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∆m−STATISTICAL CONVERGENCE OF ORDER α OF
GENERALIZED DIFFERENCE SEQUENCES IN PROBABILISTIC
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Abstract. In this paper, we define the notion of ∆m−statistical convergence of order α
of generalized difference sequences in the probabilistic normed spaces and present their
characterization. We also define the notion of ∆m−statistical Cauchy of order α for
these types of sequences in the probabilistic normed spaces. Also, we have given few
examples which demonstrates that this notion is more generalized in the probabilistic
normed spaces.
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1. Introduction

The most interesting generalization of the concept of classical convergence of
sequences was coined by Zygmund [21] and stated as statistical convergence in
1935. Steinhaus [19] and Fast [7] also presented the notion of statistical convergence
simultaneously in the same year 1951. The notion was introduced to deal with the
theory of series summation and has been studied by various researchers in different
spaces such as intutionistic fuzzy normed spaces [13], random 2-normed spaces [15],
probabilistic normed spaces [10] etc. It has also been studied for different sequences
such as ordinary sequences [18], double sequences [4], triple sequences [17] and
multiple sequences [14] by various authors see[16, 12, 2]
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In 1981, Kizmaz [11] introduced the difference sequence spaces X(∆) for X =
l∞,c, c0, where X(∆) is a Banach Space. Further, Et and Çolak[6] generalized
the notion of difference sequences. In the present paper, we are introducing the
notion of statistical convergence of order α for the generalized difference sequences
in PN − Spaces. Now, lets recall some basic definitions and preliminaries. Using
the definitions of continuous [1] t−norm and continuous t−conorm, the notion of
probabilistic normed space (PN − Space) is given as:

Definition 1.1. [1] A triplet (X;P, ∗) is referred as probabilistic normed space
with X as a real vector space, P as a map from X into D (Px(t) is the value of Px
at t ∈ R where Px(t) is the distribution function P for x ∈ X) and ∗ as a t-norm,
if the following conditions holds:

1. Px(0) = 0,

2. Px(t) = 1 for all t > 0 if and only if x = 0,

3. Pα.x(t) = Px(t/|α)| ; where α ̸= 0;

4. Px+y(s+ t) ≥ Px(s) ∗ Px(t) for all x, y ∈ X and s, t ∈ R+
0 = [0,∞).

The notion of the generalized difference sequence which is given by Et and Çolak[6]
is defined in the following definition:

Definition 1.2. Let m be a non-negative integer, then the generalized difference
operator ∆mxr is defined as

∆mxr = ∆m−1xr −∆m−1xr+1,

where ∆0xr = xr for all r ∈ N.

Using this concept, the notions of ∆m-convergence and ∆m-Cauchy of generalized
difference sequences in the probabilistic normed spaces are defined in the following
definitions:

Definition 1.3. [20] Let (X;P, ∗) be a PN−Space and x = {xr} be a generalized
difference sequence in X. Then x = {xr} is said to be ∆m−convergent to some
L ∈ X with respect to probabilistic norm P if, for every ϵ > 0 and ψ ∈ (0, 1) there
exists r0 ∈ N such that

P(∆mxr − L, ϵ) > 1− ψ,

for all r > r0.

Definition 1.4. [5] Let (X;P, ∗) be a PN −Space and x = {xr} be a generalized
difference sequence in X. Then x = {xr} is said to be ∆m−Cauchy with respect to
probabilistic norm P if, for every ϵ > 0 and ψ ∈ (0, 1) there exists r0 ∈ N such that

P(∆mxr −∆mxs, ϵ) > 1− ψ,

for all r, s ≥ r0.
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Definition 1.5. [9] Let (X;P, ∗) be a PN −Space and x = {xr} be a generalized
difference sequence in X. Then x = {xr} is said to be ∆m−bounded with respect
to probabilistic norm P if for every ϵ > 0 and ψ ∈ (0, 1),

P(∆mxr, ϵ) > 1− ψ.

In the following definition, the notion of statistical convergence is mentioned using
natural density.

Definition 1.6. [8] Let A be the subset of N. The natural density of A, denoted
by δ(A) = lim

n→∞
|An|, where An = {r ≤ n : r ∈ A} and | . | indicates the order of the

enclosed set.
A sequence x = {xr} is said to be statistically convergent to number L if, for every
ϵ > 0, we have δ({r ≤ n : |xr − L| ≥ ϵ}) = 0. It can be written as St− limxr = L
and St is the collection of all the statistically convergent sequences.

For α ∈ (0, 1], the concept of statistical convergence of order α is given as:

Definition 1.7. [3] Let α ∈ (0, 1] and a sequence x = {xr} in X is said to be
statistically convergent of order α to number L if for given ϵ > 0,

lim
n→∞

1

nα
|{r ≤ n : |xr − L| ≥ ϵ}| = 0.

It can be written as Stα − limxr = L and Stα is the set of all the statistically
convergent sequences of order α.

Definition 1.8. [5] Let (X;P, ∗) be a PN − Space and α ∈ (0, 1]. A sequence
x = {xr} in X is said to be statistically convergent of order α with respect to
probabilistic norm P to some number L in X if for every ϵ > 0 and ψ ∈ (0, 1),

lim
n→∞

1

nα
|{r ≤ n : P(xr − L; ϵ) ≤ 1− ψ}| = 0.

It can be written as StαP − limxr = L and StαP is the set of all the statistically
convergent sequences of order α in probabilistic normed space.

Definition 1.9. [5] Let (X;P, ∗) be a PN−Space and α ∈ (0, 1]. A sequence x =
{xr} in X is said to be statistically Cauchy of order α with respect to probabilistic
norm P if for every ϵ > 0 and ψ ∈ (0, 1),

lim
n→∞

1

nα
|{r ≤ n : P(xr − xs; ϵ) ≤ 1− ψ}| = 0.

2. Main Results

First we consider some definitions to present our findings for generalized difference
sequences in the PN − Spaces:
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Definition 2.1. Let (X;P, ∗) be a PN − Space and x = {xr} be a sequence in
X. Then x = {xr} is said to be ∆m-statistically convergent to some L ∈ X with
respect to probabilistic norm P if for every ψ ∈ (0, 1) and ϵ > 0,

lim
n→∞

1

n
|{r ≤ n : P(∆mxr − L; ϵ) ≤ 1− ψ}| = 0.

It can be written as StP − lim∆mxr = L and St∆P represents the collection of all
the statistically convergent generalized difference sequences in probabilistic normed
space (X;P, ∗).

Definition 2.2. Let (X;P, ∗) be a PN − Space and x = {xr} be a sequence in
X. Then for α ∈ (0, 1], x = {xr} is said to be ∆m-statistically convergent of order
α to some L ∈ X with respect to probabilistic norm P if for every ψ ∈ (0, 1) and
ϵ > 0,

lim
n→∞

1

nα
|{r ≤ n : P(∆mxr − L; ϵ) ≤ 1− ψ}| = 0.

Represented as StαP − lim∆mxr = L where StαP represents the collection of all the
statistically convergent difference sequences of order α in the probabilistic normed
spaces.

Definition 2.3. Let (X;P, ∗) be a PN − Space and x = {xr} be a sequence in
X. Then for α ∈ (0, 1], x = {xr} is said to be ∆m-statistically Cauchy of order α to
some L ∈ X with respect to probabilistic norm P if, for every ϵ > 0 and ψ ∈ (0, 1)
there exists s ∈ N such that,

lim
n→∞

1

nα
|{r ≤ n : P(∆mxr −∆mxs; ϵ) ≤ 1− ψ}| = 0.

Now, we are giving an example to show that the notion of StαP − lim∆mxr = L is
not defined for α > 1.

Example 2.1. Consider a space (R, |.|), where |.| is the usual norm for the set of real
numbers. Let a ∗ b = ab and P(∆mxr, t) =

t
t+|∆mxr| , for x ∈ X and t > 0. Then (R,P; ∗)

is a PN − Space. Define a sequence x = {xr} as

∆mxr =

{
1 if r = k2
1
n

if r ̸= k2

Then, for every ϵ > 0, t > 0 and ψ ∈ (0, 1). Consider

{r ≤ n : P(∆mxr − 0; t) ≤ 1− ψ} = {r ≤ n : P(∆mxr; t) ≤ 1− ψ}

=

{
r ≤ n :

t

t+ |∆mxr|
≤ 1− ψ

}
=

{
r ≤ n : |∆mxr| ≥

tψ

1− ψ
> 0

}
= {r ≤ n : r = k2}.

Then 1
nα |{r ≤ n : P(∆mxr, t) ≤ 1 − ψ}| ≤ n1/2

nα → 0 if α ∈ ( 1
2
, 1]. This implies StαP −

lim∆mxr = 0 for α ∈ ( 1
2
, 1]. But StαP − lim∆mxr ̸= 0 for 0 < α ≤ 1

2
.
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Remark 2.1. The notion of ∆m-statistical convergence of order α for α > 1 is not well
defined because if ∆mxr is a difference sequence in (X,P; ∗) and α > 1, then for every
L ∈ X, we have StαP − lim∆mxr = L.

Theorem 2.1. Let (X,P; ∗) be PN−Space and 0 < α ≤ β ≤ 1. Then StαP(∆
mxr) ⊆

StβP(∆
mxr) and this inclusion is strict for α < β.

Proof. Let x = {xr} be any generalized difference sequence in X such that StαP −
lim∆mxr = L. Then for every ϵ > 0 and ψ ∈ (0, 1), we have

|{r ∈ N : P(∆mxr − L, ϵ) ≤ 1− ψ}|
nβ

≤ |{r ∈ N : P(∆mxr − L, ϵ) ≤ 1− ψ}|
nα

This gives
StαP(∆

mxr) ⊆ StβP(∆
mxr).

Now, for strict inclusion StαP(∆
mxr) ⊂ StβP(∆

mxr) for α < β. Consider a sequence
x = {xr} in PN − Space (X,P; ∗), for k > 0 which is defined as:

∆mxr =

{
1 if r = [nk]
0 if r ̸= [nk]

where n ∈ N. Now, for given ϵ > 0 and ψ ∈ (0, 1) we have

{r ∈ N : P(∆mxr − L, ϵ) ≤ 1− ψ} ⊆ {[1k], [2k], , , , , , , }.

So that
|{r ≤ N : P(∆mxr − L, ϵ) ≤ 1− ψ}|

nβ
≤ n

1
k

nβ
.

Therefore the above inequality implies that StβP − lim∆mxr = 0 for 1
k < β ≤ 1.

But StαP − lim∆mxr ̸= 0 for 0 < α ≤ 1
k .

Remark 2.2. For α ∈ (0, 1], StαP−lim∆mxr = L. This implies that StP−lim∆mxr = L,
i.e. StαP(∆

mxr) ⊆ StP(∆
mxr) and this inclusion is strict if α ∈ (0, 1).

Theorem 2.2. Let (X,P; ∗) be a PN − Space and x = {xr} be a sequence in X,
then for α ∈ (0, 1], if StαP − lim∆mxr = L, then L is unique.

Proof. Let if possible, StαP − lim∆mxr = L1 and StαP − lim∆mxr = L2, where L1 ̸=
L2. For every ϵ > 0 and ψ ∈ (0, 1), take θ ∈ (0, 1) such that (1−θ)∗ (1−θ) > 1−ψ.
Define

K1(θ, ϵ) = {r ∈ N : P(∆mxr − L1; ϵ) ≤ 1− θ}
and

K2(θ, ϵ) = {r ∈ N : P(∆mxr − L2; ϵ) ≤ 1− θ}.
Since StαP − lim∆mxr = L1, then

lim
n→∞

1

nα
|{r ≤ n : P(∆mxr − L1; t) ≤ 1− θ}| = 0.
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Similarly, for StαP − lim∆mxr = L2. We obtain,

lim
n→∞

1

nα
|{r ≤ n : P(∆mxr − L2; t) ≤ 1− θ}| = 0.

Now let
K(θ, ϵ) = K1(θ, ϵ) ∪ K2(θ, ϵ).

Clearly,

lim
n→∞

1

nα
|K(θ, ϵ)| = 0.

This implies,

lim
n→∞

1

nα
|Kc(θ, ϵ)| = 1.

For r ∈ N−K(θ, ϵ), we get

P(L1 − L2, ϵ) ≥ P
(
∆mxr − L1;

ϵ

2

)
∗P

(
∆mxr − L2;

ϵ

2

)
≥ (1−θ)∗ (1−θ) > 1−ψ,

as ψ > 0 is arbitrary, which gives P(L1 − L2, ϵ) = 1, for all ϵ > 0. This implies,
L1 = L2. Therefore, St

α
P − lim∆mxr = L is unique.

Theorem 2.3. Let (X;P, ∗) be a PN−Space and 0 < α ≤ 1. The ∆m-convergence
of a sequence in X with respect to probabilistic norm P implies the ∆m-statistically
convergence of order α with respect to probabilistic norm P.

Proof. Let x = {xr} be any sequence in X such that P − lim∆mxr = L. For every
ϵ > 0, ψ ∈ (0, 1), there exists r0 ∈ N such that,

P(∆mxr − L, ϵ) > 1− ψ,

for r ≥ r0. This implies the set {r ≤ n : P(∆mxr −L; ϵ) ≤ 1−ψ} has almost finite
many terms. We know that the α-density of every finite set is zero. Therefore,

lim
n→∞

1

nα
|{r ≤ n : P(∆mxr − L; ϵ) ≤ 1− ψ}| = 0.

Thus,
StαP − lim∆mxr = L.

The converse of the above theorem is not true which can be justified in the next
example:

Example 2.2. Let (R, | . |) be real normed space under the usual norm. Let u ∗ v = uv
and P(∆xr, t) =

t
t+|∆mxr| , where x ∈ X and t ≥ 0 Here (X;P, ∗) is PN − Space. Take a

difference sequence x = {xr} as

∆mxr =

{
1 if r is a cube
0 otherwise
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Then for every ψ ∈ (0, 1) and ϵ > 0, let

Rr(ψ, ϵ) = {r ≤ n : P(∆mxr; ϵ) ≤ 1− ψ}.

Since

Rr(ψ, ϵ) =

{
r ≤ n :

t

t+ |∆mxr|
≤ 1− ψ

}
=

{
r ≤ n : |∆mxr| ≥

ψt

1− ψ
> 0

}
= {r ≤ n : |∆mxr| = 1}
= {r ≤ n : r is a cube}

We have,

1

nα
|Rr(ψ, ϵ)| =

1

nα
|{r ≤ n : r is a cube}| ≤ n1/3

nα
.

This implies

lim
n→∞

1

nα
|Rr(ψ, ϵ)| = 0 where α ∈

(
1

3
, 1

)
,

which gives that

StαP − lim∆mxr = 0.

i.e. ∆mxr is StαP -convergent to zero. But, ∆mxr is not convergent with respect to P in
the space (R, | . |).

Theorem 2.4. Let (X;P, ∗) be a PN − Space and 0 < α ≤ 1. Then
(i) If StαP − lim∆mxr = L1, St

α
P − lim∆myr = L2 then StαP − lim∆m(xr + yr) =

L1 + L2.
(ii) If StαP − lim∆mxr = L, c ∈ R, then StαP − lim∆m(cxr) = cL.

Proof. (i) Let StαP − lim∆mxr = L1, St
α
P − lim∆myr = L2, ψ ∈ (0, 1) and take

θ ∈ (0, 1) such that (1− θ) ∗ (1− θ) > 1− ψ then for ϵ > 0,

K1(θ, ϵ) = {r ∈ N : P(∆mxr − L1, ϵ) ≤ 1− θ},

K2(θ, ϵ) = {r ∈ N : P(∆myr − L2, ϵ) ≤ 1− θ}.

Since StαP − lim∆mxr = L1 therefore, α-density of the set K1(θ, ϵ) = 0. Also for
StαP − lim∆myr = L2 we get α-density of the set K2(θ, ϵ) = 0. For all ϵ > 0, Let
K(θ, ϵ) = K1(θ, ϵ)∩K2(θ, ϵ). Then α-density of the set K(θ, ϵ) is zero, which implies

lim
n→∞

1

nα
|{N−K(θ, ϵ)}| = 1. Let r ∈ N−K(θ, ϵ), then

P(∆mxr − (L1 + L2); ϵ) ≥ P(∆mxr − L1, ϵ/2) ∗ P(∆mxr − L2, ϵ/2)

> (1− θ) ∗ (1− θ)

> 1− ϕ.

This shows that

lim
n→∞

1

nα
|r ∈ N : P(∆mxr − L1 +∆myr − L2, ϵ ≤ 1− ψ| = 0.
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Hence

StαP − lim∆m(xr + yr) = L1 + L2.

(ii) Let

StαP − lim∆mxr = L.

First we take c = 0. For ϵ > 0 and ψ ∈ (0, 1)

P(∆m0xr − 0L; ϵ) = P(0; ϵ) = 1 > 1− ψ.

So

P(∆m0xr, ϵ) = 0.

Now let c ∈ R (c ̸= 0). Since StαP − lim∆mxr = L, so for ϵ > 0 and ψ ∈ (0, 1) take

K(θ, ϵ) = {r ∈ N : P(∆mxr − L, ϵ) ≤ 1− θ}.

We have, lim
n→∞

1

nα
|{K(θ, ϵ)}| = 0 i.e. lim

n→∞

1

nα
|{N −K(θ, ϵ)}| = 1. If r ∈ N−K(θ, ϵ),

then

P(∆mcxr − L, ϵ) ≥ P
(
∆mxr − L,

ϵ

|c|

)
≥ P(∆mxr − L, ϵ) ∗ P

(
0;

ϵ

|c|
− ϵ

)
> 1− ψ ∗ 1
= 1− ψ.

For c ∈ R(c ̸= 0) this shows that

lim
n→∞

1

nα
|{r ∈ N : P(∆mxr − cL, ϵ) ≤ 1− ψ}| = 0.

Hence

StαP − lim∆mcxr = cL.

Theorem 2.5. Let (X;P, ∗) be a PN − Space and α ∈ (0, 1]. A generalized
difference sequence x = {xr} is ∆m-statistically convergent with respect to the prob-
abilistic norm P i.e. StαP − lim∆mxr = L if and only if there exists an increas-

ing index sequence R = {ri} of natural numbers such that lim
n→∞

1

nα
|R| = 1 and

P − lim∆mxr = L.

Proof. For the necessary part, first we assume that

StαP − lim∆mxr = L.
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For every ϵ > 0 and θ ∈ N, define

R(θ, ϵ) =

{
r ∈ N : P(∆mxr − L, ϵ) ≤ 1− 1

θ

}
,

S(θ, ϵ) =

{
r ∈ N : P(∆mxr − L, ϵ) > 1− 1

θ

}
.

Then

lim
n→∞

1

nα
|R(θ, ϵ)| = 0 and lim

n→∞

1

nα
|S(θ, ϵ)| = 1.(2.1)

S(1, ϵ) ⊃ S(2, ϵ) ⊃ S(3, ϵ) ⊃ . . . ⊃ S(i, ϵ) ⊃ S(i+ 1, ϵ) . . .(2.2)

Now, we prove that, for r ∈ S(θ, ϵ), the sequence x = {xr} is StαP − lim∆mxr = L.
Suppose, on the contrary that StαP − lim∆mxr ̸= L. Then, there exists ψ > 0
such that the set {r ∈ N : P(∆mxr − L, ϵ) ≤ 1 − ψ} has infinitely many terms.
Let S(ψ, ϵ) = {r ∈ N : P(∆mxr − L, ϵ) ≤ 1 − ψ}, where ψ > 1

θ (θ ∈ N). Then

lim
n→∞

1

nα
|S(ψ, ϵ)| = 0, which contradicts with equation (2.1) as S(θ, ϵ) ⊂ S(ψ, ϵ).

Consequently, the sequence x = {xr} is StαP − lim∆mxr = L. Next, to prove the
sufficient part, we assume that there is a set

R = r1 < r2 < r3 < . . . < rr < . . . ⊆ N

such that lim
n→∞

1

nα
|R| = 1, and P − lim∆mxr = L. Then, for every ψ ∈ (0, 1) and

t > 0 we have P(∆mxr − L, ϵ) > 1− ψ. Also

S(θ, ϵ) = {r ∈ N : P(∆mxr − L, ϵ) ≤ 1− ψ}
⊆ N− {SN + 1, SN + 2, . . .}

Therefore limn→∞
1
nα |S(ψ, ϵ)| ≤ 1− 1 = 0. Hence P − lim∆mxr = L.

Theorem 2.6. A sequence x = {xr} in PN − Space (X;P, ∗) is ∆m-statistically
convergent of order-α if and only if it is ∆m-statistically Cauchy of order α; for all
α ∈ (0, 1].

Proof. Let the sequence x = {xr} is ∆m-statistically convergent of order-α in PN−
Space (X;P, ∗) i.e. StαP − lim∆mxr = L. Then for every ϵ > 0 and ψ ∈ (0, 1) take
θ > 0 such that (1− θ) ∗ (1− θ) > 1− ψ. Define

A(θ, ϵ) = {r ∈ N : P(∆mxr − L, ϵ/2) ≤ 1− θ},

Since StαP − lim∆mxr = L then lim
n→∞

,
1

nα
|A(θ, ϵ)| = 0. Let s ∈ Ac(θ, ϵ) then

P(∆mxs−L, ϵ/2) > 1−θ. If B(ψ, ϵ) = {r ∈ N : P(∆mxr−∆mxs, ϵ) ≤ 1−ψ}, then
to prove result we show that B(ψ, ϵ) ⊆ A(θ, ϵ). Let r ∈ B(ψ, ϵ) then P(∆mxr −
∆mxs, ϵ) ≤ 1− ψ. Either P(∆mxr − L, ϵ/2) ≤ 1− θ or P(∆mxr − L, ϵ/2) > 1− θ.
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(a) If P(∆mxr − L, ϵ/2) ≤ 1− θ then r ∈ A(θ, ϵ).
(b) If P(∆mxr − L, ϵ/2) > 1− θ then

1− ψ ≥ P(∆mxr −∆mxs, ϵ) ≥ P(∆mxr − L, ϵ/2) ∗ P(∆mxs − L, ϵ/2)

> (1− θ) ∗ (1− θ)

> 1− ψ.

which is not possible. Therefore, B(ψ, ϵ) ⊆ A(θ, ϵ). Hence, x = {xr} is ∆m-
statistically Cauchy of order α in PN − Space.
Conversely, let x = {xr} be ∆m-statistically Cauchy of order-α in PN −Space but
not ∆m-statistically convergent of order α. Then, we get s ∈ N such that

lim
n→∞

1

nα
|Cc(ψ, ϵ)| = 1 and lim

n→∞

1

nα
|Dc(ψ, ϵ)| = 0,

where

C(ψ, ϵ) = {r ∈ N : P(∆mxr −∆mxs, ϵ) ≤ 1− ψ},

D(ψ, ϵ) = {r ∈ N : P(∆mxr − L, ϵ/2) ≤ 1− ψ}.

As P(∆mxr − ∆mxs, ϵ) ≥ 2P
(
∆mxr − L, ϵ2

)
> 1 − ψ if P(∆mxr − L, ϵ) > 1−ψ

2 .

Then, we get lim
n→∞

1

nα
|{r ∈ N : P(∆mxr −∆mxs, ϵ) > 1− ψ}| = 0 i.e.

lim
n→∞

1

nα
|Cc(ψ, ϵ)| = 0 which contradicts that the set Cc(ψ, ϵ) has α-natural density

1. Consequently, we get that sequence x = {xr} is ∆m-statistically Cauchy of order
α in PN − Space.

3. Conclusion

In the paper, we have presented the notion of ∆m-statistical convergence and ∆m-
statistically Cauchy of generalized difference sequences of order α in probabilistic
normed spaces. The notion ∆m-statistical convergence and ∆m-statistically Cauchy
of generalized difference sequences of order α in probabilistic normed spaces is
more generalized than the notion of ∆m-statistical convergence and ∆m-statistically
Cauchy in probabilistic normed spaces. We have proved some useful results of
order α for these notions in the probabilistic normed spaces. We have discussed
some examples which are the proof that this notion is more generalized than the
corresponding results of normed spaces.
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