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Abstract. This article aims to define a new resolvent operator for variational inclusion
problems in the framework of Banach spaces. We design a rapid algorithm using the
resolvent operator to approximate the solution of the variational inclusion problem
in Banach spaces. Additionally, we show that the algorithm articulated in this article
converges faster than the well-known and notable algorithm due to Fang and Huang. To
show the superiority and prevalence of the obtained results, we propound a numerical
and computational example upholding our claim. Last, a minimization problem is
solved with the help of the proposed algorithm, which is the first attempt in the current
context of the study.
Keywords: variational inclusion problem, approximation, convergence.

1. Introduction

Variational inclusions, generalized form of variational inequalities have been
studied quite extensively and have become an important tool to study a wide range
of problems in several branches of pure and applied sciences. Novel and innovative
techniques were used to study and explore them in different directions. Study-
ing variational inclusions in all these directions is quite interesting and beneficial,
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but one of the most interesting and important aspects of the theory of variational
inclusions is to develop an efficient and implementable algorithm to compute the ap-
proximate solution of a variational inclusion problem. Moreover, many authors have
constructed different approximation algorithms for different variational inclusions
in Hilbert as well as in Banach spaces. In 1976, Rockafellar [13] developed an algo-
rithm for solving variational inclusion problems known as the proximal point algo-
rithm. Many authors have studied the proximal point algorithm like [1, 3, 9, 10, 15].
Verma [14] generalized the relaxed and over-relaxed proximal point algorithm using
A-monotonicity for variational inclusion in Hilbert space. Lan [11] introduced the
new concept of (A, η,m)-maximal monotone operators, which generalized the ex-
isting monotone operators such as A-monotonicity, (H, η)- monotonicity, and other
monotone operators as special cases. In 2003, Fang and Huang [4] introduced a
new class of maximal η-monotone mapping in Hilbert spaces, which is a general-
ization of the classical maximal monotone mapping, and studied the properties of
the resolvent operator associated with the maximal η-monotone mapping. They
also introduced and studied a new class of non-linear variational inclusions involv-
ing maximal η-monotone mapping in Hilbert spaces. In 2004, Fang and Huang [5]
further extended and generalized their work from Hilbert spaces to Banach spaces
by introducing a new class of H-accretive operators. They extend the concept of
resolvent operators associated with the classical m-accretive to the new H-accretive
operators. By using the resolvent operator technique, they studied the approximate
solution of a class of variational inclusions with H-accretive operators in Banach
spaces. Let B be a real Banach space and G,H : B → B be two single valued op-
erators and M : B → 2B be a multivalued operator. Fang and Huang [5] considered
the problem of finding b ∈ B, such that

0 ∈ G(b) +M(b)(1.1)

and they constructed the following iterative algorithm, for any bo ∈ B, the iterative
sequence {bn} ⊂ B is defined by Algorithm 1.2

bn+1 = RH
M,λ[H(bn)− λG(bn)], n = 0, 1, 2, 3, · · ·(1.2)

Where RH
M,λ : B → B is defined by

RH
M,λ(b) = (H + λM)−1(b) for all b ∈ B

under the condition that M is H-accretive, G is strongly accretive w.r.t. H and H
is strictly accretive operator. Motivated by the research work in this direction and
most particularly taking the results of Fang and Huang [4, 5] into consideration,
our motive is to introduce a modified and improved iterative algorithm involving
resolvent operator technique in the framework of Banach space for the solution
of VIP (1.1). So for it, we took a modified version of the resolvent operator and
correspondingly some different constraints on operators, and we constructed a new
iterative algorithm sequence for the solution of VIP (1.1) in the framework of Banach
space. The convergence of our algorithm is faster than the Algorithm given by Fang
and Huang. By Numerical example, we have shown the superiority of our algorithm.
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In what follows, we always let B be a real Banach space with dual space B∗,
⟨·, ·⟩ be the dual pair between B and B∗, and 2B denote the family of all nonempty
subsets of B. The generalized duality mapping Jq : B → 2B is defined by

Jq(b) = {f∗ ∈ B∗ : ⟨b, f∗⟩ = ∥b∥q and ∥f∗∥ = ∥b∥q−1} for all b ∈ B

Where q ≥ 1 is a constant.

Definition 1.1. [5] Let G,H : B → B be two single-valued operators. G is said to
be

(i) accretive, if
⟨G(b)−G(c), Jq(b− c)⟩ ≥ 0 for all b, c ∈ B;

(ii) strictly accretive, if G is accretive and

⟨G(b)−G(c), Jq(b− c)⟩ = 0 iff b = c;

(iii) strongly accretive, if for some positive constant α

⟨G(b)−G(c), Jq(b− c)⟩ ≥ α∥b− c∥q for all b, c ∈ B;

(iv) strongly accretive with respect to H, if for some positive constant β

⟨G(b)−G(c), Jq(H(b)−H(c))⟩ ≥ β∥b− c∥q for all b, c ∈ B;

(v) Lipschitz continuous, if for some positive constant γ

∥G(b)−G(c)∥ ≤ γ∥b− c∥ for all b, c ∈ B.

Definition 1.2. [5] LetH : B → B be a single valued operator, then a multi-valued
mapping M : B → 2B is said to be

(i) accretive if

⟨s− t, b− c⟩ ≥ 0 for all b, c ∈ B; s ∈ M(b), t ∈ M(c);

(ii) strongly accretive if there exists some positive constant η such that

⟨s− t, b− c⟩ ≥ η∥b− c∥q for all b, c ∈ B; s ∈ M(b), t ∈ M(c);

(iii) m-accretive if M is accretive and (I + λM)(B) = B for all λ > 0, where I is
the identity mapping on B;

(iv) H-accretive if M is accretive and (H+ λM)(B) = B holds for every λ > 0;

(v) strongly H-accretive, if M is strongly accretive and (H + λM)(B) = B holds
for every λ > 0.
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Definition 1.3. Let V be any vector space over field F. Then the algebraic dual
space V ∗ is defined as the set of all linear functionals on V.

Lemma 1.1. Let M : B → 2B be an m-accretive mapping and G : B → B be an
accretive operator. Then a mapping G+M : B → 2B is an m-accretive operator.

Proof. For u ∈ (G+M)(b), v ∈ (G+M)(c), b, c ∈ B, consider

⟨u− v, Jq(b− c)⟩
= ⟨Gb+ u− (Gc+ v), Jq(b− c)⟩
= ⟨Gb+Gc, Jq(b− c)⟩+ ⟨u+ v, Jq(b− c)⟩ ≥ 0.

Using above Lemma 1.1, we have defined a new resolvent operator in the fol-
lowing way:

Definition 1.4. Let H : B → B be a strictly accretive operator and G+M : B →
2B be strongly H−accretive operator. Then the resolvent operator is defined as:

RH
G+M,λ(b) = [H+ λ(G+M)]−1(b) for all b ∈ B.(1.3)

Lemma 1.2. Let H : B → B be a strictly accretive operator and G+M : B → 2B

be a strongly H-accretive operator. Then the resolvent operator [H + λ(G +M)]−1

is a single valued.

Proof. Suppose for b ∈ B, and x, y ∈ [H+λ(G+M)]−1(b). Then from the definition
of the resolvent operator, it follows that −Hx + b ∈ λ(G + M)x and −Hy + b ∈
λ(G+M)y. Using accretiveness of G+M , we get

⟨(−Hx+ b)− (−Hy + b), x− y⟩ = ⟨Hx−Hy, x− y⟩ ≥ 0.

As H is strictly accretive operator, so we get x = y. Thus [H + λ(G + M)]−1 is
single valued.

Lemma 1.3. Let H : B → B be a strongly accretive operator with constant α > 0
and G + M : B → 2B be a strongly H-accretive operator with positive constant η.
Then the resolvent operator RH

G+M,λ(b) = [H+ λ(G+M)]−1(b) for all b ∈ H and

λ > 0 is
(

1
α+λη

)
Lipschitizian continuous i.e.

∥∥RH
G+M,λ(b)− RH

G+M,λ(c)
∥∥ ≤

(
1

α+ λη

)
∥b− c∥ for all b, c ∈ B.

Proof. For two given points b, c ∈ B, we have

RH
G+M,λ(b) = [H+ λ(G+M)]−1(b)
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and
RH

G+M,λ(c) = [H+ λ(G+M)]−1(c).

This means that

1

λ

(
b−H(RH

G+M,λ(b))
)
∈ (G+M)(RH

G+M,λ(b))

and
1

λ

(
c−H(RH

G+M,λ(c))
)
∈ (G+M)(RH

G+M,λ(c)).

Since G+M is η strongly accretive, we have

η∥RH
G+M,λ(b)− RH

G+M,λ(c)∥q

≤
〈
b−H(RH

G+M,λ(b)− (c−H(RH
G+M,λ(c)), Jq(RH

G+M,λ(b)− RH
G+M,λ(c))

〉
=

1

λ

〈
b− c−

(
H(RH

G+M,λ(b))−H(RH
G+M,λ(c))

)
, Jq(RH

G+M,λ(b)− RH
G+M,λ(c))

〉
.

Now consider

∥b− c∥∥RH
G+M,λ(b)− RH

G+M,λ(c)∥q−1

= ∥b− c∥∥Jq(RH
G+M,λ(b)− RH

G+M,λ(c))∥
≥

〈
b− c, Jq(RH

G+M,λ(b)− RH
G+M,λ(c))

〉
≥

〈
H(RH

G+M,λ(b))−H(RH
G+M,λ(c), Jq(RH

G+M,λ(b)− RH
G+M,λ(c))

〉
+λη∥RH

G+M,λ(b)− RH
G+M,λ(c)∥q

≥ α∥RH
G+M,λ(b)− RH

G+M,λ(c)∥q

+λη∥RH
G+M,λ(b)− RH

G+M,λ(c)∥q

= (α+ λη)∥RH
G+M,λ(b)− RH

G+M,λ(c)∥q.

So, we get

∥RH
G+M,λ(b)− RH

G+M,λ(c)∥ ≤
(

1

α+ λη

)
∥b− c∥ for all b, c ∈ B.

2. Algorithm for Variational Inclusion Problem

One of the most important and interesting research work in the field of varia-
tional inequalities and variational inclusions is to develop algorithms. Many people
have made this research work their favorite one like [2, 8, 12] etc. In this part of the
article, we design an iterative algorithm for the variational inclusion problem (1.1)
using the resolvent operator given by (1.3). In fact problem (1.1) was considered by
many authors like [4, 5, 6, 7, 13] etc. for different types of mappings and in different
settings.
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We consider the problem while taking M as an H-accretive and G as strongly
accretive so that G+M : B → 2B is also an H-accretive operator. Fang and Huang
had also taken the same mappings. First, we state the fixed point formulation for
our problem.

Lemma 2.1. Let H : B → B be a strictly accretive operator and G+M : B → 2B

be a strongly H-accretive operator. Then b ∈ B is a solution of problem (1.1) iff

b = RH
G+M,λ[H(b)].(2.1)

Based on the above-fixed point formulation, we propose our algorithm as:
Algorithm 2.2 For any b0 ∈ B, the iterative sequence {bn} ⊂ B is defined by

bn+1 = RH
G+M,λ[H(cn)], cn = RH

G+M,λ[H(bn)], n = 0, 1, 2, · · · .(2.2)

3. Main Result

In this part of the article, we have shown that the sequence generated by Algo-
rithm (2.2) converges to the unique solution of problem (1.1) strongly. A numerical
example is given to show that the convergence rate of our algorithm is faster than
that of Fang and Huang [5].

Theorem 3.1. Let H : B → B be a strongly accretive and Lipschitz continuous
operator with positive constants α and β, respectively, G+M : B → 2B be a strongly
H-accretive operator with positive constant η and there exists some positive constant
λ such that

(
β

α+λη

)
< 1.

Then the sequence constructed by algorithm (2.2) converges to the unique solution
of problem (1.1) strongly.

Proof. Let b∗ be the solution of the problem (1.1), then it follows that

∥bn+1 − b∗∥ = ∥RH
G+M,λ[H(cn)]− RH

G+M,λ[H(b∗)]∥

≤ 1

α+ λη
∥H(cn)−H(b∗)∥

≤ β

α+ λη
∥cn − b∗∥

=
β

α+ λη
∥RH

G+M,λ[H(bn)]− RH
G+M,λ[H(b∗)]∥

≤
(

β

α+ λη

)2

∥bn − b∗∥.

Continuing in this way, we obtain

∥bn+1 − b∗∥ ≤
( β

α+ λη

)2(n+1)∥b0 − b∗∥.(3.1)
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Taking limn → ∞, we get

lim
n→∞

∥bn+1 − b∗∥ = 0.

This implies that bn converges to b∗ strongly.

4. Numerical Example

Example 4.1. Let B = R, the set of reals, H, G : R → R and M : R → 2R be defined
as H(b) = 2b ∀s ∈ R, G(b) = b/3, ∀s ∈ R and M(b) = 3b,∀s ∈ R. Then H is strongly
accretive with constant α = 1.9 and Lipschitz continuous with constant β = 2.1. B is
lipschitz continuos with constant γ = 0.4 and strongly accretive w.r.to H with constant
δ = 0.5 and G + M is strongly H-accretive operator with constant η = 3.1. Under these
conditions, the example satisfies the conditions of both theorems, the theorem of Fang
and Huang, as well as conditions of our theorem 3.1. Utilizing MATLAB 2012, Figure 4.1
depicts the convergence of {bn} by taking initial value b1 = 1, where one can easily see
that our algorithm converges faster than the algorithm due to Fang and Huang [5].

No. of Iterations

0 2 4 6 8 10 12 14 16 18

b
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alg.2.2

Alg. 1.2

Fig. 4.1: The convergence of {bn} with initial value b1 = 1.
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No. of Iterations Algorithm 2.2 Algorithm 1.2
1 1.0000 1.0000
2 0.1406 0.3333
3 0.0198 0.1111
4 0.0028 0.0370
5 0.0004 0.0123
6 0.0001 0.0041
7 0.0000 0.0014
8 0.0000 0.0005
9 0.0000 0.0002
10 0.0000 0.0001
11 0.0000 0.0000

Table 4.1: Comparison Table: Algorithm 2.2 vs Algorithm 1.2 with initial value
b1 = 1.

5. Application

In this section, we discuss the application of our algorithm for solving minimiza-
tion problem. We consider the minimization problem on R, a Banach space. Let

f : R → R be a function defined by f(b) = b2

4 and g : R → R ∪ {+∞} be a proper
convex and lower semi-continuous function defined as g(b) = b2. we want to find
the minimum of the function {f(b) + g(b)}, i.e. to find b∗ ∈ R such that

{f(b∗) + g(b∗)} = min
b∈R

{f(b) + g(b)}.(5.1)

Then by Fermat’s rule problem (5.1) is equivalent to find b ∈ R such that

0 ∈ b

2
+ 2b,(5.2)

which is same as problem (1.3) by taking G(b) = b
2 and M(b) = 2b. This problem

can be easily solved by algorithm (2.2). Let us take H(b) = 3b, then it is strongly
accretive with constant α = 2.9 and Lipschitz continuous with constant β = 3.1. G
is Lipschitz continuous with constant γ = 0.6 and is strongly accretive with constant
δ = 1.4 and G+M is strongly H− accretive with constant η = 7.4. So, it satisfies
all the conditions given in theorem (3.1). Figure 5.1 shows the convergence of {bn}
by taking different initial values. Moreover, Figure 5.2 shows that the minimum
acquired is 0.
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No. of iterations
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b
n
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with initial value -100

with initial value 200

Fig. 5.1: The minimum of problem (5.1) is 0 while starting with different initial
values 100,−100 and 200.

Fig. 5.2: minb∈R{f(b) + g(b)}.
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6. Conclusions

We introduced a modified and improved iterative algorithm involving the re-
solvent operator technique in the framework of Banach spaces for the existence of
the solution of VIP (1.1). We constructed a novel iterative algorithm sequence for
the solution of VIP (1.1) in the setting of Banach spaces by taking a modified ver-
sion of the resolvent operator and, correspondingly, some different constraints on
operators. The convergence of our algorithm is more rapid than the well-known
algorithm due to Fang and Huang. A numerical example with computer simulation
is adopted to uphold our claims.

Last, an open inquiry is whether we could foster an algorithm having a quicker
pace of assembly than the algorithm introduced in this article and, furthermore,
loosen up conditions on mappings included.
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