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Abstract. In this paper, the geometric structures of generalized (k, µ)-space forms and
their quasi-umbilical hypersurface are analyzed. First ξ-Q and conformally flat gener-
alized (k, µ)-space form are investigated and shown that a conformally flat generalized
(k, µ)-space form is Sasakian. Next, we prove that a generalized (k, µ)-space form satis-
fying Ricci pseudosymmetry and Q-Ricci pseudosymmetry conditions is η-Einstein. We
obtain the condition under which a quasi-umbilical hypersurface of a generalized (k, µ)-
space form is a generalized quasi Einstein hypersurface. Also ξ-sectional curvature of a
quasi-umbilical hypersurface of generalized (k, µ)-space form is obtained. Finally, the
results obtained are verified by constructing an example of 3-dimensional generalized
(k, µ)-space form.
Keywords:(k, µ)-space form, Q curvature, Hypersurface, Sasakian, η-Einstein.

1. Introduction

The curvature tensor R of the Riemannian manifold mostly determines the nature
of the manifold and the sectional curvature of the manifold completely determines
the curvature tensor R. A Riemannian manifold having a constant sectional curva-
ture c is known as real space-form. The sectional curvature K(X,φX) of a plane
section spanned by a unit vector X orthogonal to ξ is called a φ-sectional curva-
ture. If the φ-sectional curvature of a Sasakian manifold is constant, then it is called
Sasakian space form. Alegre et al. [2] introduced the notion of generalized Sasakian
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space forms and gave many examples of it. Throughout the years, many geometers
[3, 4, 13, 15, 16, 17] focused on generalized Sasakian space forms under different
geometric conditions.

Blair et al. [5] introduced the notion of (k, µ)-contact metric manifolds. Follow-
ing this, Koufogiorgos [23] introduced and studied (k, µ) space forms. The (k, µ)
space forms are studied by [1, 14, 23, 30]. Carriazo et al. [8] introduced generalized
(k, µ) space form which generalizes the notion of (k, µ) space forms. An almost
contact metric manifold (M2n+1, φ, ξ, g, η) is said to be a generalized (k, µ) space
form if there exists differentiable functions f1, f2, f3, f4, f5, f6 on the manifold whose
curvature tensor R is given by

R = f1R1 + f2R2 + f3R3 + f4R4 + f5R5 + f6R6,(1.1)

where R1, R2, R3, R4, R5, R6 are the following tensors:

R1(X,Y )Z = g(Y,Z)X − g(X,Z)Y,

R2(X,Y )Z = g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ,

R3(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ,

R4(X,Y )Z = g(Y,Z)hX − g(X,Z)hY + g(hY,Z)X − g(hX,Z)Y,

R5(X,Y )Z = g(hY, Z)hX − g(hX,Z)hY + g(φhX,Z)φhY − g(φhY,Z)φhX,

R6(X,Y )Z = η(X)η(Z)hY − η(Y )η(Z)hX + g(hX,Z)η(Y )ξ − g(hY, Z)η(X)ξ,

for any X,Y, Z ∈ χ(M). Here, h is a symmetric tensor given by 2h = Lξφ, where
L is Lie derivative. In particular, for f4 = f5 = f6 = 0 it reduces to the generalized
Sasakian space form [2]. It is obvious that (k, µ) space form is an example of
generalized (k, µ) space form when

f1 =
c+ 3

4
, f2 =

c− 1

4
, f3 =

c+ 3

4
− k, f4 = 1, f5 =

1

2
, f6 = 1− µ

are constants. In [8], the author studied generalized (k, µ) space forms in con-
tact metric and Trans-Sasakian manifolds. Carriazo and Molina [9] studied Dα-
homothetic deformations of generalized (k, µ)-space forms and found that deformed
spaces are again generalized (k, µ)-space forms in dimension 3, but not in general.
In recent years, many geometers studied generalized (k, µ)-space forms under sev-
eral conditions [21, 28, 22, 20, 27, 29].

In [26], Mantica and Suh introduced and studied Q curvature tensor. In a
(2n+ 1)-dimensional Riemannian manifold (M, g), the Q curvature tensor is given
by

Q(X,Y )Z = R(X,Y )Z − v

2n

[
g(Y,Z)X − g(X,Z)Y

]
,(1.2)

for any X,Y, Z ∈ χ(M) and v is an arbitrary scalar function on M . If v = r
2n+1 ,

then Q curvature tensor reduces to concircular curvature tensor [32]. In [13], De



On the Geometric Structures of Generalized (k, µ)-space forms 1131

and Majhi studied Q curvature tensor in a generalized Sasakian space form.

One of the most important curvature tensors for analyzing the intrinsic proper-
ties of Riemannian manifold is the conformal curvature tensor introduced by Yano
and Kon [33]. This curvature is invariant under conformal transformation. The con-
formal curvature C of type (1,3) on a (2n + 1)-dimensional Riemannian manifold
(M, g), n > 1, is defined by

C(X,Y )Z = R(X,Y )Z − 1

2n− 1

[
S(Y,Z)X − S(X,Z)Y + g(Y,Z)PX

−g(X,Z)PY
]

+
r

2n(2n− 1)

[
g(Y, Z)X − g(X,Z)Y

]
,(1.3)

where R,S, P, r denote the Riemannian curvature tensor, the Ricci tensor, Ricci-
operator and the scalar curvature of the manifold respectively. Kim [25] studied
conformally flat generalized Sasakian space forms. De and Majhi [15] studied φ-
conformal semisymmetric generalized Sasakian space forms.

Cartan [10] first initiated and completely classified complete simply connected
locally symmetric spaces. A Riemannian manifold is said to be locally symmetric
if the curvature tensor satisfies ∇R = 0. The notion of local symmetry is weak-
ened by many authors throughout the years. One such notion is pseudosymmetric
spaces introduced by Deszcz [19]. It should be noted that pseudosymmetric spaces
introduced by Deszcz is different from those introduced by Chaki [11]. In [31], au-
thors obtained the necessary and sufficient condition for a Chaki pseudosymmetric
manifold to be Deszcz pseudosymmetric. De and Samui [14] studied Ricci pseu-
dosymmetric (k, µ)-contact space forms and show that it is an η-Einstein manifold.

The authors in [14], studied quasi-umbilical hypersurface on (k, µ)-space forms.

A hypersurface (M̃2n+1, g̃) of a Riemannian manifoldM2n+1 is called quasi-umbilical
[12] if its second fundamental tensor has the form

Hρ(X,Y ) = αg(X,Y ) + βω(X)ω(Y ),(1.4)

where ω is the 1-form, α, β are scalars and the vector field corresponding to the
1-form ω is a unit vector field. Here, the second fundamental tensor Hρ is defined
by Hρ(X,Y ) = g̃(Aρ, Y ), where A is (1,1) tensor and ρ is the unit normal vector
field and X,Y are tangent vector fields.
A Riemannian manifold is called a generalized quasi-Einstein manifold [18] if its
Ricci tensor S satisfies

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) + cλ(X)λ(Y ),

where a, b and c are non-zero scalars and η, λ are 1-forms. If c = 0, then the mani-
fold reduces to a quasi-Einstein manifold.
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The paper is organized as follows: After preliminaries, ξ-Q and conformally flat
generalized (k, µ)-space forms are investigated in section 3. Next in section 4, it is
shown that Q-Ricci pseudosymmetric and Ricci pseudosymmetric generalized (k, µ)-
space forms are η-Einstein under certain conditions. Moreover, conformal Ricci
pseudosymmetric generalized (k, µ)-space forms are studied. In section 5, quasi-
umbilical hypersurface of generalized (k, µ)-space form are investigated and shown
that it is a generalized quasi Einstein hypersurface. Also ξ-sectional curvature of a
quasi-umbilical hypersurface of generalized (k, µ)-space form is obtained. Finally,
the obtained results are verified by using an example of a 3-dimensional generalized
(k, µ)-space form.

2. Preliminaries

In this section, we highlight some of the formulae and statements which will be used
later in our studies.

A (2n + 1)-dimensional smooth manifold M is said to be a contact metric
manifold if there exists a global 1-form η, known as the contact form, such that
η ∧ (dη)n 6= 0 everywhere on M and there exists a unit vector field ξ, called the
Reeb vector field, corresponding to 1-form η such that dη(ξ, ·) = 0, a (1, 1) tensor
field φ and Riemannian metric g such that

φ2X = −X + η(X)ξ, η(X) = g(X, ξ), dη(X,Y ) = g(X,φY ),(2.1)

for all X,Y ∈ χ(M), where χ(M) is the Lie-algebra of all vector fields on M . The
metric g is called the associate metric and the structure (φ, ξ, η, g) is called con-
tact metric structure. A Riemannian manifold M together with contact structure
(φ, ξ, η, g) is called contact metric manifold. It follows from (2.1) that

φ(ξ) = 0, η · φ = 0, g(X,φY ) = −g(φX, Y ),

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.2)

for any X,Y ∈ χ(M). Further we define two self-adjoint operators h and l by
h = 1

2 (Lξφ) and l = R(·, ξ)ξ respectively, where R is the Riemannian curvature of
M . These operators satisfy

hξ = lξ = 0, hφ+ φh = 0, T r.h = Tr.hφ = 0.(2.3)

Here, “Tr.” denotes trace. When unit vector ξ is Killing (i.e. h = 0 or Tr.l = 2n)
then contact metric manifold is called K-contact. A contact structure is said to
be normal if the almost complex structure J on M × R defined by J(X, f d

dt ) =

(φX − fξ, η(X) ddt ), where t is the coordinate of R and f is a real function on
M × R, is integrable. A normal contact metric manifold is called Sasakian. A
Sasakian manifold is K-contact but the converse is true only in dimension 3. The
(k, µ)-nullity distribution of a contact metric manifold M(φ, ξ, η, g) is a distribution

N(k, µ) : p→ Np(k, µ) = {Z ∈ χ(M) : R(X,Y )Z = k{g(Y, Z)X

−g(X,Z)Y }+ µ{g(Y, Z)hX − g(X,Z)hY }},
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for any X,Y, Z ∈ χ(M) and real numbers k and µ. A contact metric manifold M
with ξ ∈ N(k, µ) is called a (k, µ)-contact metric manifold.
In a generalized (k, µ)-space form (M2n+1, g) the following relations hold [2]:

R(X,Y )ξ = (f1 − f3){η(Y )X − η(X)Y }
+ (f4 − f6){η(Y )hX − η(X)hY },(2.4)

PX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ

+ ((2n− 1)f4 − f6)hX,(2.5)

r = 2n{(2n+ 1)f1 + 3f2 − 2f3},(2.6)

S(φX, φY ) = S(X,Y )− 2n(f1 − f3)η(X)η(Y ).(2.7)

where, R,S, P, r are respectively the curvature tensor of type (1,3), the Ricci tensor,
the Ricci operator i.e. g(PX, Y ) = S(X,Y ), for any X,Y ∈ χ(M) and the scalar
curvature of the manifold respectively.

3. Flatness of generalized (k, µ)-space form

De and Samui [14] studied conformally flat (k, µ) space form and De and Majhi
[13] analyzed ξ-Q flatness of generalized Sasakian space form. Generalizing the
results obtained, in this section we studied ξ-Q flat and conformally flat generalized
(k, µ)-space form.

3.1. ξ-Q flat generalized (k, µ)-space form

Definition 3.1. A generalized (k, µ)-space form (M2n+1, g), is said to be ξ-Q flat
if Q(X,Y )ξ = 0, for any X,Y ∈ χ(M) on M .

We have, from (1.2)

Q(X,Y )ξ = R(X,Y )ξ − v

2n

[
η(Y )X − η(X)Y

]
,(3.1)

for any X,Y ∈ χ(M). Using (2.4) in (3.1) we get

Q(X,Y )ξ =
(
f1 − f3 −

v

2n

)[
η(Y )X − η(X)Y

]
+ (f4 − f6)[η(Y )hX − η(X)hY ].(3.2)
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Suppose non-Sasakian generalized (k, µ)-space form is ξ −Q flat. Then from (3.2)
we get(

f1 − f3 −
v

2n

)[
η(Y )X − η(X)Y

]
+ (f4 − f6)[η(Y )hX − η(X)hY ] = 0.(3.3)

Taking X = φX in (3.3), we obtain{(
f1 − f3 −

v

2n

)
φX + (f4 − f6)hφX

}
η(Y ) = 0.(3.4)

Since η(Y ) 6= 0 and taking inner product with U in (3.4) gives(
f1 − f3 −

v

2n

)
g(φX,U) + (f4 − f6)g(φX, hU) = 0.(3.5)

Since g(φX,U) 6= 0 and g(φX, hU) 6= 0, we see that f1 − f3 = v
2n and f4 = f6.

Conversely, taking f1−f3 = v
2n and f4 = f6, and putting these values in (3.2) gives

Q(X,Y )ξ = 0 and hence M is ξ −Q flat. Therefore, we can state the following:

Theorem 3.1. A non-Sasakian generalized (k, µ)-space form (M2n+1, g), is ξ-Q
flat if and only if f1 − f3 = v

2n and f4 = f6.

In particular, if v = r
2n+1 then Q tensor reduces to concircular curvature tensor.

Making use of (2.6) in the forgoing equation gives v = 2n{(2n+1)f1+3f2−2f3}
2n+1 . In

regard of Theorem 3.1, for ξ-concircularly flat we obtain f3 = 3f2
1−2n and hence we

can state the following corollary:

Corollary 3.1. A non-Sasakian generalized (k, µ)-space form (M2n+1, g), is ξ-
concircularly flat if and only if f3 = 3f2

1−2n and f4 = f6.

We can easily see that Theorem 3.1 and Corollary 3.1 obtained by the geome-
ters in [13], are particular cases of Theorem 3.1 and Corollary 3.1 respectively for
f4 = f5 = f6 = 0.

Substituting the values, f4−f6 = µ and f1−f3 = k in Theorem 3.1, we obtained
the following corollary:

Corollary 3.2. A (k, µ)-space form (M2n+1, g), is ξ-Q flat if and only if k = v
2n

and µ = 0.

3.2. Conformally flat generalized (k, µ)-space form

Definition 3.2. A generalized (k, µ)-space form (M2n+1, g), n > 1, is said to be
conformally flat if C(X,Y )Z = 0, for any X,Y, Z ∈ χ(M) on M .



On the Geometric Structures of Generalized (k, µ)-space forms 1135

Suppose generalized (k, µ)-space form is conformally flat. Then from (1.3), we
get

R(X,Y )Z − 1

2n− 1

{
S(Y,Z)X − S(X,Z)Y + g(Y, Z)PX − g(X,Z)PY

}
+

r

2n(2n− 1)

{
g(Y,Z)X − g(X,Z)Y

}
= 0.(3.6)

In consequence of taking X = ξ in (3.6) and using (2.1), (2.4) and (2.5). Eq.(3.6)
becomes

(f1 − f3){g(Y,Z)ξ − η(Z)Y }+ (f4 − f6){g(hY, Z)ξ − η(Z)hY }

− 1

2n− 1

{
S(Y, Z)ξ − 2n(f1 − f3)η(Z)Y + 2n(f1 − f3)g(Y,Z)ξ

−η(Z)PY
}

+
r

2n(2n− 1)

{
g(Y, Z)ξ − η(Z)Y

}
= 0.(3.7)

Putting Z = φZ in (3.7) and making use of (2.4), (2.5) and (2.6) results in the
following

2(n+ 1)f6g(hY, φZ) = 0.(3.8)

This shows that either f6 = 0 or φh = 0. In the second case, from (2.1) we have
h = 0. Therefore, we can state the following:

Theorem 3.2. A generalized (k, µ)-space form (M2n+1, g), n > 1, is conformally
flat, then either f6 = 0 or M is Sasakian.

Corollary 3.3. A (k, µ)-space form (M2n+1, g), n > 1, is conformally flat, then
µ = 1 or M is Sasakian.

4. Pseudosymmetric generalized (k, µ)-space form

In this section certain pseudo symmetry such as Ricci pseudo symmetry, Q-Ricci
pseudo symmetry and conformal Ricci pseudo symmetry in the context of general-
ized (k, µ)-space form are studied. First, we review an important definition

Definition 4.1. [19, 31] A Riemannian manifold (M, g), n ≥ 1, admitting a (0, k)-
tensor field T is said to be T -pseudosymmetric if R · T and D(g, T ) are linearly
dependent, i.e., R · T = LTD(g, T ) holds on the set UT = {x ∈M : D(g, T ) 6= 0 at
x}, where LT is some function on UT .

In particular, if R·R = LRD(g,R) and R·S = LSD(g, S) then the manifold is called
pseudosymmetric and Ricci pseudosymmetric respectively. Moreover, if LR = 0 (
resp., LS = 0) then pseudosymmetric (resp., Ricci pseudosymmetric) reduces to
semisymmetric (resp., Ricci semisymmetric) introduced by Cartan in 1946.
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4.1. Ricci pseudosymmetric generalized (k, µ)-space form

Definition 4.2. A generalized (k, µ)-space form (M2n+1, g), is said to be Ricci
pseudosymmetric if its Ricci curvature satisfies the following relation,

R · S = fS2D(g, S),

holds on the set US2
= {x ∈ M : D(g, S) 6= 0 at x}, where fS2

is some function on
US2

.

Suppose a generalized (k, µ)-space form (M2n+1, g), is Ricci pseudosymmetric
i.e.,

R · S = fS2D(g, S),

which can be written as

S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = −fs
[
S(Y, V )g(X,U)

−S(X,V )g(Y, U) + S(U, Y )g(X,V )− S(U,X)g(Y, V )
]

(4.1)

Taking X = U = ξ in (4.1) and using (2.4), (2.5) and (2.7), we get(
f3 − f1 + fS2

)
S(Y, V ) +

[
2n(f1 − f3)(f1 − f3 − fS2)− (k − 1)(f4

−f6)((2n− 1)f4 − f6)
]
g(Y, V )− (k − 1)(f4 − f6)

(
(2n− 1)f4

−f6
)
η(Y )η(V ) + (f4 − f6)

(
(1− 2n)f3 − 3f2

)
g(hY, V ) = 0.(4.2)

Considering fS2 6= f1 − f3 and further taking (1 − 2n)f3 − 3f2 = 0 in (4.2), the
manifold is η-Einstein. Hence we can state the following:

Theorem 4.1. A Ricci pseudosymmetric generalized (k, µ)-space form (M2n+1, g),
with fS2

6= f1 − f3, is η-Einstein manifold if f3 = 3f2
1−2n .

If fS2
= 0, then Ricci pseudosymmetric generalized (k, µ)-space form reduces

to Ricci semisymmetric generalized (k, µ)-space form. In view of Theorem (4.1) we
obtain the following:

Corollary 4.1. A Ricci semisymmetric generalized (k, µ)-space form (M2n+1, g),
with f1 − f3 6= 0 is η-Einstein manifold if f3 = 3f2

1−2n .

4.2. Q-Ricci pseudosymmetric generalized (k, µ)-space form

Definition 4.3. A generalized (k, µ)-space form (M2n+1, g), is said to be Q-Ricci
pseudosymmetric if

Q · S = fS3
D(g, S),

holds on the set US3 = {x ∈ M : D(g, S) 6= 0 at x}, where fS3 is any function on
US3

.
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Proceeding similarly as in Theorem 4.1, one can easily obtain the following
relation:

Theorem 4.2. A Q-Ricci pseudosymmetric generalized (k, µ)-space form (M2n+1, g),
with fS3

6= f3 − f1 − v
2n is η-Einstein manifold if f3 = 3f2

1−2n .

Taking fS3 = 0 in Theorem 4.2, we easily obtain the following:

Corollary 4.2. A Q-Ricci semisymmetric generalized (k, µ)-space form (M2n+1, g),
with f3 − f1 6= v

2n is η-Einstein manifold if f3 = 3f2
1−2n .

4.3. Conformal Ricci pseudosymmetric generalized (k, µ)-space form

Definition 4.4. A generalized (k, µ)-space form (M2n+1, g), n > 1, is said to be
conformal Ricci pseudosymmetric if

C · S = fS4D(g, S),

holds on the set US4
= {x ∈ M : D(g, S) 6= 0 at x}, where fS4

is any function on
US4 .

Suppose a generalized (k, µ)-space form is conformal Ricci pseudosymmetric.
Then, we have

S(C(X,Y )U, V ) + S(U,C(X,Y )V ) = −fS4

[
S(Y, V )g(X,U)

−S(X,V )g(Y, U) + S(U, Y )g(X,V )− S(U,X)g(Y, V )
]
.(4.3)

Taking X = U = ξ and f4 = f6 in (4.3) and making use of (1.3),(2.1) and (2.5), we
obtain

S2(Y, V ) =
(
4nf1 + 3f2 − (2n+ 1)f3 + 2n(2n− 1)fS4

)
S(Y, V )

−(2n− 1)fS4
η(Y )η(V )−

(
2nf1 + 3f2 − f3

)
g(Y, V ).(4.4)

Thus, we can state the following:

Theorem 4.3. If a generalized (k, µ)-space form (M2n+1, g), n > 1, is conformal
Ricci pseudosymmetric with f4 = f6, then the relation(4.4) holds.

5. Quasi-umbilical hypersurface of generalized (k, µ)-space form

Let us consider a quasi-umbilical hypersurface M̃ of a generalized (k, µ)-space form.
From Gauss [12], for any vector fields X,Y, Z,W tangent to the hypersurface we
have

R(X,Y, Z,W ) = R̃(X,Y, Z,W )− g(H(X,W ), H(X,Z))

+ g(H(X,Z), H(Y,W )),(5.1)
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where, R(X,Y, Z,W ) = g(R(X,Y )Z,W ) and R̃(X,Y, Z,W ) = g(R̃(X,Y )Z,W ).

Here, H is the second fundamental tensor of M̃ given by

H(X,Y ) = αg(X,Y )ρ+ βω(X)ω(Y )ρ,(5.2)

where, ρ is the only unit normal vector field. Here, ω is the 1-form, the vector field
corresponding to the 1-form ω is a unit vector field and α, β are scalars.
Using (5.2) in (5.1), we obtain the following result

f1
[
g(Y,Z)g(X,W )− g(X,Z)g(Y,W )

]
+ f2

[
g(X,φZ)g(φY,W )

−g(Y, φZ)g(φX,W ) + 2g(X,φY )g(φZ,W )
]

+ f3
[
η(X)η(Z)g(Y,W )

−η(Y )η(Z)g(X,W ) + g(X,Z)η(Y )η(W )− g(Y, Z)η(X)η(W )
]

+f4
[
g(Y,Z)g(hX,W )− g(Y,Z)g(hY,W ) + g(hY,Z)g(X,W )

−g(hX,Z)g(Y,W )
]

+ f5
[
g(hY, Z)g(hX,W )− g(hX,Z)g(hY,W )

+g(φhX,Z)g(φhY,W )− g(φhY,Z)g(φhX,W )
]

+ f6
[
η(X)η(Z)g(hY,W )

−η(Y )η(Z)g(hX,W ) + g(hX,Z)η(Y )η(W )− g(hY, Z)η(X)η(W )
]

= R̃(X,Y, Z,W )− α2g(X,W )g(Y, Z)− αβg(X,W )ω(Y )ω(Z)

−αβg(Y,Z)ω(X)ω(W ) + α2g(Y,W )g(X,Z) + αβg(Y,W )ω(X)ω(Z)

+αβg(X,Z)ω(Y )ω(W ).(5.3)

Contracting over X and W in (5.3), we obtain

S̃(Y, Z) =
(
2nf1 + 3f2 − f3 + 2nα2 + αβ

)
g(Y,Z)

−
(
3f2 + (2n+ 1)f3

)
η(Y )η(Z) +

(
(2n− 1)f4 − f6

)
g(hY, Z)

+αβ(2n− 1)ω(Y )ω(Z).(5.4)

Hence, we can state the following:

Theorem 5.1. A quasi-umbilical hypersurface of a generalized (k, µ)-space form
is a generalized quasi Einstein hypersurface, provided f4 = f6

2n−1

In particular, for a (k, µ)-space form, the above Theorem 5.1 reduces to the
following:

Theorem 5.2. [14] A quasi-umbilical hypersurface of a (k, µ)-contact space form
is a generalized quasi-Einstein hypersurface, provided µ = 2− 2n.

Corollary 5.1. A quasi-umbilical hypersurface of a generalized Sasakian space
form is a generalized quasi-Einstein hypersurface.

For any vector fields X,Y , the tensor field K(X,Y ) = R̃(X,Y, Y,X) is called

the sectional curvature of M̃ given by the sectional plane {X,Y }. The sectional
curvature K(X, ξ) of a sectional plane spanned by ξ and vector field X orthogonal

to ξ is called the ξ-sectional curvature of M̃ .
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Theorem 5.3. A ξ-sectional curvature of a quasi-umbilical hypersurface of gen-
eralized (k, µ)-space form is given by

K(X, ξ) =
(
f1 − f3 + α2

)
g(φX, φX) + (f4 − f6)g(hX,X)

+αβ
[
(ω(ξ))2 + (ω(X))2

]
− 2αβη(X)ω(X)ω(ξ).

Proof. Taking W = X and Z = Y in (5.3) results in following

f1
[
g(Y, Y )g(X,X)− g(X,Y )g(Y,X)

]
+ f2

[
g(X,φY )g(φY,X)

−g(Y, φY )g(φX,X) + 2g(X,φY )g(φY,X)
]

+ f3
[
η(X)η(Y )g(X,Y )

−η(Y )η(Y )g(X,X)− g(X,Y )η(X)η(Y )− g(Y, Y )η(X)η(X)
]

+f4
[
g(Y, Y )g(hX,X)− g(X,Y )g(hY,X) + g(hY, Y )g(X,X)

−g(hX, Y )g(Y,X)
]

+ f5
[
g(hY, Y )g(hX,X)− g(hX, Y )g(hY,X)

+g(φhX, Y )g(φhY,X)− g(φhY, Y )g(φhX,X)
]

+ f6
[
η(x)η(Y )g(hY,X)

−η(Y )η(Y )g(hX,X) + g(hX, Y )η(Y )η(X)− g(hY, Y )η(X)η(X)
]

= K(X,Y )− α2g(X,X)g(Y, Y )− αβg(X,X)ω(Y )ω(Y )

−αβg(Y, Y )ω(X)ω(X) + α2g(X,Y )g(X,Y ) + αβg(X,Y )ω(X)ω(Y )

+αβg(X,Y )ω(Y )ω(X).(5.5)

Putting Y = ξ in (5.5) gives

K(X, ξ) =
(
f1 − f3 + α2

)
g(φX, φX) + (f4 − f6)g(hX,X)

+αβ
[
(ω(ξ))2 + (ω(X))2

]
− 2αβη(X)ω(X)ω(ξ).

This completes the proof.

6. Examples of generalized (k, µ)-space forms

Now we will show the validity of obtained result by considering an example of
a generalized (k, µ)-space form of dimension 3. Koufogiorgos and Tsichlias [24]
constructed an example of generalized (k, µ)-space of dimension 3 which was later
shown by Carriazo et al. [8] to be a contact metric generalized (k, µ)-space form
M3(f1, 0, f3, f4, 0, 0) with non-constant f1, f3, f4.

Example 6.1: Let M3 be the manifold M = {(x1, x2, x3) ∈ R3|x3 6= 0} where
(x1, x2, x3) are standard coordinates on R3. Consider the vector fields

e1 =
∂

∂x
, e2 = −2x2x3

∂

∂x1
+

2x1
x23

∂

∂x2
− 1

x23

∂

∂x3
, e3 =

1

x3

∂

∂x2
,

are linearly independent at each point of M and are related by

[e1, e2] =
2

x23
e3, [e2, e3] = 2e1 +

1

x33
e3, [e3, e1] = 0.
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Let g be the Riemannian metric defined by g(ei, ej) = δij , i, j = 1, 2, 3 and η be the
1-form defined by η(X) = g(X, e1) for any X on M . Also, let φ be the (1, 1)-tensor
field defined by φe1 = 0, φe2 = e3 φe3 = −e2. Therefore, (φ, e1, η, g) defines a
contact metric structure on M . Put λ = 1

x2
3
, k = 1 − 1

x4
3

and µ = 2(1 − 1
x2
3
), then

symmetric tensor h satisfies he1 = 0, he2 = λe2, he3 = −λe3. The non-vanishing
components of the Riemannian curvature are as follows:

R(e1, e2)e1 = −(k + λµ)e2, R(e1, e2)e2 = (k + λµ)e1,

R(e1, e3)e1 = (−k + λµ)e3, R(e− 1, e3)e3 = (k − λµ)e1,

R(e2, e3)e2 = (k + µ− 2λ3)e3, R(e2, e3)e3 = −(k + µ− 2λ3)e2.

Therefore, M is a generalized (k, µ)-space with k, µ not constant. As a contact
metric generalized (k, µ)-space is a generalized (k, µ)-space form with k = f1 − f3
and µ = f4−f6 (Theorem 4.1, [8]), the manifold under consideration is a generalized
(k, µ)-space form M3(f1, 0, f3, f4, 0, 0) where

f1 = −3 +
2

x23
+

1

x43
+

2

x63
,

f3 = −4 +
2

x23
+

2

x43
+

2

x63

f4 = 2(1− 1

x23
).

Next we obtain the non-vanishing components of Q-curvature tensor for arbitrary
function v as follows:

Q(e1, e2)e1 = −(k + λµ− v

2
)e2, Q(e1, e2)e2 = (k + λµ− v

2
)e1,

Q(e1, e3)e1 = (−k + λµ+
v

2
)e3, Q(e1, e3)e3 = (k − λµ− v

2
)e1,

Q(e2, e3)e2 = (k + µ− 2λ3 +
v

2
)e3, Q(e2, e3)e3 = −(k + µ− 2λ3 +

v

2
)e2.

From the above equations we see that Q(X,Y )e1 = 0 for all X,Y on M if and only
if v = 2(1− 1

x4
3
) and x23 = 1. Hence, Theorem 3.1 is verified.

Example 6.2: In [2], it was shown that the warped product R×f Cm with

f1 = − (f ′)2

f2
, f2 = 0, f3 = − (f ′)2

f2
+
f ′′

f
,

is a generalized Sasakian space form. Since every generalized Sasakian space form
is a particular case of generalized (k, µ)-space form, R×f Cm with f1, f2, f3 define
as above and f4 = f5 = f6 = 0 is a generalized (k, µ)-space form.
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