leq c, b \leq d .
$$

Then $(X,\|\|,. \preccurlyeq)$ is a partially ordered Banach space. Suppose $X=[0,+\infty) \times[0,+\infty), P=$ $\{(\alpha, 0): \alpha \geq 0\}$ and $F: P-\{\theta\} \rightarrow \mathbb{R}$ by $F \alpha=\ln \alpha$. Define $T=\left(T_{1}, T_{2}\right)$ where $T_{i}:[0,+\infty) \rightarrow \mathbb{R}, i=1,2$ and $T_{1}(a)=e^{-\tau} \frac{-a}{1+a}, T_{2}(b)=e^{-\tau} \frac{2}{1+b}$,

$$
T(a, b)=\left(T_{1}(a), T_{2}(b)\right)=\left(e^{-\tau} \frac{-a}{1+a}, e^{-\tau} \frac{2}{1+b}\right)
$$

for all $a, b \in[0,+\infty)$ where $\tau>0$. It is clear that both $T_{i}, i=1,2$ are strictly decreasing, so, T is decreasing. We show that T is F-contraction. Indeed, let $u=\left(x_{1}, y_{1}\right) \preccurlyeq v=\left(x_{2}, y_{2}\right)$, we have

$$
\begin{aligned}
T u-T v & =e^{-\tau}\left(\frac{-x_{1}}{2+x_{1}}, \frac{2}{1+y_{1}}\right)-e^{-\tau}\left(\frac{-x_{2}}{2+x_{2}}, \frac{2}{1+y_{2}}\right) \\
& =e^{-\tau}\left(\frac{-2 x_{1}-x_{1} x_{2}+2 x_{2}+x_{1} x_{2}}{4+2 x_{1}+2 x_{2}+x_{1} x_{2}}, \frac{2+2 y_{2}-2-2 y_{1}}{1+y_{2}+y_{1}+y_{1} y_{2}}\right) \\
& \leq e^{-\tau}\left(x_{2}-x_{1}, y_{2}-y_{1}\right) \\
& =e^{-\tau}(v-u) .
\end{aligned}
$$

Which implies that

$$
\tau+\ln (T u-T v) \leq \ln (v-u)
$$

Then, all the conditions of Theorem 2.1 are satisfied and so T has a unique fixed point $\left(0, \frac{-1+\sqrt{1+8 e^{-\tau}}}{2}\right)$, where τ is given.

Example 2.2. Let $E=\mathbb{R}, X=[0,+\infty), P=[0,+\infty)$ and $F: P \backslash\{0\} \rightarrow \mathbb{R}$ with $F(r)=$ $-\frac{1}{r}$. Define the mapping $T: X \rightarrow X$ by $T x=\frac{1}{1+x}$. . It is clear that the all conditions of Theorem 2.1 are satisfied. The condition (2.1) is true i.e. exists $\tau>0$ such that

$$
\tau+F(T u-T v) \leq F(v-u) .
$$

Indeed, for $v>u$, we obtain

$$
\begin{aligned}
F(v-u)-F(T u-T v) & =-\frac{1}{v-u}+\frac{1}{\frac{1}{1+u}-\frac{1}{1+v}} \\
& =-\frac{1}{v-u}+\frac{(1+v)(1+u)}{v-u} \\
& =-\frac{1}{v-u}+\frac{1+u+v+v u}{v-u} \\
& =\frac{u+v+v u}{v-u} \\
& \geq \frac{u+v}{v-u} \\
& \geq \frac{v-u}{v-u}=1 .
\end{aligned}
$$

Hence, for any $\tau \in(0,1]$, we have

$$
\tau+F(T u-T v) \leq F(v-u) .
$$

Thus, T has a unique fixed point $u_{0}=\frac{\sqrt{5}-1}{2}$.

REFERENCES

1. M. Abbas, T. Nazir, T. L. Aleksić and S. Radenović: Common fixed points of set-valued F-contraction mappings on domain of sets endowed with directed graph. Comput. Appl. Math. 36(4) (2017), 1607-1622.
2. M. Abtahi, Z. Kadelburg and S. Radenović: Fixed points and coupled fixed points in partially ordered ν-generalized metric spaces. Appl. Gen. Topol. 19(2) (2018), 189-201.
3. M. Afkhami: The cozero-divisor graph of partially ordered sets. Southeast Asian Bull. Math. 44(2) (2020), 297-306.
4. I. Altun, G. Minak and H. Dag: Multivalued F-contractions on complete metric spaces. J. Nonlinear Convex Anal. 16 (2015), 659-666.
5. I. Altun, G. Minak and M. Olgun: Fixed points of multivalued nonlinear Fcontractions on complete metric spaces. Nonlinear Anal. Model. Control 21(2) (2016), 201-210.
6. A. L. Ansari, V. Gupta and N. Mani: C-class functions on some coupled fixed point theorems in partially ordered S-metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68(2) (2019), 1694-1708.
7. K. Bouzkoura and S. Benkaddour: Some Common Fixed Point Theorems in Partially Ordered Sets. J. Appl. Math. (2020), Art. ID 4707962, 5 pp.
8. L. Chen, S. Huang, C. Li and Y. Zhao: Several Fixed-Point Theorems for FContractions in Complete Branciari b-Metric Spaces and Applications. J. Funct. Spaces (2020), Art. ID $7963242,10 \mathrm{pp}$.
9. D. Guo, Y. J. Сho and J. Zhu: Partial ordering methods in nonlinear problems. Nova Science Publishers, Inc., Hauppauge, NY, 2004.
10. V. Gupta, G. Jungek and N. Mani: Some novel fixed point theorems in partially ordered metric spaces. AIMS Math. 5(5) (2020), 4444-4452.
11. A. Hussain, H. Al-Sulami, N. Hussain and H. Farooq: Newly fixed disc results using advanced contractions on F-metric space. J. Appl. Anal. Comput. 10(6) (2020), 2313-2322.
12. N. Hussain, A. Latif, I. Iqbal and M. A. Kutbi: Fixed point results for multivalued F-contractions with application to integral and matrix equations. J. Nonlinear Convex Anal. 20(11) (2019), 2297-2311.
13. Z. Kadelburg and S. Radenović: Notes on some recent papers concerning F-contractions in b-metric spaces. Constr. Math. Anal. 1(2) (2018), 108-112.
14. X. Lin and Z. Zhao: Sign-changing solution for a third-order boundary-value problem in ordered Banach space with lattice structure. Bound. Value Probl. 2014 (2014), 132, 10 pp.
15. S. K. Mohanta and S. Patra: Coincidence points for graph preserving generalized almost $F-G$-contractions in b-metric spaces. Nonlinear Stud. 27(4) (2020), 897-914.
16. J. J. Nieto and R. R. Lopez: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22(3) (2005), 223239.
17. J. J. Nieto and R. R. Lopez: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.) 23(12) (2007), 2205-2212.
18. A. C. M. Ran and M. C. B. Reurings: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132(5) (2004), 1435-1443.
19. M. Shoaib, M. Sarwar and P. Kumam: Multi-valued fixed point theorem via Fcontraction of Nadler type and application to functional and integral equations. Bol. Soc. Parana. Mat. (3), 39(4) (2021), 83-95.
20. J. Sun and X. Liu: Computation of topological degree in ordered Banach spaces with lattice structure and its application to superlinear differential equations. J. Math. Anal. Appl. 348(2) (2008), 927-937.
21. A. Taheri and A. P. Farajzadeh: A new generalization of α-type almost- F contractions and α-type F-Suzuki contractions in metric spaces and their fixed point theorems. Carpathian Math. Publ. 11(2) (2019), 475-492.
22. A. Tomar and R. Sharma: Almost α-Hardy-Rogers-F-contractions and their applications. Armen. J. Math. 11(11) (2019), 19 pp.
23. C. Wang, J. Mao and Z. Zhao: A fixed-point theorem for ordered contractiontype decreasing operators in Banach space with lattice structure. J. Funct. Spaces 2020, Art. ID 3527430, 7 pp.
24. D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012(94) (2012), 6 pp.
25. D. Wardowski and N. V. Dung: Fixed points of F-weak contractions on complete metric spaces. Demonstr. Math. 47(1) (2014), 146-155.
26. D. Allen: Relations between the local and global structure of fnite semigroups. Ph. D. Thesis, University of California, Berkeley, 1968.
27. P. Erdős: On the distribution of the roots of orthogonal polynomials. In: Proceedings of a Conference on Constructive Theory of Functions (G. Alexits, S. B. Steckhin, eds.), Akademiai Kiado, Budapest, 1972, 145-150.
28. A. Ostrowski: Solution of Equations and Systems of Equations. Academic Press, New York, 1966.
29. E. B. Saff and R. S. Varga: On incomplete polynomials II. Pacific J. Math. 92 (1981), 161-172.

[^0]: Received May 07, 2021. accepted August 30, 2021.
 Communicated by Dijana Mosić
 Corresponding Author: Hamid Faraji, Department of Mathematics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran | E-mail: faraji@iau-saveh.ac.ir 2010 Mathematics Subject Classification. 47H10; 54H25

